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Abstract

An exact complex mapping of the wave function has been found, which, when

followed by a separation into real and imaginary parts, transforms the two dimen-

sional Schroedinger equation for a charged particle interacting with an electro-

magnetic ¯eld into two partial di®erential systems. The ¯rst partial di®erential

system is exactly the evolutionary equation for the vorticity of a compressible,

viscous two dimensional Navier-Stokes °uid. The second system is related to the

Beltrami equation de¯ning a minimal surface in terms of the kinetic and potential

energy. The absolute square of the wave function is exactly the vorticity distribu-

tion (including topological vorticity defects) in a °uid with a viscosity coe±cient,

º = h=2¼m0. Alternately, there is a minimum viscosity de¯ned in terms of the

mass of the electron, º0 = h=2¼m: This cohomological, but classical, interpre-

tation of the wave function o®ers an alternative to the Copenhagen dogma. The

vorticity distribution replaces the Bohm quantum potential. The velocity ¯eld

of the viscous compressible °uid acts as the Bohmian guiding °ow to the "wave

function". The second system of equations relates geometrical properties of the

Bohmian Potential to energy densities in the °uid. The relationship of geometry

to energy (in spirit equivalent to the Einstein ansatz,G¹º = T
¹
º ) comes out directly

from the mapping and the separation into real and imaginary parts. In e®ect,

the Bohmian Eulerian °uid has been mapped into a Bohmian Navier Stokes °uid,

with dissipation, and the production of nanometer vortices.
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A. Introduction

Starting with Madelung [1], the physics literature contains many exam-
ples of the similarities between Schroedinger's quantum mechanics and °uid
dynamics. The search for an interpretation of the square of the wave function,
which satis¯es a hydrodynamic-like equation of continuity, motivated many
of the historical hydrodynamic interpretations and investigations. However,
as the Schroedinger equation presumably is to represent reversible Hermitean
operators, almost all historical investigations considered only the \ideal\ in-
compressible °uid case without dissipation. That is, the historical work dealt
only with those cases that could be interpreted in terms of Eulerian °ows.
With the advent and dominance of the Copenhagen-Born probability inter-
pretation of the square of the wave function, the early hydrodynamic inter-
pretations of the Schroedinger theory have been treated only as curiosities.

Herein, the point of departure is due partially to a serendipity event
(1976), whereby during the study of problems in topological evolution, it
was discovered that a certain complex mapping would convert the two di-
mensional time dependent Schroedinger equation exactly into the format of
a viscous compressible Navier-Stokes °uid. In this new representation, the
square of the wave function has an explicit and novel interpretation as the
distribution of vorticity in a viscous °uid, and is not to be considered as the
position probability of the electron. This point of view, based on a dissipative
considerations, is completely di®erent from the Born-Copenhagen hypothe-
sis. At that time the Bohm theory of Quantum Mechanics was unknown to
the present author.

The original application by this author of these ideas was to the problems
of generating topological defects and disclinations in a °uid [2], using a quan-
tum picture to generate a raison d'etre for the onset of turbulence in terms
of "vortex pair production". In recent times, the focus of attention on high
Tc type II superconducting ¯lms has reversed the situation to where again a
hydrodynamic perspective is being used to model quantum phenomena. The
key feature in the application to superconductivity is that the distribution of
vorticity corresponds to the penetration of the B ¯eld into internal regions of
the superconductor. In a planar system these topological defects are "holes"
in the otherwise perfect superconductor, and are described by deRham pe-
riod integrals representing quantized °ux.[3] The technology and experience
gained from almost seventy years of quantum mechanics should be applicable
to the hydrodynamic problem of viscous compressible °ow, and visa versa,
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the experience of viscous compressible rotational hydrodynamics should be
applicable to quantum problems, because the transformation between the
two systems of partial di®erential equations is exact.

