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Abstract

Discussion and examples of holonomic and anholonomic constraints are
presented in the languange of exteror di®erential forms.

1. Introduction

1.1. Preliminary: di®erential forms

The topics described below deal with things called Pfa±an equations and di®er-
ential forms on a domain. Perhaps the simplest way to think of di®erential forms
as to note that they are objects that form the integrands of multi-dimensional in-
tegrals. Di®erential forms, contrary to many exposes, are NOT covariant vectors.
They do have coe±cient functions that are presumed to transform as covariant
tensors.
The most well known di®erential forms are 1-forms and 2-forms (related to

1 dimensional line integrals and 2 dimensional surface integrals) and N-1 form
densities and N form densities (related the integrands of current densities and



density volume elements). An extraordinary feature of di®erential forms is that
they are well behaved in a functional sense as invariants relative to admissable
coordinate transformations called di®eomorophisms (which are maps that do not
change topology). Perhaps even of greater importance is the fact that di®erential
forms are well behaved in a functional sense with respect to C2 di®erentiable maps
which are not homeomorphisms. Such maps can be used to describe continuous
topological evolution.
When de¯ned on a di®erential variety of coordinate functions, the di®erential

forms can separate the domain into two sets. Regions of support (where the
di®erential form is not zero) and the zero sets (regions where the di®erential form
vanishes.) Pfa±an equations are of the latter category; they are essentially dif-
ferential forms constrained to zero. Pfa®'s problem is to ¯nd solutions to Pfa±an
equations. Di®erential forms may be exact, closed, integrable or non-integrable.
For exact forms, there exists a single global preimage whose exterior derivative
reproduces the di®erential form. For 1-forms, an exact 1-form is represented by
the exterior derivative of a unique global zero form, or function. The components
(coe±cients) of the exact 1-form behave as the components of a gradient covariant
vector ¯eld. A Pfa±an equation, as an equation of constraint between coe±cient
functions and di®erentials of a 1-form, may or may not be exact. If the constraint
is exact, then the constraint is de¯ned as a holonomic constraint. All other
constraints are called non-holonomic (or equivalently anholonomic) constraints.
Pfa±an equations as anholonomic constraints appear throughout physical theo-
ries. Sometimes they appear in subtle and unappreciated ways. For example:

Kinematics as an anholonomic constraint A common set of anholo-

nomic constraints (and a set that is usually unappreciated as an anholonomic
constrait) is given by the zero set of the kinematic (particle) 1-forms (on the do-
main fqk; tg): That is, consider a C2 map Á from fqk; tg ) fxkg: It is useful
to recognize that the map is from a domain (which can be de¯ned as an intitial
state) to a range (or a ¯nal state). The arguments of the map are the independent
variables of the intitial state. Then consider the de¯nitions.

¾k , dxk ¡ V k(q; t)dt = f@Ák(q; t)=@qm gdqm = ¢k (1.1)

With : V k(q; t) , f@Ák(q; t)=@t g: (1.2)

There are 5 cases that will be considered herein.: The 1-forms ¾k are zero, exact,
closed, integrable, or non-integrable.
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The kinematic hypothesis is that the 1-forms ¾k vanish on the domain of
interest, which implies that the "anholonomic °uctuations", ¢k; must vanish.
The constraint implies that

f@Ák(q; t)=@qm gdqm = 0 (1.3)

From which it follows that either all of the displacements vanish, dqm = 0;such
that the qm = constant "initial conditions", or the matrix f@Ák(q; t)=@qm g has
a zero determinant, and the non-zero displacements de¯ne the Null eigenvector
of the given matrix. In the latter case the initial conditions are not constants,
but are constrained to a singular set. The kinematic constraint is satis¯ed if the
anholonomic °uctuations vanish (the classic case).

A less restrictive constraint is that the 1-forms ¾k are closed, in the sense that
d¾k = d(¢k) = 0; but ¢k 6= 0:

If d¾k = 0; then dV k^dt = (@¢k=@t)^dt = f@2Ák(q; t)=@t@qm gdt^dqm ) 0
(1.4)

Then either t = constant, or the "Velocity" functions, V k; can be functions of
t alone. That is there exists a single parameter map from t into the functions,
V k(t): The °uctuation 1-forms ¢k are not zero, but are independent from time,
t: Such is the foundation of the Langevin approach to °uctuations.

The 1-forms ¾k need not be exact perfect di®erentials, and contain infor-
mation about certain (1-dimensional) topological properties (or defects) of the
domain. Such domains of induced coordinate 1-forms do not support A±ne tor-
sion. A necessary requirement for A±ne Torsion is that some or all of the induced
coordinate 1-forms, ¾k; are not closed.
A third situation and even less restrictive constraint may be posed by the

requirement that the Pfa±an equations are integrable. The implication is that
there is a set of 3-forms that must vanish, ¾k^d¾k = 0: Such a rank 3 Pfa±an an-
holonomic constraint is required if there exists and integrating factor ¸k(x; t;¯)
for each ¾k; such that although d¾k 6= 0; the product of the integrating factor
and the 1-form is closed: df¸k(x; t; ¯) ¾kg = 0: If ¾k^d¾k 6= 0; then the Pfaf-
¯an equations are not uniquely integrable integrable, and if the 3-form is closed
(d¾k^d¾k = 0), the 3-forms carry another set of topological properties (or defects)
di®erent from the defects generated by a closed, but not exact, system of 1-forms.
When ¾k^d¾k 6= 0, the domain is said to support "Topological Torsion".
It will be demonstrated below that both (1) holonomic coordinates (where

each coordinate is a gradient) and (2) closed but not exact coordinates (typical
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of multi-valued functions) are NOT to be associated with Frame matrices that
produce A±ne Torsion.

