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Abstract:  The observable features of hydrodynamic wakes can be put into
correspondence with those characteristic surfaces of tangential
discontinuities upon which the solutions to the evolutionary equations of
hydrodynamics are not unique.  Only the robust minimal surface subset,
associated with a harmonic vector field, will be persistent and of minimal
dissipation.  Surprisingly, those minimal surfaces generated by iterates of
complex holomorphic curves in four dimensions are related to fractal sets.

  

Introduction
A remarkable feature of hydrodynamic

wakes and coherent structures in stratified flows is
that their associated "instability" patterns seem to
belong to two broad equivalence classes of spiral
shapes.  These two  patterns are epitomized by the
Kelvin-Helmholtz  instability pattern (Figure 1a)
and the Rayleigh-Taylor instability pattern
(Figures 1b).

The two basic experimental patterns are often
replicated and deformed by the fluid motion, but
otherwise they have vividly sharp visible
boundaries and remarkably long persistent
lifetimes in what otherwise would be considered to
be a diffusive and dissipative environment.

 Note that the Kelvin-Helmholtz instability
pattern is characterized by a replication of the
primitive pattern of a Cornu spiral. The Rayleigh-
Taylor instability pattern is characterized by a
replication of the primitive pattern of a Mushroom
spiral.  Although an analytic description of the
Cornu spiral has been known for more than 100
years, only recently has the present author become
aware of a closed form analytic description for the
mushroom spiral.  This work was presented at the
August 1992, IUTAM meeting at Poitier, and is
summarized in section 4.
 The essential questions are: Why do
these spiral patterns appear almost universally in
wakes?  Why do they persist for such substantial
periods of time?  Why are they so sharply defined?
What are the details of their creation?  As
H.K.Browand said [Browand, 1986] "There does
not exist a satisfactory theoretical explanation for
these wake patterns."

Although the theory and ideas presented
in this article were initiated and motivated by
topological arguments, the presentation will
utilize only the most fundamental of topological
notions to describe the basic physical phenomena.

2.  Two Remarkable Observations.
Although the ubiquitous mushroom

pattern and its topological features have fascinated
this author for many years, it is important to note
that there were two (relatively recent) experiments,

    
   Figure 1a.  The pattern of the Kelvin-
   Helmholtz instability.

   

   Figure 1b.  The pattern of the Rayleigh-
   Taylor Instability.
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or better, two observations of the mushroom spiral
pattern in hydrodynamic wakes which motivated
the current work and led to the concepts presented
in this article.

The first observation was made by this
author in 1986, while visiting an old friend in Rio
de Janeiro, Brazil. To replicate the experiment,
inject kinetic energy and angular momentum into
a stratified fluid  with a free surface  by stroking a
half submerged, flat, circular plate in a direction
parallel to its oblate axis.  Remove the plate at the
end of the stroke to produce, initially, a pair of
ordinary Rankine vortices in the surface of the
density discontinuity.  These Rankine vortices
cause the initially flat surface of discontinuity to
form a pair of parabolic concave indentations,
indicative of the "rigid body" rotation of a pair of
contra-rotating vortex cores of uniform vorticity.
However, in a matter of a few seconds each
concave shape will decay into the metastable
soliton configuration of an inverted hyperbolic
convex dimple of negative Gaussian curvature.
The dimple depression is usually of the order of a
few millimeters, but the circulation zone typically
extends over a disc of some 10 to 15 centimeters
or more, depending on the plate diameter.  The
configuration, or coherent structure, has been
defined as the Falaco Soliton.  For purposes of
illustration , the vertical depression in Figure 2
has been greatly exaggerated.   The Falaco
Solitons will persist for many minutes in a still
pool of water.

Black Spots Refracted on Pool Floor

Dimpled indentations in free surface

Figure 2.  The Falaco Soliton 

The effect is easily observed, for in strong
sunlight the convex hyperbolic indentation will
cause an intensely black circular disk (or absence
of light) to be imaged on the bottom of the pool.
A bright ring of focused light will surround the
black disk, emphasizing the contrast.  The optics
of the problem are completely described by Snell
refraction from a surface of revolution that has
negative Gauss curvature.  See Figure 3.  This
effect has been reported upon elsewhere, but the
figures are replicated herein for clarity [Kiehn
1991, 1992a].

Optics of the FALACO SOLITON

Surface normals

Figure 3.  The Snell Black Disk
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Dye injection near an axis of rotation
during the formative stages indicates that there is
a unseen thread, or 1-dimensional string
singularity, in the form of a circular arc that
connects the two 2-dimensional surface
singularities or dimples (Figure 2).  Transverse
waves can be observed to propagate from one
dimple vertex  to the other dimple vertex, guided
by the "string" singularity.  If the string is
"severed", the confined, two dimensional endcap
singularities do not diffuse away, but instead
disappear almost explosively.  It is as if the Falaco
soliton is the macroscopic  topological equivalent
of the illusive hadron in elementary particle
theory, where two 2-dimensional surface defects
(the quarks) are bound together by a string of
confinement.