B. Hydrodynamic considerations

The present author was led to speculate that this exact correspondence
between hydrodynamics and quantum mechanics is more than accidental,
and that it would be meaningful to apply simple quantum theory results and
concepts to the problems of hydrodynamics, and conversely, certain hydro-
dynamic results might have exploitation in quantum theory. In the hydrody-
namic point of view presented below, an elemental vortex takes over the role
of the elemental charge. It follows that questions of elemental vortex pair
production, vortex e®ective mass, vortex \Compton\ size in a °uid can be
answered relying on experience with quantum theory results. Some of these
results are presented below. In particular, it is to be noted that the theory
predicts in a °uid the existence of an elemental hydrodynamic vortex mass
of order of ¹h=º, where ¹h = h=2¼ is Planck's constant and º is the kine-
matic viscosity of the °uid. On the otherhand, the theory indicates that in
a quantum system there is an e®ective viscosity coe±cient º to be measured
in terms of ¹h=m where h is Planck's constant and m is the e®ective inertia
or mass of the °ux quantum hole.

The dual question arises: What observational and theoretical results of
hydrodynamics that can be exploited to yield new perspectives about the
quantum theory, especially the quantum theory of superconductivity, and
what aspects of quantum mechanics can be used to give an insight into the
problems of hydrodynamcs? The most dramatic concept is that stated above:
The square of the wave function in quantum mechanics has a novel interpre-
tation as the vorticity distribution in a compressible viscous °uid. It seems
almost paradoxical that a viscous compressible approach would have meaning
in a "non-dissipative" quantum system, such as a superconductor. But this
is not the only concept that may have application to a better understanding
of the quantum phenomena of superconductivity. For example, consider the
almost 200 year old observation of coherent solitary waves in hydrodynamic
°ows. One of the most important applications of hydrodynamic theory in
explaining this phenomena was due to Betchov and Hasimoto, who created
hydrodynamic string soliton solutions from a self interacting vortex lines.

3



The remarkable result is that these soliton solutions can also be derived from
the non-linear Schroedinger equation [4]. The string solitons may be viewed
as the topological equivalent of °ux penetrations into a type II superconduc-
tor. In hydrodynamic experiments, Hop¯inger has observed the propagation
of solitary waves along these topological discontinuity threads in a turbulent
°ow [5]! Such vortex strings present in a turbulent °ow is an experimental
research area actively being studied by Coudy [6]. Coherent wave packets
have been of considerable interest and value in quantum mechanics, but they
were predated in terms of hydrodynamic discoveries by more than 100 years.

The second and more recent experimental hydrodynamic observation is
that of the Falaco vertex pair [7], which is a rotation-induced soliton that
is easily produced in the density discontinuity surface, or free surface, of
a °uid. The Falaco vertex is a topological defect in a viscous °uid, but
due to its coherence it can form a long-lived metastable state in which two
opposite spins are paired together. The observational evidence implies that
a pair of two dimensional rotational defects are created in the discontinuity
free surface of a °uid, and these two dimensional topological surface defects
are connected by a string, or a one dimensional topological defect, to form
a globally stabilized stationary state. See Figure 1. The visual evidence
indicates that such an object is the topological equivalent of a macroscopic
hadron, an idea which is based on the fact that a mechanical disruption of
the (normally invisible) connecting string causes the observational surface
defects (the quarks on the end of a string) to disappear abruptly, and in
a non-di®usive manner. The °uid defect exhibits the problems of quark
con¯nement! However, as the e®ect is a topological e®ect, it should appear
at all scales. The possible practical application to quantum theory is that
the Falaco vertex pair is another spin pairing mechanism (distinct from the
BCS mechanism) that can occur in any discontinuity surface, including the
Fermi surface. Hydrodynamically, it is observed that the \communication\ of
the coherent endcaps of the Falaco vertex is via transverse, not longitudinal,
waves guided by the circular arc that forms the connecting string. The
observation is similar to the propagation of electrons injected into the earths
magnetic ¯eld, which spiral from one magnetic focus point to another, guided
and trapped by the magnetic ¯eld. As the equations of a viscous compressible
°uid and the Schroedinger equation are equivalent under a complex mapping,
then these hydrodynamic comparisons should have direct application in the
arena of quantum mechanics.
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Other observational evidence concerning the Falaco soliton indicates that
it is associated with a minimal surface defect, and although locally unstable,
the Falaco soliton, like a minimal surface soap-¯lm, is globally stabilized to
yield a ¯nite lifetime. The analogue between the Fermi surface and triply
periodic minimal surfaces [8] suggests that the discontinuity surface in a
superconductor is the Fermi surface.

