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Historical Preface
A remarkable result of differential topology that should have widespread engineering application

(but an idea that has received almost no attention in practice) is that there exists a well-defined set of time
dependent vector fields that generate minimal surfaces in 4 dimensions.  These vector fields belong to the
class of maps, Φ, given by the expression:

           Φ:  {x,y,z,t}  →  { α(x,y,z,t), β(x,y,z,t), ϖ(α(x,y,z,t) + iβ(x,y,z,t)) },                 (I)

where ϖ = φ(α + iβ)  +  i ψ(α + iβ) is an arbitrary complex analytic function of α + iβ.  It is the thesis of
this article that the understanding of wake production, induced drag and the onset of turbulence is to be
associated with such vector fields.  A slightly more general representation can be obtained by considering
the class of complex 3-Dimensional vectors that satisfy the equation (1) given below.

This class of vector fields was first brought to this author's attention by the small 1914
monograph of H. Bateman entitled Electrical and Optical Wave Motion, Dover (1955).  In this
monograph Bateman published some extraordinary results, including examples of solutions to Maxwell's
equations that emulate propagating singular strings (not plane waves).  The key idea according to
Bateman is the existence of complex 3-Dimensional vector solutions, M, to Maxwell's equations that
satisfy the complex equation,

                         M • M = 0.                                                                        (1)

Following Bateman, let M = B ± iE/c, with E and B possibly complex, such that (1) becomes

                      B • B  -  E • E/c2   ± i 2 E • B/c = 0 .                                                  (2)

The conjugate square, or norm, of M becomes over its domain of support,

            M∗∗ • M ≠ 0,  or                                                                         (3)

      B∗∗• B  +  E∗∗• E/c2   ≠  0                                                               (4)

From Osserman, a generalized minimal surface in EN is a non-constant map from a 2-manifold, M, with

a conformal structure (over regular regions) such that the coordinates of EN are harmonic on M.  Let the
map be defined by

                         {α,β}  →  X(F(α+iβ))    k = 1,2,3,4...   ,                                          (5)

with F analytic, and Xk  harmonic.

 Then define M as

                     M =  ∂ Xk/∂α  - i ∂ Xk/∂β .                                                           (6)

If (1) is true it follows that α and β form a set of isothermal coordinates on the minimal surface (and the

induced metric, gαβ = ∑k {∂Xk/∂α • ∂Xk/∂β} generates a conformal structure), and if  (3) is true, then



that minimal surface is regular (without self intersections or pinch points).  If E and B are real vectors,
then the associated minimal surfaces are always regular, except at points where E and B are identically
zero.  If E and B are complex, then the associated minimal surfaces can have singularities.  It is these
singularities that are prime interest to this article.

Following Bateman, such vector fields generate a conserved 4-current, { J , ρ }, defined as

           J = ρ V = E x B,        ρ c2 =   1/2 { E • E +  c2 B • B }                         (5)

If E and B are real, then almost every student of physics will recognize the real and imaginary
parts of (2) to be the first and second Poincare invariants of the Lorentz transformations, and the scalar
given by (4) as the energy density of the electromagnetic field.  Any regular domain of a minimal surface
associated with real  E and B has null values for the first and second Poincare invariant, and a positive
definite value for the field energy density.  The E field is orthogonal to the B field, and the electric and
magnetic energy densities are equal.  The conclusion is reached that propagating electromagnetic waves
must be associated with minimal surfaces.  The associated minimal surface is always regular and without
singularities for real E and B.  When the E and B fields are complex, which in a physical sense implies
the existence of elliptical polarization, another interpretation is possible.

This association of electromagnetic wave propagation with minimal surface theory was
apparently unknown to Bateman, and not appreciated by the present author until only very recently,
following a nth re-reading of Osserman's book on A Survey of Minimal Surfaces.  According to Osserman,
the complex 3-vector representations of minimal surfaces were known to Enneper and Weierstrass.  A

study of the minimal surfaces generated in E4 by (I) is given by Kommerell.

The minimal surfaces so generated in E4 by this class of vector fields will have 3-dimensional
images that are not always regular.  In general, two dimensional non-regular surfaces may have
"singularities" consisting of "curves of double points" created by intersections of two local surface patches,
or of  "triple" points consisting of intersections of three local surface patches, or of curves of double points
which terminate on "Pinch" points within the interior of the surface. These three types of self intersection
singularities are the only three "stable" singularities in the sense of Whitney.  Recall that Whitney proved
that any N manifold can be embedded in 2N+1 euclidean space, and immersed in a 2N euclidean space.
The induced surfaces may be orientable or non-orientable.  The non-orientable examples are characterized
by the Klein-Bottle, or the Projective Plane, and the orientable surfaces by the Sphere.  Each surface may
have tubular handles, holes and distortions.  Of interest to this work are not just any surface, but  those
surfaces which in particular are minimal surfaces.