The spin pairing mechanism exhibited as
the Falaco soliton is interpreted as a topological
phenomenon independent from size and shape.
Therefore the effect should occur at all scales,
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including microscopic as well as cosmic
configurations.  In fact, during the formative
stages of the Falaco vertex pair, the decaying
Rankine vortices exhibit more or less planar spiral
arm features, easily visible as caustics emanating
from each vortex core.  This observation is so
dramatic that it leads to the conjecture that there
might be a singularity thread connecting the
nuclei of similarly paired, almost flat, spiral arm
galaxies, such as M31 and the Milky Way.  The
idea is given further credence by the recent
analysis that seems to show that galactic
formation is not dense, but instead appears to be
confined to surface structures throughout the
visible universe.

To this author the importance of the
Falaco Solitons is that they offer clean
experimental evidence that topological defects can
be created in a fluid.  Moreover, the experiments
are easily replicated by anyone with access to a
swimming pool.  The Falaco solitons certainly are
among the most easily reproduced solitons.
Interactions with a pole placed vertically to the
bottom of the pool experimentally emulate the
coherent scattering of solitons observed in
computer simulations. As the drifting soliton spin
pair and its connecting thread interacts with the
pole, the Snell black discs shimmer and disappear,
only to coherently reappear after the soliton pair
has passed beyond the interaction zone.  For
hydrodynamics, the observation firmly cements
the idea that these objects are truly coherent
structures.  In fact, the effect leads to a precise
definition of a coherent structure: A coherent
structure is a deformable bounded domain with a
uniform invariant topology.

The observation of the Falaco Solitons in
1986 greatly stimulated further theoretical
research  into the topological properties of
hydrodynamic systems by the present author.
Early on, it was recognized that the Snell
refraction on the bottom of the pool produces a
circular disk, more or less independent from the
angle of solar incidence.  This observation, as well
as the negative Gauss curvature of the surface,
lends further credence to the idea (an idea to be
exploited in this article) that the topological
surface distortion is a minimal surface.  The
argument is that only spheres and minimal
surfaces have a conformal Gauss map  (Snell
projection) [Struik, 1961].  This spontaneous
creation of a minimal surface by a wake was an

idea that remained dormant until March of 1992,
when a second observation stimulated the present
author to generate the theory of spiral wake
patterns first presented at the IUTAM conference
in Poitier.  Before discussing this second
observation it should be noted that if chalk dust is
sprinkled on the surface of the pool during the
formative stages of the Falaco soliton, then the
topological signature of the familiar Mushroom
Spiral pattern is exposed.

The second observation that stimulated
the development of this article was a picture that
appeared on the cover of the March, 1992 issue of
FLYING magazine.  The cover photo showed a jet
aircraft making a climb out through a stratified
cloud bank off the coast of  California.   As the jet
passed through the discontinuity layer, it produced
once again the topological signature of the
Mushroom Spiral pattern in its wake.  A
schematic of the wake pattern is presented in
Figure 4.
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Figure 4.  Tip Vortex Wake

The important point demonstrated by the
photograph of the Mushroom Spiral was that it
clearly showed several rolled up layers of sharply
defined, non-diffusive interface between the fog
and clear air.  The sharpness of these boundaries,
and their persistence, even under deformation,
suggested that these features, like the Falaco
Solitons, were due to topological effects.  The
effects of viscosity must be only of secondary
importance to the topological issues.  The
photograph made the present author determined to
find a simple explanation for the Mushroom
Spiral pattern.  The answer came in a surprisingly
simple application of the more than 100 year old
Frenet-Cartan theory of space curves.  Although
the methods used were simple, the details would
have been impossible to obtain in a reasonable
amount of time without the advantage of a modern
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Personal Computer.  An outline of the technique
is described in section 4, below.

Following this recognition that the spiral
patterns of observable wakes could be captured by
such a simple processes of solving systems of
ordinary differential equations, it then became
apparent that the surfaces of hydrodynamic wakes
must be associated with the characteristics of the
partial differential equations of evolution.  The
persistent boundaries of the aircraft wake are to be
interpreted as topological limit sets, representing
characteristic surfaces of tangential discontinuities
which can extend physical boundaries into the
interior of a bulk fluid as topological boundaries.
These surfaces behave as impermeable
membranes across which mass can not flow, and
pressure is constant.  However, as demonstrated
by Landau, all surfaces of tangential
discontinuities are locally unstable, and should
"lead to turbulence".  Why then should these
locally unstable surfaces of sharply defined
tangential discontinuities persist for so long?  The
answer, given below in more detail,  is that these
surfaces must be minimal surfaces upon which the
vector velocity field is harmonic. On such
domains where the velocity vector field is
harmonic,

grad div V - curl curl V = 0.