The presentation below consists of several sections. The next section de-
scribes the analytic details of the transformation that maps the Schroedinger
equation to the Navier-Stokes equation, and a subsidiary equation related to
di®erential concomitants of the di®erential geometry of a surface. The third
section discusses the key experimental properties of the Falaco soliton, which
motivated much of the discussion presented herein. The fourth section uses
simple quantum results of pair production to give a raison d'etre for what is
known as the drag crisis in °uid °ow. The ¯fth section exploits the recent
results of minimal surface theory, its relationship to a variational principle on
Finsler spaces and fractal sets, and the search for tangential discontinuities
in the solutions to the Schroedinger equation.

I. The Transformation (Two spatial dimensions)

Consider the two dimensional Schroedinger equation for a charged par-
ticle of mass m, charge q, interacting with an external electromagnetic ¯eld
represented by a vector potential, A, and a scalar potential, Á . [9]

¡(¹h=i)@ª=@t = f(¹h=i)r ¡ qAgf(¹h=i)r ¡ qAgª=2m+ qÁª (1)

Consider the complex transformation given by the expression,

ª = expf(1=2¡ imº=¹h) ln ³g = expf(1=2¡ iº=º0) ln ³g (2)

where m is the electron mass, h is Planck's constant, º is an arbitrary con-
stant later to be identi¯ed as the kinematic viscosity, and ³ ´ ª¤ª is a
function of fx; y; tg: Note that by using the measured kinematic viscosity
an elemental mass m0 = ¹h=º can be determined. Alternately, using the
mass of the electron, there is a minimum kinematic viscosity of the order of
º0 = ¹h=m:

5



Direct substitution of this wave function into the Schroedinger equation,
followed by separation into real and imaginary parts yields two sets of partial
di®erential equations. The imaginary set yields the equation,

@³=@t+ u@³=@x+ v@³=@y + ³(@u=@x+ @v=@y) (3)

= º(@2³=@x2 + @2³=@y2); (1)

where the components of the vector velocity V = [u(x; y; t); v(x; y; t); 0] are
identi¯ed with the components of the vector potential by means of the equa-
tions,

V =[u; v; 0] = ¡qA=m = (¡q=m)[Ax; Ay; 0]: (4)

Now consider the two dimensional Navier-Stokes vorticity equation for a
compressible viscous barotropic °uid. Identify the single single component of
vorticity as curlV =[0; 0; ³(x; y; t)]; and substitute into the full Navier-Stokes
equation

@!=@t+V ± r! ¡ !±rV + ! divV = (5)

= º(@2!=@x2 + @2!=@y2 + @2!=@z2): (2)

The result is equation (3) above. Note that

curlV± curlV = ³2 = ª¤ª ¢ª¤ª; (6)

which establishes the relationship between the enstrophy of the °uid °ow
and the norm of the wave function. The two dimensional result is especially
simple for the vortex stretching term of °uid mechanics vanishes, !±rV ) 0:

In this section, and in most of this article, a restriction to the two di-
mensional case will be subsumed. (However see the section below in three
spatial dimensions). Although the equation (3) is expressed in terms of the
two spatial variables, x and y, these coordinates are to be considered the
abstract coordinates of a surface which may have curvature and topological
defects of holes and self-intersections. The solutions to these Navier-Stokes
equations are not necessarily planar, but correspond to those domains where
the vector °ow ¯eld generates a Pfa±an ¯eld of class (or Pfa® dimension) 3.
This means that such time dependent vector ¯elds can be mapped to a space
of three functions, preserving most of their topological features. Such °ows
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are not necessarily Frobenious integrable [10], and they need not be exact.
(That is, they can support Topological Torsion)