Thermodynamics as an anholonomic constraint Cohomology is the
study of forms whose di®erence is exact. The most famous such physical system is
that given by the ¯rst law of thermodynamics: Q¡W = dU: Neither the 1-form
of heat, Q; nor the 1-form of work, W is (necessarily) closed, but their di®erence
is exact! The ¯rst law is another example of a non-holonomic constraint:

Q¡W ¡ dU = 0: (1.5)

Rolling without Friction as an anholonomic constraint When a ball
rolls on a surface without slipping of skidding, there is an anholonomic constraint
imposed upon the dynamics. The constraint is often formulated by the Pfa±an
equation ¸dµ ¡ dx = 0:

1.1.1. Exact 1-forms

A di®erential form, ¾(q) = Abdq
b, has a Pfa® dimension, or class, represented

by an integer, m, that de¯nes the minimum number of independent functions
that are required (over a limited domain) to de¯ne the di®erential form. If the
di®erential form has a global de¯nition in terms of a single function Á(q) over the
entire domain, then the form is said to be exact.

An Exact 1-form: ¾(q) = dÁ(q) = f@Á(q)=@qbgdqb (1.6)

The coe±cients of the exact 1-form have the components of a gradient ¯eld. Exact
forms are globally integrable.

1.1.2. Closed 1-forms

A closed form is a form where the exterior derivative of the form vanishes. All
exact 1-forms are closed (for C2 functions),

d¾(q) = d(dÁ(q)) = f@2Á=@qa@qb ¡ @2Á=@qb@qagdqa^dqb = 0: (1.7)

However, there are 1-forms that are closed, but not exact. Closed, but not
exact, 1-forms are integrable over a restricted domain, which may be ¯nite but
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not global. As an example, consider the 1-form constructed from two independent
functions:

Example : ¾(q) = fÁ(q)dÂ(q)¡ Â(q)dÁ(q)g=faÁp + bÂpg2=p (1.8)

The example is closed (has zero "curl") but is not exact. d¾(q) = 0 (1.9)

The Pfa® dimension of a closed but not exact 1-form is 1, but the form cannot
be globally represented by a gradient of a single function. The domain contains
a topological defect(s), not typical of a Cartesian space. There are closed paths
(cycles) that are not shrinkable and are not boundaries. A typical example is given
by a planar disc with a central hole. Each hole is represented by a unique closed
but not exact (deRham) that says something about the fact that the domain of
de¯nition is nto simply connected. Note that if the two functions in the example
are taken to be Á = ª and Â = ªy then the closed (but not exact) 1-form becomes
(for a = 1; b = 1; p = 2)

¾(q) = fªdªy ¡ªdªg=(ªyª) = fªrmª
y ¡ªrmªgdqm=(ªyª); (1.10)

which is recognized as being proportional to the "probability current" in quantum
mechanics. The integrals around closed cycles of such closed but not exact 1-
forms are the basis for the Bohm Aharanov e®ect, and the deRham formulas are
the basis for what has been popularized as "°ux quantization" or as the "Berry
phase".
Closed forms which are not exact are often related to multivalued functions.

The closed 1-form given above is not well de¯ned when the denominator goes to
zero. If the domain of de¯nition excludes these regions, then the form is well
de¯ned, and there exist closed integration chains called cycles ( which are not
necessarily boundaries) for which the integral of the form along the closed chain
is NOT zero. If the integration is performed about a boundary cycle(s) the
value of the integral is zero. An exact form integrated about a closed cycle is
zero, whether it is a boundary or not. These closed but not exact 1-forms carry
topological information (in terms of the excluded points which are interpreted as
defects or singularities). As mentioned above. these closed but not exact 1-forms
have physical signi¯cance as the °ux quantum. Similar closed, but not exact
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2-forms, have physical signi¯cance as the charge quantum. Closed but not exact
3-forms have physical signi¯cance as the spin quantum.
See http://www22.pair.com/csdc/pdf/periods.pdf or R. M. Kiehn, J. Math

Phys 18 4 (1977)

1.1.3. Not closed but integrable 1-forms

Even if a 1-form ¾ is not closed, such that d¾ 6= 0; it still may be true that there
exists an integrating factor ¸ that makes the form closed. That is

d(¸(q)¾) = d(¸(q)Abdq
b) = d¸^¾ + ¸ d¾ ) 0 (1.11)

It follows that a necessary condition for the existence of an integrating factor is
that

¾^fd¸^¾ + ¸d¾g = ¾^d¸^¾ + ¸ ¾^d¾ = 0 + ¸ ¾^d¾ = 0 (1.12)

Hence, the 3-form ¾^d¾ must vanish if an integrating factor exists. The condition
is known as the Frobenius condition of integrability. The integrating factor does
not necessarily convert the non-closed 1-form into an exact 1-form.

1.1.4. Non-integrable 1-forms

If the associated 3-form ¾^d¾ does not vanish, then an integrating factor does not
exist, and the system is said to be non-integrable. The Frobenius condition of
integrability fails.

2. FRAME MATRICES

The columns of a matrix of functions for which the determinant is non-zero on a
¯nite domain fqag can be used as a basis matrix for contravariant vectors. The
columns of the frame matrix are treated as contravariant vectors with components
designated by the upper (row) index. The rows of the Frame matrix are treated
as the components of covariant vectors, with the component index being the lower
(column) index. The designations follow in accord with the existence of integral
maps from the domain to the target. However, the requirements for a Frame
matrix do not require that the Frame be deducible from a map of functions. All
that is required is that the Frame matrix form a linearly independent set of basis
vectors at every point p. The requirement is that the determinant of the Frame
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matrix is non-zero. Points on the domain where the determinant of the Frame
matrix is not zero are called defects or singularities.
There are 4 major cases to consider:

1. The Frame matrix maps exact di®erentials into exact di®erentials (the holo-
nomic case where the map from range to target is known.)