It follows that the effects of viscosity and diffusion
in the Navier-Stokes equations are annihilated by
this zero factor.  Not only are such tangential
discontinuities minimal surfaces of least area, they
are also surfaces of minimal dissipation.  The
study of a surface with minimum area that spans a
given boundary was one of the first problems of
the Calculus of Variations.  The idea that
observable wakes are also the result of such a
minimization process is  theoretically pleasing.

3.  Topological Properties
For more than 25 years the present

author has had an interest in delineating those
properties of nature that are of  topological origin
from those properties of nature that have a more
geometrical basis.  The goal has been to derive the
basic equations of topological evolution for
dissipative irreversible systems [Kiehn, 1974,
1990, 1991].  The fact that the two fundamental
scroll instability patterns of hydrodynamics are
recognizable even though they may be strongly

deformed by the evolutionary flow indicates that
there is a topological explanation for their
creation and persistence.  Recall  F. Klein's
definition of a geometrical property:  A
geometrical property  is a property that is
invariant with respect to translations and
rotations.   Extending this idea, a practical
definition of a topological property may be given:
A topological property is a property that is an
invariant of a continuous deformation (whose
inverse is also continuous).

In Figure 5a, a surface with two holes
and one curve of self-intersection is translated; in
Figure 5b, the same object is rotated;  in Figure 5c
the original object is deformed.  In the first two
cases, the size, shape, number of holes, and the
number of curves of self-intersection are
invariants of  translations and rotations.  They
are, by Klein's definition, geometrical properties.

a.  Translations

b.  Rotations

c.  Deformations

Fig. 5  Geometrical Invariants
(Size and Shape)

vs. Topological Invariants

(Holes and Self-Intersections)

On the other hand, when the initial object is
deformed, the size and shape are no longer
invariant, but the number of holes and the number
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of curves of self-intersection are deformation
invariants.  The number of holes and the number
of curves of self intersection are therefore
topological properties.

The example demonstrates that many
topological properties are related to the integers.
After all, you cannot have half a hole.  These
integer properties are typical of closed topological
sets and period integrals.  As discussed in [Kiehn,
1977, 1991] there are three types of period
integrals associated with one, two and three
dimensional topological defects.  It is not too
difficult to demonstrate that the Kelvin
"Conservation of Circulation" theorem of
hydrodynamics is related to the conservation of
holes, and the evolutionary invariance of
topological period integrals of the velocity field
around 1-dimensional closed loops.  On the other
hand  the "Conservation of  Helicity" theorem  in
hydrodynamics is related to the conservation of
the number of curves of self intersection, and the
evolutionary invariance of topological period
integrals over closed 3-dimensional elements of
space-time.

 If changes in these topological properties
take place, then it is to be expected that in many
cases the observational data should be in
relationship to the integers.  Topological evolution
implies that the evolutionary process is either
discontinuous, irreversible (meaning that the
inverse mapping does not exist, or if it exists, it is
not continuous)  or both.  For hydrodynamics an
argument can be made to show that the creation of
the turbulent state from the laminar state requires
discontinuous transitions, but the decay of
turbulence can proceed by means of continuous
(but irreversible) transformations. Condensation is
such a continuous process of topological change,
while gasification is a discontinuous process.
Recent work communicated to me at the
Barcelona conference by Voropayev indicates that
the attenuation of light through an unstable
Rayleigh-Taylor layer appears to change in
discrete amounts as the initial turbulent, unstable,
layer decays.  This would correspond to a
description of the initial state of the discontinuity
surface as being in an excited state of high
topological excitation, with a large number of
mushroom defects.  As time evolves, the surface
state decays into a state of lesser topological
excitation with the condensation of one mushroom
defect into another.  The topological change

would be expected to occur in a discrete fashion.
Voropayev indicates that as the process proceeds,
the smaller mushrooms amalgamate into  larger
ones.  This almagamation of vortices has been
observed also in the numerical simulations of
Montgomery [Montgomery, 1991]. This
remarkable topological process, similar to Bose
condensation, might serve as an alternate basis for
an explanation of the inverse cascade observed in
hydrodynamic systems.

4.  Mushroom Spiral Patterns
 At the IUTAM 1992 conference at
Poitier, the author presented an analytic
description of the mushroom spiral, a result
which was obtained while studying certain
topological qualities of systems of space curves.
These space curves were assumed to be generated
by single parameter solutions to a given vector
field.  The analysis was conducted using the
classic equations of the Frenet-Cartan moving
basis frame, or as Cartan describes it, the Repere
Mobile.