The real parts of the substitution of (2) into (1) yield the equations

(¹h=m¤)2[+r2 ln ³ + (1=2)(r ln ³)2] = 1=2(V ±V) + qÁ=m+ º divV; (7)

As mentioned above, equation (3) is to be recognized as the exact Navier-
Stokes-Helmholtz equation for the z-component of vorticity, ³, of a com-
pressible viscous °uid. Equation (7) is less transparent, but remarkably this
equation represents (on the LHS) a di®erential geometry constraint between
the extrinsic curvature invariants of a surface given by the Monge function,

z = constant ln³(x; y; t) (8)

and (on the RHS) the energy per unit mass of the °uid, similar in principle
to the geometric relation expressed by the mean curvature equation of dif-
ferential geometry [11]. By forming the shape matrix, §, of the surface and
the induced metric, g, the LHS of (5) is found to be proportional to (Trace
§)(det g)1=2 - 1/2(det g -1). Recall that Trace§ is related to the mean cur-
vature of the surface, a result that will be utilized in the last section of this
article which discusses the Schroedinger theory and minimal surfaces. The
idea that there is a geometrical connection to energy density is the theme of
General Relativity, but there the Einstein Ansatz, G¹º = T

¹
º ; is an assump-

tion. Under the mapping described above the curvature-energy Ansatz is
derived as a consequence, not injected as an axiom, of the theory.

The elemental vortex mass, m¤, de¯ned such that (¹h=m¤)2 = (º2=4+º20),
appears in the theory in a manner similar to the e®ective \hole\ mass in
the theory of semiconductors. Along with Popov [12] it is argued that the
system described is that of a \molecule\ with elementary vortex excitations
(spin up and spin down) interacting through a wave ¯eld with a characteristic
velocity of propagation. The idea that m¤ is the equivalent \inertial\ mass
of the elementary vortex is strengthened by the realization that ³ ´ ª¤ª is
the "vorticity" distribution in the °uid, exactly. Representative values for
m¤ are given in Table 1 for a gas, two °uids, and a liquid metal, based on the
assumption that the characteristic speed is the speed of sound, Cs. Again
using the experience of quantum mechanics, an estimate may be made for the
e®ective (core) size of the elemental vortex: it should be of the order of the
Compton wavelength based upon the elemental mass and the characteristic
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limiting velocity, = (h=(2m¤Cs)). This \sonic\ Compton wavelength for
several °uids is also estimated in Table 1. It appears that the size of the
elemental vortex cores in classic °uids is of the order of a few Angstroms!

II. The Falaco Soliton

During the summer of 1986, while visiting an old friend in Rio de Janeiro,
Brazil, the present author became aware of a signi¯cant topological exper-
iment that could be observed in a hydrodynamic system. This observation
greatly stimulated the author to further research in applied topology, and led
to many of the ideas presented in this article. To replicate the experiment,
inject kinetic energy and angular momentum into a strati¯ed °uid with a free
surface (a swimming pool) by stroking a half submerged, °at, circular plate
in a direction parallel to its oblate axis. Remove the plate at the end of the
stroke to produce, initially, a pair of ordinary Rankine vortices in the sur-
face of the density discontinuity. These Rankine vortices cause the initially
°at surface of discontinuity to form a pair of parabolic concave indentations,
indicative of the \rigid body\ rotation of a pair of contra-rotating vortex
cores of uniform vorticity. However, in a matter of a few seconds each con-
cave shape will decay into the metastable soliton con¯guration of an inverted
hyperbolic convex dimple of negative Gaussian curvature. The dimple de-
pression is usually of the order of a few millimeters, but the circulation zone
typically extends over a disc of some 10 to 15 centimeters or more, depending
on the plate diameter. This con¯guration, or coherent structure, has been
de¯ned as the Falaco Soliton. See Figure 1. For purposes of illustration, the
vertical depression has been greatly exaggerated. The Falaco Solitons will
persist for many minutes in a still pool of water.

