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Abstract

Classical Field Theory is described in the language of exterior di®erential
forms.

1. The Exterior Di®erential Form Method.

Classical Field theory had its foundations in the Calculus of Variations. See
(Wentzel, Handbuch. der Physik, Aharoni, etc.) However, a more transparent
development may be obtained using the theory of di®erential forms and exterior
di®erential systems. To this end, ¯rst consider a space M of m variables fxkg
and an immersive map, ©, into a space N of n + n £ m variables f ªk,ª¹k g.
This mapping includes those special (canonical) cases where the variables ª¹k are
de¯ned as partial derivatives: ª¹k = @ª

¹=@xk. The special cases imply that the
new variables of interest on N are the components of a vector and its Jacobian
coe±cients. However, the dimension n need not equal the dimension m, and the
ª¹k may be functions di®erent from the partial derivatives, ª¹k 6= @ª¹=@xk:
Consider a Lagrange function, L(ª¹;ª¹

k); (ultimately chosen to describe some
physical system) on N , and its di®erential dL :

dL(ª¹;ª¹
k) = (@L=@ª

¹)dª¹ + (@L=@ª¹
k)dª

¹
k : (1.1)



As the arguments of L(ª¹;ª¹
k) on N are well de¯ned as functions on M, by

functional substitution, a new function L(ª¹;ª¹
k) ) L(xk) can be de¯ned on M.

The basic idea is to compute the di®erential of L(xk) on M and equate the two
di®erentials.

dL(xk) = dL(ª¹;ª¹
k) (1.2)

The objective will be to relate this di®erential identity to a power theorem, or to
the ¯rst law of thermodynamics.
Consider the system of n 1-forms which are not necessarily zero on N:

!¹ = dª¹ ¡ª¹
kdx

k (1.3)

It is a topological constraint to assume that the 1-forms, !¹; vanish on the space
N. It is possible that they vanish on the space M, and not on the space N. In
such cases, the map is said to de¯ne M as an integral sub-manifold of N. If
the 1-forms !¹ vanish on the space N, then the coe±cients must be such that
ª¹k ) @ª¹=@xk: In this note such an assumption is not presumed, a priori. The
deviations of !¹ from zero will be of use in physical theories that employ the
concept of thermodynamic °uctuations. (Perhaps these possible deviations from
zero is what Newton had in mind when he invented the calculus of °uxions)
A topological constraint that will be subsumed in this note is the condition that

the system of 1-forms !¹ are di®erentially closed. There are two possible versions
of the concept of closure. The weaker condition implies that the exterior derivative
of any form !¹ resides in the set of forms composed of linear combinations of the
original set f!¹g.

d!¹ = !¾C¹¾ (1.4)

This assumption de¯nes a connection (or a gauge ¯eld). Note that on a subspace
where the °uctuation forms vanish, then their exterior derivative also vanishes.
This idea leads to a stronger topological assumption: That is, assume that the
exterior derivative of each °uctuation 1-form vanishes. This stronger assumption
leads to a somewhat simpler theory, and will be taken up ¯rst in this note.

Topo log ical Assumption I: d!¹ = 0 (1.5)

This strong closure condition implies that the deviations from zero for the set of
°uctuations, !¹ = dª¹¡ª¹

kdx
k, consists, at most, as a set of perfect di®erentials,

and a set of harmonic forms. The system of °uctuations may have non-zero period
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integrals, for integrations over a cycle, but integrals over a boundary (which can
have cyclic parts) must always vanish, subject to the strong closure condition.
Physically the idea is that over some suitable bounded integration domain, the
°uctuations integrate to zero on average.
A somewhat more general situation could be described by the constraint that

the 1-forms !¹ be integrable, in the sense that for each °uctuation 1-form there
exists a set of integrating factors such that d(¯!¹) = 0:

2. Field Theory based on Assumption I.

The strong closure condition (Assumption I) imposes a \null curl" constraint on
the functions, ª¹

k . As the mapping is di®erentiable it follows that

dª¹k = (@ª
¹
k=@x

j)dxj: (2.1)

and from the constraint of closure,

d!¹ = dª¹
k^dx

k = (@ª¹
k=@x

j ¡ @ª¹
j =@x

k)dxj^dxk ) 0: (2.2)