The classic Frenet idea is to assume that
a space curve can be generated by a position
vector, R(t), in Euclidean space, whose
components are functions of a single parameter,
say t.  As t evolves, the position vector sweeps out
a curve in space.  At each point, P, given by R(t),
differential and algebraic processes may be used to
construct a basis set for a vector space with origin
at P.  In 3-dimensions, this basis set is constructed
from the unit tangent, t, to the curve, and its
derivatives.  The constraint, dR - tds = 0, is a
kinematic (and topological) constraint that is used
to define the differential of arc length, ds, in terms
of the unit tangent, t.  By differentiating t with
respect to the arc length, s, a new vector, κ n, is
produced, with a line of action orthogonal to t in
the Euclidean space.   The unit vector, n, defined
as the normal vector satisfies the equations

 dt/ds = κ n ,                                 (1)
t  •  t = 1,  n •  n  = 1,  n •  t = 0 .

The coefficient, κ, is defined as the curvature.  By
using the Gram-Schmidt process, a third unit
vector, b, defined as the binormal in the classic
literature, may be constructed to the complete the
basis set: { t,n,b }.  It is of interest to compute the
derivatives of each of the basis vectors with
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respect to the arc length, s, demonstrating how the
basis set pivots and rotates about the moving
point, P.  The results are

                    dt /ds  =             + κ n
         dn /ds =   - κ t             +  τ b                    (2)
                    db /ds =              -τ n  .

the vectors {t, n, b} form an orthogonal moving
frame at the point p along the space curve.  The
variables s, κ, τ, are the arc length, curvature and
torsion, respectively, and may be used as a set of
intrinsic coordinates for a space curve.  The
intrinsic variables are the same for any given
space curve independent from a particular choice
of coordinate system. If two space curves have the
same intrinsic expressions, they are congruent.
They intrinsic variables are geometric properties
of the space curve, but can be used to extract
topological information.

There are two extreme situations.  In the
first extremal case the torsion is negligible (τ = 0)
and the space curve is confined to the plane
described by the vectors t and n.   In the second
case the curvature is neglected (κ = 0).  Both
extremes lead to motion confined to a plane and
are governed by ordinary differential equations of
the form:

dt /ds  =   + κ n
dn /ds  =   - κ t .

For t = {u,v} = {dx/ds, dy/ds }, a particularly
useful  representation for the unit tangent vector is
given by the expressions for the unit tangent in
terms of the phase equations:

tx = dx/ds  = u  =  sin(Q(s))                   (3)
ty = dy/ds = v  =  cos(Q(s)).                 (4)

The first of the Frenet equations leads to an
expression for the curvature, κ, as

      κ =  dQ(s)/ds                                (5)

For Q(s) = s, κ = 1, and the resulting space curve,
found by integrating the phase equations, is a
circle.  For  Q(s) = ln s,  κ = 1/s and the resulting
space curve is a logarithmic spiral.  For  Q(s) =
s2/2,  κ = s and the resulting space curve is the
Cornu spiral.  For the case κ = 1 and the case κ =

s, the infinite interval from s = - ∞ to + ∞  is
mapped into a bounded region of the plane.
These results have been known for more than 100
years.  However, a simple sequence is to be
recognized:
              ... k  =  s-1,   k =  s0 ,    k = s1...
The question arises as to what are the shapes of
the space curves for arbitrary integer exponents,  k
= sn.
Through the power of the PC these questions may
be answered quickly by integrating the phase
equations.  The results of the numerical
integrations are presented in Figure 6a for n = 1
and in Figure 6b for n = 2.

Perhaps more important is the fact that
the Cornu spiral of Figure 6a is the deformable
equivalent for all odd-integer n > 0, and the
Mushroom spiral of Figure 6b is the deformable
equivalent for all even-integer n  > 0.  Not only
has the missing analytic description of the
mushroom spiral been found, but also a raison
d'être has been established for the universality of
the two spiral patterns.  They belong to the even
and odd conjugate classes of arc length exponents

       

Cornu Spiral

      Figure 6a.  The Cornu spiral is a
      harmonic function for which the

      phase function, Q = s2.

   Figure 6b.  The Mushroom spiral is
   a harmonic function for which the
   phase function Q(s) = s3.
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describing, as plane curves, a map of the infinite
interval into a bounded region of the plane. A
similar sequence can be generated for the half-
integer exponents with n = +3/2, 7/2, 11/2...
giving the Mushroom spirals and 5/2, 9/2, 13/2...
giving the Cornu spirals.

Periodic patterns can be obtained by
examining phase functions of various functional
forms.  For example, the Kelvin-Helmholtz
instability of Figure 1a is homeomorphic to the
extraordinarily simple choice

 Q(s)  =  1/cos2(s) ,                      (6)

and, similarly, the Rayleigh-Taylor instability of
Figure 1b is homeomorphic to the case

Q(s)  = tan(s)/cos(s).                  (7)

In fact the curves of Figure 1a and Figure 1b were
generated by numeric solutions to the phase
equations for phase functions given by (6) and (7).
Other choices for the phase function are described
in [Kiehn, 1992b].