The e®ect is easily observed, for in strong sunlight the convex hyperbolic
indentation will cause an intensely black circular disk (or absence of light)
to be imaged on the bottom of the pool. A bright ring of focused light will
surround the black disk, emphasizing the contrast. The optics of the problem
are completely described by Snell refraction from a surface of revolution that
has negative Gauss curvature. See Figure 3. This e®ect has been reported
upon elsewhere, but the ¯gures are replicated herein for clarity [13].

Dye injection near an axis of rotation during the formative stages indicates
that there is a unseen thread, or 1-dimensional string singularity, in the form
of a circular arc that connects the two 2-dimensional surface singularities or
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dimples. Transverse waves can be observed to propagate from one dimple
vertex to the other dimple vertex, guided by the \string\ singularity. If
the string is \severed\, the con¯ned, two dimensional endcap singularities
do not di®use away, but instead disappear almost explosively. It is as if the
Falaco soliton is the macroscopic topological equivalent of the illusive hadron
in elementary particle theory, where two 2-dimensional surface defects (the
quarks) are bound together by a string of con¯nement.

As the phenomena appears to be the result of a topological defect, it
follows that, as a topological property of hydrodynamic evolution, it should
appear in any density discontinuity, at any scale. This spin pairing mecha-
nism, as a topological phenomenon independent from size and shape, could
occur at both the microscopic and the cosmic scales. In fact, during the
formative stages of the Falaco vertex pair, the decaying Rankine vortices ex-
hibit spiral arms easily visible as caustics emanating from each vortex core.
To this author the importance of the Falaco Solitons is that they o®er the
¯rst clean experimental evidence of topological defects taking place in a °uid.
Moreover, the experiments are easily replicated by anyone with access to a
swimming pool. They certainly are among the most easily produced soli-
tons. Interactions with a pole placed vertically to the bottom of the pool
experimentally emulate the coherent scattering of solitons observed in com-
puter simulations. As the drifting soliton pair interacts with pole, the Snell
black discs shimmer and disappear, only to coherently reappear after the
soliton pair has passed beyond the interaction zone. For hydrodynamics,
the observation ¯rmly cements the idea that these objects are truly coherent
structures.

Early on, it was recognized that the Snell refraction on the bottom of
the pool produces a circular disk, more or less independent from the angle of
solar incidence. This observation, as well as the negative Gauss curvature of
the surface, lends further credence to the idea (an idea exploited later on in
this article) that the topological surface distortion is a minimal surface. The
argument is that only spheres and minimal surfaces have a conformal Gauss
map (Snell projection). It should be noted that if chalk dust is sprinkled on
the surface of the pool during the formative stages of the Falaco soliton, then
the topological signature of the familiar Mushroom Spiral pattern is exposed.

Recall that a Rankine vortex consists of two topologically distinct do-
mains in which a compact rigid body rotation with vorticity is embedded
in an exterior irrotational °ow with circulation. In the classic analysis [14],
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the velocity components of a Rankine vortex are matched on a bounding
surface of radius R. No estimate of the size of R was given by Rankine, but
it is to be noted that for single Rankine vortex the pressure at in¯nity in
an unbounded °uid is not zero [15]. The size of the vortex core, as given by
Milne-Thompson, depends upon the circulation and the pressure at in¯nity.
When the Rankine vortex is formed in the free surface of water, the water
surface associated with the interior, rotational, domain of the Rankine vortex
initially has a concave shape of positive Gaussian curvature. In the exterior
domain, which is irrotational, the free surface of the Rankine vortex is of
negative Gaussian curvature. It is a result of observation that for certain ini-
tial conditions of kinetic energy and angular momentum, the Rankine vortex
pair will decay until its rotational residue is almost entirely irrotational, and
the free surface is almost entirely of negative Gaussian curvature. A pair of
cusp-like singularities form in the free surface. This soliton state is remark-
ably long lived, and easily observed through its striking Snell refraction of
overhead sunlight that produces a dark disk, or absence of light, in its image.
It is not clear experimentally if there exists a residual elemental domain of
vorticity, an elemental vortex whose solenoidal core dimension is very small.
If the estimates of Table 1 are true, then this elemental core size could be
well below the limits of visual sensitivity.