£
F ka (q

b)
¤
± jdqai )

¯̄
¾k

®
=

¯̄
dxk

®
(2.1)

2. The Frame matrix maps exact di®erentials into non-exact di®erentials (non-
holonomic) £

F ka (q
b)

¤
± jdqai )

¯̄
¾k

®
(2.2)

There are three subcases to consider.

(a). The induced 1-forms
¯̄
¾k

®
are closed, integrable, or not integrable.

Note that the term "non-holonomic" is used to imply that the induced 1-
forms are not exact. As will be shown below, both holonomic (exact) and
special non-holomomic (closed but not exact) Frames are A±ne torsion free.

(b) Non-holonomic is a necessary, but not su±cient, condition to produce
A±ne torsion. The lack of closure (the 2-form vanishes: d¾k 6= 0) is a
su±cient requirement to produce A±ne torsion. However, in certain cir-
cumstances the system may be integrable in the Frobenius sense, such that
a new Frame can be constructed in terms of "integrating" factors, and that
new frame will be of the types (a) or (b) above. A necessary condition for in-
tegrability is that the topological torsion 3-form must vanish: (¾k^d¾k = 0):

(c) In the non-integrable cases, (¾k^d¾k 6= 0):

3. The Frame matrix maps non-exact di®erentials into exact di®erentials

£
F ka (q

b)
¤
± j!ai )

¯̄
dxk

®
(2.3)

4. The Frame matrix maps non-exact di®erentials into non-exact di®erentials

£
F ka (q

b)
¤
± j!ai )

¯̄
¾k

®
(2.4)

Only the ¯rst case is holonomic, for in that case there exists a functional map
from fqag to fxkg: The other cases are anholonomic. The ¯rst three cases are
special cases of case 4.
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Note that in every case there is a right Cartan connection such that

d
£
F ka (q)

¤
=

£
F kc (q)

¤
± [Cca(q)] =

£
F kc (q)

¤
±

"X

b

Ccab(q)dq
b

#
(2.5)

This result is deduced from the condition that the Frame matrix
£
F kc (q)

¤
has an

inverse [Gcm(q)]. The result of a connection is not imposed as a de¯nition out of
the blue. The connection matrix of di®erential 1-forms is constructed as

"X

b

Ccab(q)dq
b

#
= [Cca(q)] = ¡ [dGcm(q)] ± [Fma (q)] = [Gcm(q)] ± [dFma (q)] (2.6)

The construction is independent from a metric constraint imposed upon the sys-
tem. It is important to note that the indices that denote the elements of the right
Cartan matrix are de¯ned on the initial state, and the arguments are in terms of
initial state variables.
Consider the exterior derivative of the Frame matrix, without the imposition

of the constraint that the determinant be non-zero. Then for case 2

d
£
F ka (q

b)
¤
± jdqai = f@F ka =@qb ¡ @F kb =@qagdqb^dqa (2.7)

When the inverse matrix exists, another expression for the vector of closure 2-
forms is obtained as

d
¯̄
¾k

®
= [Gck(q)] ± f@F ka =@qb ¡ @F kb =@qagdqb^dqa = (2.8)

:
Consider the two de¯nitions: (constructed from the connection generated by

the Frame matrix)

The Vector of A±ne Torsion 2-forms is de¯ned as : jAT ci = [Cca(q)] ^ jdqai =
¯̄
Cc[ab]dq

b^
(2.9)

The Matrix of Curvature 2-forms is de¯ned as [£ca] = f[dCca(q)]+[Ccb (q)] ^
£
Cba(q)

¤
g

(2.10)
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2.1. Holonomic systems (Case 1)

The basis assumption is that Frame matrix maps exact di®erentials into exact
di®erentials. £

F ka (q
b)

¤
± jdqai )

¯̄
dxk

®
(2.11)

Such a situation exists when there exists an explicit mapping from one set of
(coordinate) variables fqag to another set of variables fxkg is given in terms of
C2 di®erentiable functions,

Á : qa ) xk = Ák(qa): (2.12)

The induced exact coordinate di®erentials
¯̄
dxk

®
are related linearly to the exact

di®erentials jdqai by the Jacobian mapping:

dÁ : jdqai )
¯̄
dxk

®
=

£
@Ák(qb)=@qa)

¤
jdqai (2.13)

The exact coordinate di®erentials are said to be holonomic, as they have a
unique functional pre-image. Note that a necessary condition (but not su±cient)
for integrability to exactness is that the exterior derivatives of the coordinate
di®erentials must vanish, d(dxk) = 0: Often the target of the map is presumed
to be a (pseudo) euclidean space with a diagonal metric of constants equal to
§1: The reverse problem of mapping from a (pseudo) euclidean space can also
be considered.
For the integrable situations, the Jacobian matrix of functions may be used as

a basis frame
£
F ka (q

b)
¤

£
F ka (q

b)
¤
=

£
@Ák(qb)=@qa)

¤
(2.14)

on subspaces of fqbg where the determinant of the Jacobian matrix does not
vanish. As the Frame matrix (in this case the Jacobian matrix) has an inverse on
such domains, the exterior derivatives of the Jacobian matrix lead to the concept
of a connection [C] that linearly connects the di®erentials of the basis functions
to linear combinations of the basis functions. This concept of a connection is
consequence of the linear independence of the column vectors that de¯ne any
basis Frame matrix, and is not a postulated de¯nition:

d
£
F ka (q)