In summary, the simple phase analysis
captures many of the features of the observed
spiral wake patterns.  The association of wakes
with the Cornu and the Mushroom patterns also
leads to the idea that this phenomena can be
associated with first and second order diffraction
theory of wave scattering.  In fact, as described
below, it would appear that the synergetic
interaction by waves is the physical feature that
globally stabilizes these surfaces of
discontinuities, giving them their robust
persistence.

5.  Wakes are Characteristic Surfaces or
Domains of Non-unique Solubility.

The theory is still in the development
stages, but a number of basic results have
surfaced.  As agreed upon by many
hydrodynamicists, wakes should be considered as
domains with topological boundaries of tangential
discontinuities.  However, the key theoretical
feature to remember is that tangential
discontinuities are a special subset of those
characteristic domains of space time upon which
the partial differential equations of evolution do
not admit unique solubility.   The two species of
characteristic sets are shocks and tangential

discontinuities.  Only tangential discontinuities
are of interest to this article. 

Partial differential systems may have
characteristics over any domain which is
hyperbolic.  For example, consider the two
dimensional Landau equation for a compressible
isentropic fluid,

 c c2
x
2

xx
2

y
2

yy x y xy{( ) ( ) }− φ φ + − φ φ − 2φ φ φ = 0      (8)

where c is interpreted as the speed of sound, and
the velocity field is represented by the gradient of
the potential function, φ.  This partial differential
equation is a quasi-linear equation of the form,

A B C Dφ φ φηη ηξ ξξ+ + =2 ,                   (9)

and following Landau [Landau, 1959, p.380], the
characteristic surfaces contain embedded curves
which are given by solutions to ordinary
differential equations,

dη/dξ  =  [B ± (B2 - AC)1/2 ]/C .           (10)

These ordinary differential equations have real
solutions when the argument of the square root is
positive.   A short analysis will show these
(hyperbolic) domains are where the local velocity
exceeds the local characteristic speed, c.   It may
be argued that the formation of the characteristics
is due to the finite speed of sound in every real
fluid.  The assumption of incompressibility (div V
= 0) is too strong of a constraint to be used in the
analysis of wakes.  Around sharp physical
boundaries, such as the trailing edge of a wing, or
any surface defect, accelerations of the fluid will
always cause local domains of hyberbolicity to
occur.  It is to be expected that the characteristic
surfaces will emanate from such sharp edges.
These arguments furnish a method for the
creation of spiral wakes in the interior of a bulk
fluid.  Surprisingly, they do not invoke the
concept of viscosity explicitly.

Families of these characteristic curves
form the characteristic surfaces, and represent
point sets upon which the solutions to the PDE's
are not unique; i.e., the characteristic surfaces
include surfaces of tangential discontinuities (on
which the normal components of the vector field
are continuous, but the tangential components are
not continuous), and shocks (on which the normal



8

components are discontinuous, but the tangential
components are continuous).  Landau states that
tangential discontinuities are to be ignored, for
they will lead to turbulence.  However, as
described in section 7,  certain subsets of
characteristic surfaces (which always are locally
unstable) may be globally stabilized, or better
said, are robust.  It is these special characteristic
surfaces, those associated with minimal surfaces,
that are of interest to this article.

The key feature for engineers and
scientists to understand is that the problem of
wakes will not yield to the dogma that given
initial data, only a unique outcome is of interest
scientifically.  In fact, in order to understand
wakes it is necessary to study the opposite
problem.  Ask the question:  Where are the
solutions NOT UNIQUE?

6.  Wakes are Locally Unstable, but Non-
permeable, Tangential Discontinuity Subsets of
Characteristic Domains

The two species of characteristic
surfaces are shocks and tangential discontinuities.
The different physical properties of each species
have been succinctly described by [Landau, 1959].
Characteristic surfaces of tangential
discontinuities are special in that they act as mass
membranes.  No mass flow takes place
transversely through a tangential discontinuity
(which is the opposite to a shock wave).  The
reason that wakes have their sharp visual
appearance is due to the fact that they are surfaces
of tangential discontinuities;  mass diffusion is not
permitted through such surfaces.  Shocks do
permit the flow of mass across the discontinuity
and do permit pressure discontinuities;  tangential
discontinuities do not.  Shocks can be dissipative
and involve entropy change; tangential
discontinuities are not dissipative.  Shocks are
generally stable, tangential discontinuities are
generally unstable.  Tangential discontinuities are
essentially adiabatic (entropy change is of third
order according to Landau).