These discrete sets of potential vortex pairs are globally stabilized by a
\spin-pairing\ mechanism, producing the equivalent of a macroscopic hadron
in a surface of discontinuity in a real °uid. The coherent solitary wave states
are easily produced in the discontinuity surface of a °uid in contact with the
atmosphere. As Voropayev has shown very recently [16], these \mushroom
dipoles\ exhibit quantized behavior in the decay of a turbulent °uid. The
result is not surprising when it is realized that these Falaco vortices are
topological singularities, and therefore can appear at all scales. Turning
the argument around, the concept also permits the development of another
mechanism for producing spin-pairing of electrons in the discontinuity of the
Fermi surface. This method depends upon transverse wave, not longitudinal
sound waves as in the BCS theory.

The moral of this story is that as there are experimental evidences of topo-
logical (hence quantized) states in the discontinuity sets of viscous, compress-
ible hydrodynamics, it should be expected that similar phenomena should
be observable in quantum mechanics, for the partial di®erential equations
of both evolutionary systems are transformable into one another. The ques-
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tion arises, where are the tangential discontinuities in the solution set to the
Schroedinger equation?

III. The Drag Crisis and Nanometer Vortex Pair Pro-
duction

Again following the experience of quantum theory, it would be expected
that elemental vortex pairs would be produced at some level of energy density,
in analog with charge pair production in quantum physics. An estimate can
be made in terms of the \mass\ equivalent energy of the elemental vortex
pair. That is, it would be expected that when the \¯eld\ energy density
over a domain of the size of the Compton wavelength exceeds twice the mass
equivalent energy of the elemental vortex pair, then a pair of vortices could
be created. The mass equivalent energy is to be computed relative to the
limiting speed, which in this case is the (longitudinal) speed of sound. The
¯eld energy density is the energy associated with the square of the vorticity,
or the enstrophy, of the °ow.

To summarize, elemental vortex pair production should spontaneously
occur when

Volume ± ¯eld energy density = 2(mass energy)
where mass energy = m ¤ C2s

volume = ¸3s ,

¯eld energy density = density x enstrophy x length2 .

For Poiseuille °ow, the maximum enstrophy occurs near the walls and
the energy density is given by the expression

E(wall) = ³2½¼b2=16: (9)

In terms of the Reynolds number (Rey) for the °ow down a pipe, the
critical expression for elemental vortex production is given by the equation

Re y2c(criticalvalue) = (2b
2m ¤ =¼½)(Cs=º)5: (10)
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Representative values of Reyc for b = 1 cm appear in Table 1. The fact
that these values are even crudely comparable to macroscopic measurement
of the onset of the drag crisis [17] or turbulence is remarkable, and give
credence to the idea that the onset of turbulence, or the perhaps the drag
crisis, might be due to the production of elemental domains, or defects, of
vorticity within an embedding environment of laminar °ow of null helicity.
The other aspect of this work is that it puts a lower bound on the size of
¯lamentary vortex. As a vortex represents a rotational mass with angular
momentum, and as the quantum hypothesis asserts that the elemental unit
of angular momentum must be of the order of Planck's constant, it should
not be unexpected to have the continuum theory of °uids fail at some small
scale dependent upon some constant angular momentum unit. The analysis
given herein gives an estimate of that size limit in terms of a sonic Compton
wavelength.

Fluid Cs ½ º m0 ¸s Reyc
CO2 0.26 0.002 0.0743 16 246 1.47 102

C3H6O 1.17 0.79 .0272 427 2.3 6.74 103

H2O 1.49 1.0 .01 116 6.7 1.81 105

Hg 1.45 13.5 .0011 1054 0.8 4.26 107

Cs in m/sec; ½ in gm/cm3; º in cm2/sec, m0 in electron masses, core size ¸s
in Angstroms. Note that the e®ective (sonic) Compton wavelength is

relative to the speed of sound.