¤
=

£
F kc (q)

¤
±

" X

c=1::n

Ccab(q)dq
b

#
: (2.15)
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The matrix elements of the right Cartan connection matrix, [Cca(q)] ; are di®eren-
tial 1-forms, Ccabdq

b:
If the functions of the holonomic mapping are C2 di®erentiable, then by direct

computation,

d(dxk) =
£
F kc (q)

¤
± [Cca(q)] ^ jdqai

=
£
F kc (q)

¤
±

" X

c=1::n

Ccab(q)dq
b

#
^dqa

=
£
F kc (q)

¤
±

¯̄
fCcab ¡ Ccbagdqb^dqa

®
= 0 (2.16)

The vector of two forms based on the anti-symmetric components of the connec-
tion has been de¯ned as the vector of A±ne torsion 2-forms:

Vector of A±ne Torsion 2-forms:
¯̄
Cc[ab]dq

b^dqa
®

(2.17)

However, this vector of A±ne Torsion 2 forms must vanish as d(dx) = 0.

BOTTOM LINE: If the exterior di®erential system has a preimage as a
holonomic mapping, the Vector of A±ne Torsion 2-forms must vanish.

(Hence statements about "holonomic a±ne torsion" are misleading if not false
(see Sarfatti Vigier 2000).)

Application of the exterior derivative one more time yields

d(d(dxk)) = df
£
F kc (q)

¤
± [Cca(q)g] ^ jdqai

=
£
F ke (q)

¤
± f[Cec (q)] ^ [Cca(q)] + [dCca(q)]g^ jdqai

=
£
F ke (q)

¤
± [£e] ^ jdqai ) 0: (2.18)

The result is that the 3-form [£e] ^ jdqai must vanish for the holonomic case.
This necessary condition does not imply that the matrix of curvature 2-forms
must vanish, although that is a possibility.

In summary The holonomic case is A±ne torsion free, but may or may not
admit non-zero curvature
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2.2. Anholonomic systems - Case 2

Even without knowledge of the unique integral solutions (which may not exist),
it often possible to construct (or impose by other arguments) over a domain a
Frame Field, [F ]. The Frame ¯eld acts as a basis matrix of linearly independent
functions with arguments on the variety, ya: (Methods for constructing [F ] are
described in "The Many Faces of Torsion"). The domain may be ¯nite, but not
global. Consider the anholonomic (non-holonomic) case where

£
F ka (q

b)
¤
± jdqai )

¯̄
¾k

®
: (2.19)

Multiplying by the inverse frame yields

¯̄
dqb

®
=

£
Gbk(q

b)
¤
±

¯̄
¾k

®
(2.20)

Exterior di®erentiation of the ¯rst equation yields

£
F kb (q

b)
¤
±

£
Cba(q

b)
¤
^ jdqai ) d

¯̄
¾k

®
(2.21)

which implies that the vector of A±ne Torsion 2-forms is given by the expression

£
Cba

¤
^ jdqai =

£
Gbk(q

b)
¤
± d

¯̄
¾k

®
(2.22)

The important result is that the vector of A±ne Torsion 2-forms will vanish even
if the induced 2-forms

¯̄
¾k

®
are closed, not merely exact. A±ne Torsion requires

that the induced 1-forms are not closed.
Exterior di®erentiation of the second equation yields

d
¯̄
dqb

®
= 0 =

£
dGbk(q

b)
¤
±

¯̄
¾k

®
+

£
Gbk(q

b)
¤
± d

¯̄
¾k

®
(2.23)

So if the reciprocal frame ¯eld is used as a basis frame, there exists a reciprocal
right Cartan connection,

£
Dm
k (q

b)
¤
; such that

d
¯̄
dqb

®
= 0 =

£
Gbm(q

b)
¤
± f

£
Dm
k (q

b)
¤
±

¯̄
¾k

®
+ d

¯̄
¾k

®
g (2.24)

The term in the curly brackets de¯nes the Vector of Cartan Torsion 2-forms based
on

¯̄
¾k

®
: It is apparent that this Vector of Cartan torsion 2-forms is zero and

consists of two compensating parts, one of which is the Vector of A±ne connection
2 forms.

There are four cases to consider depending on the properties of the induced
1-forms:
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a. If the non-exact 1-forms are closed, such that d
¯̄
¾k

®
= 0;then the vector of

a±ne 2-forms, [Cca(q)] ^ jdqai, must vanish. This anholonomic domain does
not support A±ne Torsion. Moreover the 3-form, [£ca] ^ jdqai must vanish.
A su±cient but not necessary condition is that the matrix of curvature 2-forms
is zero. In other words such anholonomic domains could have curvature without
torsion.

b. If the non-exact 1-forms are not closed then d
¯̄
¾k

®
6= 0: The constraint

implies that this type of anholonomic domain necessarily supports A±ne Torsion.
A second application of the exterior derivative implies that, again, the 3-form
[£ca] ^ jdqai must vanish. Hence, such anholonomic cases necessarily support
A±ne Torsion, but may or may not have zero curvature.

c. If the
¯̄
¾k

®
are not closed but integrable, then the vector of 3-forms,¯̄

¾k^d¾k
®
must vanish.

d. If induced 1-forms are not integrable. Such domains are said to support
topological torsion. The 3-form

¯̄
¾k^d¾k

®
6= 0: In simple terms, A±ne Torsion

is related to the "curl" of the induced coordinate 1-forms, ¾k: If the 1-forms
have zero curl, the domain does not support A±ne Torsion. If the 1-forms are
integrable, then the topological torsion is zero. Non-zero topological torsion
implies that the

¯̄
¾k

®
are not integrable.