7.  Wakes are Robust Minimal Surface Subsets
of locally unstable Tangential Discontinuities.

All such surfaces of tangential
discontinuities are locally unstable [Landau, 1959
p.114], for they are associated with a hyperbolic
domains.  In fact Landau claims that these
surfaces are the precursors of turbulence.

However, it is argued in this article that it is  the
special subset of locally unstable surfaces of
tangential discontinuities associated with minimal
surfaces which can, like soap films, exhibit
domains of coherence and global stability
[Barbossa, 1976].   The word robust is used to
describe this concept of global stability, where
synergetic interaction of its parts causes the
system to have a finite lifetime.

To be more specific, consider a position
vector {u,v,w} to a point on a surface in terms of
the characteristic coordinates, {ξ,η}, and with
parametrization, s, as defined by the equations

                  u = dη/ds  =  A(s) sin(Q(s)),
                  v = dξ/ds  =  A(s) cos(Q(s)),         (11)
and            w =  F(u,v)  =  f(s).

Note the similarity in form between these
equations, the phase equations (3) and (4), and the
characteristic equations given by (10).

If F(u,v) satisfies the equation

( ) ( )1 1 2 02 2+ + + − =F F F F F F Fv uu u vv u v uv ,      (12)

then F(u,v) defines a minimal surface [Osserman,
1986].  There is a solution of (12) which is unique
in that it is the only harmonic minimal surface;  it
is the solution F(u,v) = tan-1(u/v) = Q(s), or the
right helicoid.  It is this special subset of
characteristic surfaces that is to be associated
with the spiral solutions generated by Equations
(3-4).   Working backwards, assert that the surface
of characteristics is a minimal surface; then to
generate the ordinary differential equations (3-4),
the minimal surface must be the right helicoid.

More precisely, the fundamental result is
that of the infinite number of surfaces of
tangential discontinuities, there is a special subset
whose sections yield spiral space curves that are
solutions of Equations (3-4).  It turns out that this
special subset can be related to the unique
harmonically generated minimal surface, the right
helicoid.  In the domain of global stability, the
locally unstable surfaces create the persistent
spiral wake patterns observed at moderate
Reynolds numbers.  When the Reynolds number
exceeds a certain value such that the global
stability of the minimal surface is lost, then these
special surfaces of tangential discontinuity lose
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their synergetic robustness and the flow becomes
turbulent.

It is the thesis of this article that it is
these globally stabilized minimal surfaces of
tangential  discontinuities which are those
surfaces that generate the distorted but persistent
mushroom patterns in the Von Karman wake, or
the Lanchester tip vortices in the wake of an
aircraft in flight, or the Kelvin-Helmholtz
instability pattern of a shear layer.   These
minimal surface subsets, like soap films, are
ROBUST.  Like all minimal surfaces, they are to
be associated with harmonic vector fields, for the
coordinate functions on a minimal surface are
harmonic [Osserman, 1986].  Harmonic vector
field solutions to the Navier-Stokes equations are
extraordinary for they are solutions that do not
depend upon the magnitude of the viscosity
coefficient.  The diffusive and dissipative terms
cancel out for harmonic vector fields, a fact which
explains the long life and persistence of
observable wakes.

8.  Minimal Surfaces and Fractals
Encouraged by the arguments presented

above the present author gathered motivation to
learn more about the theory of minimal surfaces.
An extraordinary theorem, utilized by S. Lie, is
the fact that every holomorphic function of a
complex variable will generate a minimal surface
in four dimensions [Nitsche, 1989 p.139].  This
means that there exists an interesting class of
vector fields in space and time which are solutions
to the Navier-Stokes equations, and at the same
time generate minimal surfaces.   For example,
consider the analytic function U(z) of  z = x + iy.
The two components of  U and the two
components of z form a four dimensional
neighborhood, and according to the Lie theorem,
there is an associated minimal surface!  To be
specific, consider  the function, U(z) = z2 + (a+ib)
, where a and b are constants.  The analytic
function, according to the Lie theorem,  generates
a minimal surface.  Now construct the next
functional iterate of U;  i.e., construct U(U(z)) =
(z2 + a+ib)2 + a+ib.  It is an analytic function, and
so it generates another minimal surface.  Let the
process continue, constructing repeated iterates
and successive minimal surfaces.

Now recall that this iteration procedure
on a complex analytic function, U(z), is precisely
the method used (for a given a+ib) to construct the

Julia set of U(z).  That is, values of z separate into
those which are repelled by the Julia set either to a
finite attracting basin or to infinity.  The Julia set
forms the repelling boundary in the z plane, and
can be fractal.  In fact, the sample function is the
example used by Mandelbrot to generate the
Mandelbrot set.  These results are not fully
understood as yet, but indicate an extraordinary
connection between the theory of self-similar
fractals, the geometry of minimal surfaces, and
the calculus of variations.