If the surface has no singularities, then the surface is said to be regular or embedded.  The
constraint of regularity implies that the surface normal vector never goes to zero over the surface, or the
induced metric on the surface is always invertible.  This implies that are always two linearly independent
directions on a regular domain of the surface.  If the lines of self intersection are divergence free on the
domain (meaning that they stop or start only on boundary points, or are closed upon themselves, then the
surface is said to be immersed in 3-Dimensions.  The points where the divergence of the lines of
intersection is not zero are defined as Pinch points.  Such surfaces cannot be immersed in 3-D.  The Pinch
points are signatures of the fact the surface resides in 4-Dimensions (as an immersion), and cannot be
immersed in 3-Dimensions.

A flow vector field may have domains where it is irrotational or solenoidal, and these domains
may be separated by a surface.  If the surface of separation is a minimal surface, then the flow on this
surface is harmonic. The minimal surface need not be regular, and may have lines of self-intersection.
These lines of surface self-intersections (lines of singular double points)  are not necessarily solenoidal.  In
fact, the Pinch points are points where the lines of self-intersection terminate not on themselves and not
on a boundary, but in the surface interior.  The Pinch points may be viewed as the "sources" of the
divergence of the lines of self-intersection.  The classic example is given by Whitney's Umbrella, the last
of the only three possible stable, but singular, mappings  (See Figure 1).  



These ideas about singular surfaces are to be applied to those minimal surfaces that act as limit set
attractors in dissipative systems;  i.e., to those surfaces associated with the generation of observable wakes.

Cartan's Topology
An earlier development in applied differential topology [3] used the notion of Pfaff dimension to

classify hydrodynamic flows in terms of Cartan's theory of exterior differential forms .  The flow vector
field is mapped to a Cartan 1-form of  action, A, and then domains of support for this 1-form are put into
equivalence classes defined by the Pfaff dimension.  Translated to engineering terms, the idea is that
globally laminar or streamline, non-chaotic, hydrodynamic flows are of Pfaff dimension 2 or less, A^dA =
0.   Such vector fields may be associated with the "normal"  or gradient to an algebraic variety (a function
set equal to zero) which defines a surface.  Such surfaces never have lines of self intersection or pinch
points, and are always orientable on the domain of support.  If the domain of interest includes points
where each coefficient of the 1-form vanishes identically, then these points are usually defined to be
critical (or stagnation) points.  It may also be true that such points correspond to points of self-
intersection.

Consider a domain of Pfaff dimension 1.  Then the 1-form of Action, A, may be generated from
the gradient of a single scalar function, Θ:  A = dΘ  =  ∇Θ • dr .  When A ≠ 0, there are N-1 vectors,

X(k), such that i(X(k))A = 0.  The vectors, X, span an N-1 hypersurface.  The associated 1-form, A+ =

i(X1) i(X2)... dx^dy^... is such that A^A+ =  0.  In N dimensions, in order to obtain a two surface, N-2 1-

forms must be specified to generate a 2-surface.  The vectors that span the 2-surface are solutions of the
simultaneous equations i(X)A = 0 and i(X)B = 0, ..... When a 1-form is generated by a single scalar
function as a gradient, then the field it represents is irrotational.  The hypersurface it represents is

transversal to the the field.  The field has zero curl, but it has finite divergence, dA+  ≠ 0, unless the
single scalar function is harmonic.

Consider a 1-form constructed from N-1 gradient functions by the top down recipe

                     A = i(dα)i(dβ)...Ω   where Ω = dx^dy^....dxN .

Then the field is solenoidal (has zero divergence) but can have non-zero curl.  The field has zero curl if
each of the gradients from which it is composed are harmonic.
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Consider the three dimensional case.  Then the gradient 1-form is of Pfaff dimension 1 and
represents the normal field to a 2-surface except at critical points where the the 1-form vanishes
identically.

Chaotic systems are represented by vector fields, or their equivalent action 1-forms, on domains
of support which are of Pfaff dimension 3 ( A^dA # 0, but dA^dA = 0).  It has been suggested that chaotic
flows differ from turbulent flows, in that turbulent flows are of Pfaff dimension 4 (dA^dA # 0) [6].  These
equivalence classes of vector fields have been defined as domains that support topological torsion, and
topological parity, respectively [7].  In order to have lines of surface self-intersection, the vector field
associated with such surfaces must be of Pfaff dimension 3.  In order to have Pinch points, the vector field
must be of Pfaff dimension 4.  In short, the concept of Pfaff dimension tells something about the regular,
embedding, or immersive properties of  a surface associated with a vector field.

The area of research proposed herein is based on the idea that the theory of wakes and
turbulence (in terms of minimal surfaces generated by the class of maps of vector fields described above)
must involve the generation of surfaces with self intersections and pinch points.   
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