2.3. Anholonomic systems - Case 3

Consider the anholonomic (non-holonomic) case where

£
F ka (q

b)
¤
± j!ai )

¯̄
dxk

®
: (2.25)

Exterior di®erentiation yields

df
£
F ka (q

b)
¤
± j!aig =

£
F ka (q

b)
¤
± f[Cca(q)] ^ j!ai+ jd!aig = d

¯̄
dxk

®
) 0 (2.26)

It must be true that the vector of Cartan torsion 2-forms based !a on must vanish

Vector of Cartan Torsion 2-forms: [Cca(q)] ^ j!ai+ jd!ai = Ccabdqb^!a (2.27)

A second exterior di®erentiation leads to the condition:
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£
F ka (q

b)
¤
±f[Cca(q)] ^ [Cca(q)] ^ j!ai+2 [Cca(q)] ^ jd!ai+[dCca(q)] ^ j!aig = 0 (2.28)

or

£
F ka (q

b)
¤
± f[£ca(q)] ^ j!ai+ 2 [Cca(q)] ^ jd!aig = 0 (2.29)

The bracket term 3-form has to vanish under the starting hypothesis, which im-
plies that the curvature component [£ca(q)] ^ j!ai can be compensated by the
Coriolis term 2 [Cca(q)] ^ jd!ai ; if each component is not identically zero. No con-
ditions are place upon the vector of A±ne Torsion 2-forms which is not at all
equivalent to the vector of Cartan Torsion 2-forms.

Now the 1-forms j!ai may be composed of linear combinations j!ai = Aabdqb
such that
[Cca(q)] ^ j!ai = Ccaedqe^Aabdqb
As will be seen (below) when the system is not holonomic, and no unique

integral equivalent exists, then the spaces involved can have connections which
are not free of a±ne torsion. The bottom line is that there is a correspondence
between integrability and no- torsion. This correspondence will be demonstrated
below.

2.4. Suggested Reading

There are three books on Pfa±an systems that cover the topics in some detail.
The ¯rst is by
Schouten, J. A. and Van der Kulk, W., "Pfa®'s Problem and its Generaliza-

tions", (Oxford Clarendon Press, 1949)
Another is by
M. Zhitomirski, "Typical Singularities of di®erential 1-forms and Pfa±an Equa-

tions" Mathematical Monographs 113, AMS 1992.
Neither of these texts is easy reading.
A third book of interest in "Exterior Di®erential Systems" by Gri±ths, Bryant,

Chern et al. (I will update this reference later.)
A paper by P. Fiziev and H. Kleinert gr-qc/9605046 May 1996 does a detailed

job explaining "Anholonomic Transformations of Mechanical Action Principle(s)"
A paper by Manual del Leon and David de Diego "On the geometry of non-

holonomic Lagrangian systems" J Math Phys. 37 (7) 1996, p.3389 gives some
examples, and a set of references, but is mostly restricted to what are called
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semi-holonomic constraints below. Also see "Solving non-Holonomic Lagrangian
Dynamics...." Extract Mathematica 11, 2 1996 p.325, by the same authors
Also see David C. Robinson and W. F. Shadwick "The Gri±ths-Bryant algo-

rithm and the Dirac theory of Constraints" Fields Institute Communications 7
1996, p189
**

3. APPENDIX

3.1. Basic Ideas

First a few de¯nitions.

De¯nition: An exterior di®erential form, $, is a function of inde-
pendent variables (functions) and the di®erentials of the independent
variables. (There are also a few restrictions of anti-symmetry and
homogeneity in the di®erentials that lead to algebraic closure. These
conditions need not be discussed now. See Flanders "Exterior Di®er-
ential Forms")

A differential form : $ = f(xk; dxk) (3.1)

Example: The classic Cartan Hilbert Action is a (linear) exterior di®erential
form

$ = f(xk; dxk) ) ! = pkdq
k ¡H(pk; qk; t)dt:

De¯nition: A constraint is an exterior di®erential form set equal to
zero.

$ = f(xk; dxk) ) 0: (3.2)

De¯nition: The zero set of a di®erential form (which is homogeneous
in the di®erentials) de¯nes a constraint called a Pfa±an equation.
(The di®erential form, especially when linear in the di®erentials, often
is referred to as the "Pfa±an").

$ ) ! = f(xk; dxk) =
X

k

Ak(x
k)dxk ) 0: Pfaffian Equation

(3.3)
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Classic examples of Pfa±an equations of constraint are given by the kinematic
and dynamic expressions subsumed as axioms of freshman mechanics:

dxk ¡ V kdt = 0; dV k ¡ Akdt = 0; dpk ¡ Fkdt = 0: (3.4)

De¯nition: A constraint that does not depend upon di®erentials is
said to be a holonomic constraint. A constraint that involves the dif-
ferentials is said to be an anholonomic or a non-holonomic constraint.
If only one di®erential is involved, then the constraint is called a semi-
holonomic constraint.

Example 1 A Holonomic constraint: f(xk) ¡ c ) x2 + y2 + z2 ¡ 1 = 0:
This constraint, as a function of coordinate (independent) variables, if applied
to a mechanical system, implies the motion must be con¯ned to a sphere of unit
radius. Holonomic constraints de¯ne hypersurfaces which are oriented, global,
and often of more than one component. A Mobius band cannot be represented
by a holonomic constraint (submersion) on a three dimensional space (It can be
represented by a two dimensional immersion into a three dimensional space.)