The important fractal property of self-
similarity is replicated by minimal surfaces. To
understand this idea, consider the implicit
function, φ,  whose zero set, φ(x,y,z) = 0, defines a
surface in a Euclidean space of three dimensions.
Construct the unit normal to this surface by
dividing the gradient of this function by the
square root of the inner product of the gradient
with itself; i.e., define

        n = grad φ / < ∇φ • ∇φ > ½                 (13)

This vector, n, generates the unit normal field,
everywhere transversal to the surface, φ(x,y,z) = 0.
If div n = 0, the surface is a minimal surface.
That is, solutions,  φ, to the equation

   div n =   { ∇2 φ  <∇ φ • ∇φ >
                 - <∇ φ • ½• ∇φ >} /<∇ φ • ∇φ > 3/2 = 0

are functions whose zero sets define a minimal
surface. ½ is defined to be the Jacobian matrix of

the function, φ:  ½ = φµν = ∂2φ/∂xµ∂xν .  This
definition works in any number of dimensions,
and may be used to define a minimal hyper
surface in a space of dimension, N.  Note that if
the components of the vector, grad φ(x,y,z),  are
rescaled by an arbitrary function, λ(x,y,z,t), then
this scaling factor cancels out in the definition of
n.    The divergence condition is obviously related
to the calculus of variations and is always
associated with some form of a conservation law.
(A somewhat more general condition would be to
consider the divergence of the renormalized
velocity vector, n = V/<V • V>½.)

For hydrodynamics, there are several
important applications of this renormalization
procedure.  First, if the velocity field is multiplied
by the density to produce the momentum field, ρ
V, then for any density function, ρ(x,y,z,t), the
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formula (13) gives the same unit normal field, n.
The zero divergence condition on n implies that
the conservation of momentum is more important
than the conservation, or invariance, of energy
(physically, div n = 0 is more important than div
V = 0).

Secondly, many useful solutions of the
hydrodynamic equations are time harmonic.  That
is, the velocity vector field may be expressed as a
vector field over the coordinates, with its time
dependence determined by a common factor, λ = 
λ(x,y,z,t).  In this situation, the vector field, λV, is
said to form a 1-parameter group, and generates
trajectories (streamlines) that are independent
from the common factor of renormalization, λ.
There exist solutions to the equations of
hydrodynamics which do not form a 1-parameter
group (streamlines), and the simple kinematic
time-harmonic interpretation is not precise.  Such
solutions may form a two parameter group, and
define propagating surfaces with spatial sections
called "strings".

Cartan has shown that a necessary and
sufficient condition for any dynamical system, λV,
to be a Hamiltonian system is that the closed loop
integrals of the Action, (translate to the "number
of topological holes", or to "the Kelvin circulation
integral") must be an invariant of the motion for
any renormalization (or re-parametrization)
factor, λ [Kiehn, 1974] .

A third interesting case is when the
factor, λ(x,y,z,t) = 0 is used to define a moving
surface.  Then the vector field λV satisfies the
"no-slip" condition on the material boundaries.

This general idea of scale independence
for a vector field is typical of a projective
geometry, and  corresponds to the idea that the
Lagrange function of the variational calculus is
homogeneous of degree zero. It is this
thermodynamic-like homogeneity feature that
yields the properties of self-similarity for minimal
surfaces.

The idea of a minimal surface extends to
hyper surfaces, where the "surfaces" are of
dimension greater than two.  A particularly
interesting case occurs in four dimensions where a
minimal 2-surface may combine with a "plane
wave", or another minimal surface. For example,
the partial differential equations that must be
satisfied by the divergence condition in four
dimensions for the surface Ψ(x,y,z,t) = 0 are:

{( ) ( )

( ) ( )

}

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ

t
2

z
2

+ y
2

xx t
2

z x
2

yy

t
2

x
2

y
2

zz z
2

x
2

y
2

tt

- x y xy y z yz z x zx

- x t xt y t yt z t zt   

+ + +
2

+

+ + + + + +

2 − 2 − 2

2 − 2 − 2 =   0.

When the variables are constrained to the
harmonic sets, Ψ Ψx y

2 2+  = 1 and Ψ Ψz t

2 2+  = 1, the

equation for the three dimensional minimal hyper
surface in the space of four dimensions  reduces to
a pair of coupled two dimensional minimal
surface equations.  Note that the quadratic
harmonic condition is satisfied by the phase
functions of (3) and (4).
          For the special case where Ψ = t - φ(x,y,z)
= 0, the expression for the three dimensional
hyper surface in a space of four dimensions
reduces to the equation:

 
z
2 +

y
2

xx z x
2

yy x
2

y
2

zz

     -
x y xy y z yz z x zx

{( ) ( ) ( )

}

1+ φ φ φ + 1+ φ2 + φ φ + 1+ φ + φ φ

2φ φ φ − 2φ φ φ − 2φ φ φ = 0.