IV. Discontinuities in Hydrodynamics and Quantum
theory

Up to this point the emphasis has been towards exploiting the connection
between quantum mechanics and hydrodynamics to gain an insight into cer-
tain problems of hydrodynamics. In this last section the emphasis is reversed
and several suggestions and conjectures are proposed. The basic question is:
What °uid concepts can lead to insights into quantum mechanics?

The new interpretation of the square of the wave function as a vorticity
distribution leads to the concept that quantum waves should have several
measureable holographic features. That is, counter to current dogma, both
phase and amplitude should be of importance to measurable quantum phe-
nomena. The Bohm-Aharanov e®ect is indeed evidence that such phase
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e®ects lead to measurable di®erences, but note that this e®ect has only re-
cently been measured, in a convincing closed geometry, by techniques built
upon electron holography [18].

The usual representations of the "particle" momentum operator in quan-
tum mechanics are by gradient operations, which induce zero curl compo-
nents, hence no vorticity. When the particle momentum is augmented by
the ¯eld momentum, A, then curl components can survive, and are propor-
tional to the B ¯eld. It is the vector potential that is the key. The non-zero
values of div A and curl A that are to be associated with hydrodynamic
compressibility and dissipation. From the hydrodynamic experience, it the
A ¯eld is harmonic, such that grad divA + curl curlA = 0, then there is
no dissipation, even in the presence of a viscosity coe±cient. Those charge
distributions and motions that lead to harmonic vector potentials somehow
must be related to superconductivity phenomena. From Sophus Lie it is
known that harmonic vector ¯elds are generators of minimal surfaces, hence
the argument presented above implies that superconductivity should be asso-
ciated with minimal surfaces. In °uids, minimal surfaces are associated with
tangential discontinuities. So the question arises, where are the discontinuity
solutions, the wave front solutions, in quantum mechanics?

In elementary quantum mechanics, continuity of wave function value and
slope are the dogmatic rules. However, continuity of probability current
and the square of the real part of the wave function can be satis¯ed by other
boundary conditions. Namely, if the slope of the wave function is continuous,
but the amplitudes are of equal value but of opposite sign, the ª¤ª is still
continuous and so is ª¤gradª¡ªgradª¤: These "equal value but of opposite
sign" boundary conditions lead to discontinuity solutions and propagating
wave fronts in quantum systems.

A. Reprise

The basic ideas in this article were ¯rst conceived about 1976, and then
later modi¯ed under the title "An Interpretation of the Wave Function as a
Cohomological Measure of Quantum Vorticity". (Phys Rev letters rejected
the ¯rst draft. No one seemed interested in the idea that turbulence could
be related to what now would be called nanometer vortices) The work,
however, was accepted for presentation at the Helsinki conference on the
Foundations of Quantum Mechanics, but due to other commitments I could

13



not attend the Helsinki meeting. It was not until 1986, with the recognition
of the Falaco Solitons, that the interesting mapping oddity took on a more
important character. The basic ideas were presented later in Florida,1989,
but all without the author's appreciation of Bohmian quantum mechanics.
However, like Catastrophe theory, Bohmian QM is based upon gradient ¯elds,
such that the possibility of torsion ¯elds, and other interesting topological
features are excluded. Herein, the 1976 concepts are reinterpreted in terms
of Bohmian like ideas, mostly to stimulate (and stimulated by) J. Sarfatti.
The method has its limitations to 2D + time geometry, and 3D+time versions
have not been found. A conjecture is that if the map was written in terms
of Cli®ord methods (quaternions) then the full 3D Navier-Stokes equations
would be found. Some of the new references are incomplete, as I do not
have easy access to a library here in the Vaucluse area of southern France.

For more detail, see

http://www22.pair.com/csdc/car/carhomep.htm
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