Example 2 An Anholonomic constraint: g(x; y; z; dx; dy; dz) = 0 is a non-
holonomic or anholonomic constraint: Such an equation, if linear in the di®er-
entials, is de¯ned as a Pfa±an equation. This de¯nition is a bit more general
than that de¯nition used in many control theory texts. (see the de¯nition for
semi-holonomic constraints given below where the di®erentials are replaced by
velocity functions). The constraint of rolling without slipping is a anholonomic
constraint.

¸dµ ¡ dx = 0 (3.5)

Often it is not appreciated that the kinematic de¯nitions given above are indeed
anholonomic constraints on the domain.

Example 3 A Semi Holonomic constraint: g(x; y; z;V x; V y; V z) = 0: It is
usually assumed that V x; V y; V z are de¯ned as di®erentials of x,y,z with respect
to time. Note that this assumption implies that the system admits the additional
anholonomic kinematic constraints mentioned above. Under the assumption that
dµ ¡ ¤dt = 0 and dx ¡ V dt = 0; the anholonomic constraint of rolling without
slipping becomes a semi-holonomic constraint.

(¸¤¡ V )dt = 0 ¾ (¸¤¡ V ) = 0: (3.6)
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Particle motion subsumes the kinematic constraints. Wave (or °uid motion)
does not. Particles and waves are equivalent on domains where the kinematic
equations are valid for the velocity ¯eld. These domains form a submanifold of the
space of coordinates and velocity functions. The space of "waves" is much larger
than the space of "particles". (It turns out that when the system is integrable, the
two developments are alias-alibi related, and then can be said to be equivalent. A
Hamiltonian formulation and a Lagrange formulation are strictly equivalent only
when they are integrable. A Lagrange formulation with anholonomic constraints
is equivalent to a Hamiltonian formulation if they are of the same class or Pfa®
dimension. (see below) As will be shown below, integrability implies that either
the di®erential 1-form can be represented in terms of at most two independent
functions of the original independent variables: ! = 'dÃ; or ! = dÃ: The
associated Pfa±an equations of constraint are the same for either representation.
However, the exterior derivative of the ¯rst possibility is not zero, where the
exterior derivative of the second possibility is zero.
Every di®erentiable holonomic constraint, Á(xj) ¡ c = 0; leads (by di®erenti-

ation) to a non-holonomic Pfa±an equation:

dÁ(xj) =
X

k

(@Á=@xk)dxk )
X

k

Ak(x
j)dxk = 0 (3.7)

but not conversely. Di®erential forms, !; not equal to zero de¯ne a mod-
ule of vector ¯elds such that i(V)! = 1. Pfa±an equations (di®erential forms
constrained to zero) de¯ne a module of vector ¯elds such that i(V)! = 0

De¯nition: A di®erential 1-form, ! = (
P

kAk(x
j)dxk) is said to

be integrable on domains where either
P

k Ak(x
j)dxk = dÁ(xj) or

£(xj)(
P

kAk(x
j)dxk) = dÁ(xj): The function £(xj) is de¯ned as

an integrating factor.

A Pfa±an equation of constraint constructed from an integrable 1-form has
a unique direction ¯eld, in the sense that the coe±cient functions, Ak(x

j); are
proportional to the gradient of a single function, Á(xj): The hypersurface, Á(xj) =
0; de¯nes the subspace (N-1 dimensional domain) of points which are isolated from
the larger (N dimensional) domain.
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Theorem: (Frobenius) An integrable di®erential 1- form ! = Ak(x
j)dxk

satis¯es the exterior di®erential equation (an equation of constraint!)

!^d! = 0: (3.8)

De¯nition: The 3 -form !^d! is de¯ned as the "topological torsion".
Integrable 1-forms have zero topological torsion.

The kinematic constraints mentioned above satisfy the Frobenius theorem.
As the di®erentials dx are presumed to be exact, their exterior derivatives vanish.
Hence the exterior derivative of the di®erential form ! = dx ¡ V dt; whose zero
set represents the Pfa±an constraint, has only one component equal to the 2-
form, d! = dV x^dt: If the Pfa±an is integrable, it must be true that d! = 0:
Hence this single 2-form must vanish, which implies that V x = V x(t) a function
of t alone. That is, the kinematic assumption implies that the velocities admit
a representation in terms of a single parameter (usually called time) Consider
a more general case, where there exists a di®erentiable map of more than 1-
parameter (string or m-branes) from ft; ymg ) xk = fk(t; ym): Then

! = dxk ¡ f@fk(t; ym)=@tg dt =
X

f@fk(t; ym)=@yjg dyj (3.9)

This equation has the appearance of the kinematic formula, if the function f@fk(t; ym)=@tg
is identi¯ed with V k(t; ym); and if the RHS is zero:

Pf@fk(t; ym)=@yjg dyj = 0:
If the matrix [F (t; ym)] = f@fk(t; ym)=@yjg is of maximal rank (det [F ] 6= 0) then
the only possibility is that the ym are ¯xed constants in the sense that dym = 0. If
the ym are not constants (constant initial conditions) then the kinematic equations
will have °uctuations where the RHS is not zero.

De¯nition: A Pfa® sequence of a di®erential 1-form A consists of a
¯nite number n of ordered non-zero elements, constructed as fA, dA,
A^dA, ...g. The class, or Pfa® dimension, of the 1-form A at a point
fxkg is equal to n, the number of non-zero elements of the sequence.