This last expression for a minimal hyper surface
in four dimensions can be deduced from Landau's
formula for a three dimensional compressible gas

 
 c c c2

x
2

xx
2

y
2

yy
2

z
2

zz

x y xy y z yz z x zx

{( ) ( ) ( )

}

− φ φ + − φ φ + − φ φ

      − 2φ φ φ − 2φ φ φ − 2φ φ φ = 0

by substitution of the expression c c2

0

2= + •v v ,

with v  = c0 grad φ.  The conclusion is that there
are many ways to generate minimal surfaces in
hydrodynamic flows.
 If in the wave equation, the wave
function is harmonic (and satisfies the complex
minimal surface condition) in the first two
coordinates, then the wave equation reduces to a
"plane" wave in the remaining two coordinates.
The phase of the entire complex wave leads to
phase singularities and defects discussed by Nye
and Berry.

9.  What about viscosity?
Throughout the discussion above almost

no mention was made of the conventional
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hypothesis that wakes are somehow "due to
viscosity".  The viscous approach to wake theory
[Batchelor, 1967] is dominated by the assumption
that the flow vector field is solenoidal: div V = 0,
curl V # 0.  In this article, the opposite
assumption is studied; viscous effects are ignored,
and the creation of wakes is associated with
hyperbolic domains that depend upon the fact that
the vector field is irrotational: div V # 0, and curl
V = 0.  Somehow the two methods have to be
brought together.  The meeting place is where the
vector fields are both solenoidal and irrotational,
and this domain forms a boundary between the
two sets.  However, note that this boundary is the
point set upon which the vector field is harmonic.
Further recall that the vector field that describes a
minimal surface must be harmonic.

 To be more specific, consider a
solenoidal stream function solution to the Euler
equations of hydrodynamics.  Take the divergence
of the Euler equations to obtain the equation

∇ = − −2P xx yy xy yx/ { }ρ Ψ Ψ Ψ Ψ

This equation has been utilized recently by M.
Larchveque in an attempt to define a coherent
structure [Larchveque, 1990] and by Coudy, et.al.
[Douady, 1992] in a study of "string" structures in
a turbulent flow.  When the pressure is harmonic,
the RHS of this equation implies that the Hessian
determinant of the stream function vanishes, and
according to Weingarten [Nitsche, 1989, p.19],
the stream function then can be used to define a
minimal surface.

These results imply that a wake may be
viewed as a double layered minimal surface
separating solenoidal domains from irrotational
domains.   A section of the Von Karman wake
behind a cylinder is magnified in Figure 7 in
order to demonstrate these ideas.

SOLENOIDAL 
Diffusive

Div V = 0,   Curl V # 0

IRROTATIONAL
Compressible

Div V # 0,   Curl V = 0

HARMONIC MINIMAL SURFACES
Div V = 0,   Curl V = 0

Fig 7.   Section of a Mushroom Wake

As time evolves the effect of the viscosity
is to thicken the wake by diffusion.  For large
Reynolds numbers, the double layer wake is very
thin, and appears to persist because the diffusion
time constant is very long compared to the
diffraction time constant of waves associated with
the minimal surface.

Summary
In summary, and to first order:

       1. Wakes are sharply defined because they are
surfaces of tangential discontinuities, which act as
impermeable membranes that do not permit a
transversal flow of mass.
       2.  Wakes are robust because they are related
to minimal surfaces which like soap films enjoy a
global synergetic stability.
      3. Wakes are not diffusive and are persistent
because their minimal surfaces are associated with
harmonic vector fields, which act as zero factors
or any viscosity coefficient in the Navier-Stokes
equations.
      4. Wakes are expected to produce spiral
sections of the Cornu and Mushroom classes, as
these sections are characteristic limit sets related
to the minimal surface of the right helicoid.
     5. Transitions between iterates of minimal
surfaces can behave in relation to the integers as
the number of holes or self-intersections changes.
     6.   Complex minimal surfaces can
approximate fractal sets.  It is to be expected that
the tangential discontinuities that define
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boundaries of such natural objects as clouds would
form fractal sets.
     7.  Topological limit sets that form minimal
surface topological boundaries can occur in the
interior of a bulk fluid, extending material
boundaries, and forming coherent structures and
domains of re-entrant flow.

The sequence of  ideas is summarized in
Figure 8.

PARTIAL DIFFERENTIAL EQUATIONS
    of evolution

CHARACTERISTIC SURFACES
Non-Unique Solutions

TANGENTIAL DISCONTINUITIES

No mass flux   [P] = 0

MINIMAL SURFACES
Globally stabilized (like soap films)

ROBUST BASINS OF ATTRACTION

Fractal Boundaries

Fig 8  HYDRODYNAMIC WAKES
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