Example: The di®erential form A = y1dy2+dy3 de¯ned on the 4 dimensional
domain, fy1; y2; y3; y4g generates the Pfa® sequence,

fA = y1dy2 + dy3; dA = dy1^dy2; A^dA = dy1^dy2^dy3; dA^dA = 0g: (3.10)
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The Pfa® dimension of the example is 3. The ¯rst zero element in the sequence
is the 4 form dA^dA. The class or Pfa® dimension of an integrable form is 2
or less. The proof follows from the Frobenius theorem. The Pfa® dimension
in e®ect determines the minimum number of independent functions which are
required to describe the 1-form. Integrable 1-forms can be written in the format
A = 'dÃ where '(xk) and Ã(xk) are independent functions of the independent
variables.

De¯nition: An Anholonomic Kinematic Fluctuation is de¯ned as

dxk ¡ V k dt = ¢xk 6= 0: dV k ¡ Ak dt = ¢V k 6= 0: (3.11)

The Cartan-Hilbert invariant integral has an Action integrand, A, which is
based upon Anholonomic Kinematic Fluctuations. The "momenta" pk; play the
role of Lagrange multipliers.

Action = L(x; V; t)dt+ pk¢x
k = L(x; V; t)dt+ pk(dx

k ¡ V k dt) (3.12)

= pkdx
k ¡ (pkV k ¡ L)dt = pkdxk ¡H(pk; V k; xk; t)dt (3.13)

Note that the "Hamiltonian" function H(pk; V
k; xk; t) depends, in general, on

the velocity functions, V k; as well as the Lagrange multipliers, pk; and the co-
ordinates and time, xk; t: The Maximum Pfa® dimension of the Action is 2n+2
although though there are what appear to be 3n+1 independent functions used
in its construction.
The exterior derivative of the Cartan Hilbert Action is given by the expression

dA = (pk ¡ @L=@V k)(¢V k)^dt+ (dpk ¡ @L=@xkdt)^(¢xk) (3.14)

which demonstrates the in°uence of the °uctuations (in both velocity and po-
sition) on the 2-form, dA. It is apparent that the anholonomic °uctuations in
velocity, (¢V k), are unimportant if the momenta are presumed to be canoni-
cal, (pk ¡ @L=@V k) ) 0: Intuitively, °uctuations in Velocities are attributed to
temperature, where °uctuations in position are associated with pressure.

De¯nition: Topological torsion of a 1-form of Action, A;(on a 4 di-
mensional domain) is de¯ned as the 3 form A^dA

A di®erential 1-form with non-zero topological torsion is of Pfa® dimension 3
or more. The 1-form can be expressed in terms of not less than 3 independent
functions. Therefore, according to the Frobenius theorem, the1-form A which
supports a non-zero Topological Torsion 3 form is not uniquely integrable.
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3.2. Subtleties

3.2.1. Exactness and Closure

A constrained di®erential 1-form, A; usually does not have a unique primitive
function, Á; whose total di®erential generates a Pfa±an equation to within a
factor, £. A necessary but not su±cient condition for the existence of the unique
global holonomic function is that the exterior derivative of A; or at least f£Ag;
must vanish. For £ = 1; the covariant vector ¯eld of components, Ak, must have
zero "curl". If A represents a vector potential, then such potentials produce no
¯eld intensities, B: In a °uid, one would say that there is no vorticity. (The
integrating factor sometimes can be considered as a conformal factor)
When the exterior di®erential of a form vanishes, d! = 0; the form is said to

be closed, and the union of the form and its closure forms a di®erential ideal. If
the di®erential form is exact then there is a unique pre-image (in the example, a
function Á) such that ! = dÁ: What is the di®erence between and exact form
and a closed form? The answer is that on a simply connected domain, there is
no di®erence. However, if the domain is not simply connected (think of holes in
a piece of paper) then there is a di®erence. For each hole there is a closed but
not exact component to the di®erential form. As an example consider the 1-form
which as it stands is neither exact nor closed.

¾ = (ydx¡ xdy) with d¾ = 2dy^dx (3.15)

Multiply the form ¾ by the closure factor 1=(§x2 § y2):

° = ¾=(§x2 § y2) = (ydx¡ xdy)=(§x2 § y2) with d° = 0 (3.16)

The resulting 1-form is now closed but not exact. The domain of support must
exclude a small set where the denominator goes to zero. If the signs are the same,
the excluded set is a point at the origin. The original euclidean plane now has a
hole, and is no longer simply connected. The form ° is called a harmonic form
(in the sense of deRham).
What is remarkable is that the integral of a closed and exact form on a cycle,

z1, is zero, but the integral of a closed but not exact form on a cycle is an integer
multiple of some constant.

Z

z1

dÁ = 0 but

Z

z1

° = n 2¼ (3.17)
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Gauge conditions as exact di®erential additions to a 1-form, are trivial. Gauge
conditions of the closed but not exact type are NOT trivial. They contain
topological information (such as the hole count in a non-simply connected domain.
(Bohm-Aharanov, Joukowski airfoil, Meissner expulsion, Sommerfeld quantum
conditions, etc.)
These same concepts work for di®erential forms that are not linear in the

di®erentials. Hence the postulate of electromagnetism that F¡dA = 0 is a strong
topological anholonomic constraint, that says over the domain of support, the 2-
form of F (E and B) is exact; that is, the 2-form does not have harmonic parts
(although the 1-form, A; can have harmonic parts which are the "°ux quanta").
The second postulate of Maxwell electrodynamics is the statement J ¡ dG = 0:
The idea again is that the 3-form J is exact without harmonic parts. The 2-form
G can have harmonic parts, which serve as the charge quanta.
Now consider the topological torsion for the 1-form A which is de¯ned as

the 3-form H = A^F = A^dA: If dH = 0; then the question arises: Does H
have harmonic parts? If the answer is yes then the harmonic parts serve as
"topological" torsion quanta. A necessary condition for existence of such quanta
is that the second Poincare invariant must be zero.
Similarly for the 3-form of topological spin S = A^G: The necessary condition

for existence of EM spin quanta is that the dS = 0; or in other words that the
First Poincare invariant must vanish. These points are exempli¯ed at
http://www22.pair.com/csdc/car/carhomep.htm
For an interesting solution to the Maxwell postulates, further constrained by

the Lorentz vacuum conditions. See
http://www22.pair.com/csdc/maple/reed21.html
Here, the Torsion ¯eld is not closed, but the Spin ¯eld is closed. In fact the

Spin ¯eld in the example is the torsion ¯eld multiplied by an integrating factor.
One would be led to say torsion is source of spin. However, the solution is a
special case and the conclusion is not general, for the next example demonstrates
that you can have ¯nite topological torsion with zero topological spin. See
http://www22.pair.com/csdc/maple/reed31.html

3.3. Equations of Motion

Given an arbitrary 1-form of Action, which is not closed, Cartan has shown that
the equations of motion generating a vector ¯eld V are of a Hamiltonian form if
the Lie derivative of the Action, A, with respect to the vector ¯eld V is exact.
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Theorem: Solutions V to the equation L(V )A = d(£) are Hamilto-
nian vector ¯elds.

This theorem is equivalent to the statement that the closed integrals of the
harmonic components of A are constants of the motion. The number of holes does
not change. The 1-dimensional topological property expressed as the harmonic
1-form is an invariant of processes that are generated from a Hamiltonian function.
Writing out the theorem shows that it is a statement in the form of an an-

holonomic di®erential constraint

i(V )dA¡ d(£¡ i(V )A) = 0 (3.18)

Use the symbolsW = i(V )dA de¯ned as the work 1-form, and U = i(V )A de¯ned
as the "internal energy". The work 1-form W is closed and exact. Hamiltonian
systems are systems where the Pfa® dimension of the Work 1-form is 1.

3.4. Equations of motion for Non-Hamiltonian dynamics

It is apparent that to ¯nd equations of motion for non-Hamiltonian systems, the
fundamental anholonomic constraint

i(V )dA = d(£¡ i(V )A) (3.19)

must be modi¯ed to include harmonic parts, and non-closed parts.

W = i(V )dA = d(£¡ i(V )A) + ° + Z (3.20)

dW = dZ 6= 0 (3.21)

The last equation destroys the Helmholtz theorem, and the Poincare even di-
mensional integrals are no longer evolutionary invariants. An example of such a
non-Hamiltonian mechanics was suggested in 1974. See
http://www22.pair.com/csdc/pd2/pd2fre5.htm
The formula is the anholonomic constraint

W ¡ ¡A = i(V )dA¡ ¡A = 0: (3.22)

It is know that this equation requires that the Pfa® dimension of the Action 1-
form be even (2n+2). Hence the Pfa® space supports the topological torsion
3-form. Moreover, a unique solution vector V does exist for this problem. In
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a space of 4 variables this vector is equivalent to the Torsion current ( with
components proportional to those of the 3-form of non-zero topological torsion,
A^dA). Evolution in the direction of the Torsion current is thermodynamically
irreversible, as the heat 1-form, Q, does not satisfy the Frobenius integrability
theorem, and therefor does not admit an integrating factor.

3.5. Extremals and the Calculus of variations.

For integrals of the Action around closed loops, the values at the "endpoints"
cancel out. Similar constraints are often placed on open integrals, forcing the
cancellation of contributions at boundary points. The solutions of the problem
are then given by vector ¯elds that generate paths such that

L(V )

Z

z1

A =

Z

z1

i(V )dA+

Z

z1

di(V )A)
Z

z1

i(V )dA = 0 (3.23)

It is apparent that the if equation is satis¯ed (giving the equation for an extremal
as the "Lie derivative" of the integral must vanish) then the work 1-form must
vanish. The bottom line is that Extremals are associated with anholonomic
constraints, W = fkdx

k ¡ Pdt = 0: Extremal solutions say that there are vector
¯elds such that fkV

k ¡ P = 0: This equation is the freshman de¯nition of power
as the product of force times velocity.
What is even more remarkable is that this equation, W = 0; has solutions only

in spaces (as de¯ned by the Pfa® sequence for the Action 1-form) of odd Pfa®
dimension, 2n+1. (e.g. State Space).

Theorem: Unique extremals, de¯ned as solutions to the equation
i(V)dA=0 for a given A, do not exist on domains of Pfa® dimension
2n+2

The theorem is easy to prove, for if the Pfa® space is a symplectic manifold
of even dimension then the 2-form dA has an anti-symmetric matrix representa-
tion with no zero eigenvalues. On the other hand if the Pfa® space is an odd
dimensional contact manifold, then the anti-symmetric matrix representation of
dA has a unique eigen vector with eigen value zero. Hence on 2n+1 Pfa® space,
the extremal exists and is unique.
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3.6. Homework Problems

1. Discuss the torsion induced by A as compared to the torsion induced by W.
2. Discuss the a±ne torsion associated with an integrable but not exact coor-

dinate system and how the idea intertwines with conformal maps and dilatations
and chirality.
3. Compare Cartan Torsion 2-forms, a±ne torsion, topological torsion and

anholonomic constraints.
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