It follows that

@ª¹
k=@x

j = @ª¹
j =@x

k; (2.3)

such that by a di®erent arrangement a second expression is obtained for dª¹k :

dª¹k = (@ª
¹
k=@x

j)dxj = (@ª¹j =@x
k)dxj : (2.4)

(My intuition tells me that this result, due to the strong closure assumption, is
somehow related to isotropy, but I don't know how to express this exactly.) Note
that if the additional - and not required - (canonical) constraint is made, such that
ª¹k = @ª

¹=@xk, then the strong closure condition is equivalent to the assumption
that the order of partial di®erentiation is commutative.
By substituting this last relation into the ¯rst equation for the total di®erential

of the Lagrange function on N, and using the Leibniz rule for di®erentiation yields

@f@L=@ª¹
k)ª

¹
j g=@xk = (@L=@ª¹

k)@ª
¹
j =@x

k + f@(@L=@ª¹
k)=@x

kgª¹
j ; (2.5)

(an expression which is equivalent to the trick of integrating by parts in the
calculus of variations). The last term on the RHS of the expression above for
dL(ª¹;ª¹

k) becomes,
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(@L=@ª¹
k)dª

¹
k = (@L=@ª¹

k)(@ª
¹
j =@x

k)dxj (2.6)

= @f@L=@ª¹
k)ª

¹
j g=@xkdxj ¡ f@(@L=@ª¹

k)=@x
kgª¹

j dx
j;(2.7)

and the ¯rst term on the RHS becomes,

(@L=@ª¹)dª¹ = (@L=@ª¹)ª¹
kdx

k ¡ (@L=@ª¹)!¹ (2.8)

Recall that by functional substitution (the pullback) the function L(ª¹;ª¹
k) on

N can be expressed explicitly in terms of the m variables, L(xk) on M. Then the
di®erential of L(xk) on M with respect to the m variables becomes

dL(xm) = f@L(xm)=@xkgdxk = f@L(xm)=@xkg±kjdxj; (2.9)

where ±kj is the Kronecker delta function.

Substituting, combining and rearranging terms in the desired equation dL =
dL leads to a "power theorem" for ¯elds

[f@(@L=@ª¹
k)=@x

k ¡ @L=@ª¹gª¹
j ]dx

j (2.10)

= [@f(@L=@ª¹
k)ª

¹
j ¡ (L)±kjg=@xk]dxj + (@L=@ª¹)!¹ (2.11)

The tautology is described as a power theorem, for if the direction ¯elds (propor-
tional to the dxj) are describable in terms of a singly parametrized vector ¯eld,
then the coe±cients of the single parameter on the LHS of the theorem have the
format of the classical de¯nition: power is force times velocity.
The term (@L=@ª¹)!¹ represents the "°uctuations" in the ¯elds. The Stress

Energy Tensor W j
k ( a mixed second rank non-symmetric tensor) is de¯ned as

W k
j = [(@L=@ª

¹
k)ª

¹
j ¡ L±kj ]: (2.12)

The Lagrange-Eulerian (covariant) generalized force ¯eld, fLaGrange¹ ; on the tar-
get domain

fLaGrange¹ = f@(@L=@ª¹
k)=@x

k ¡ @L=@ª¹g (2.13)

has a covariant pre-image as a Lagrangian force FLagrangej on the initial space of
parameters de¯ned by the pullback formula similar to that for a covariant tensor
¯eld,

FLaGrangej = fLaGrange¹ ª¹
j (2.14)
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If the ª¹
j were functions representing an invertible Jacobian map, then the dis-

sipative force on M is exactly the tensor pull back of a classical covariant tensor
¯eld on N. However, in this analysis, the ª¹

j need not be elements of an invertible
Jacobian.
With these de¯nitions, the power theorem becomes a tautology for the virtual

work:

W = FLaGrangej dxj = [@W k
j =@x

k]dxj + (@L=@ª¹)!¹ (2.15)

The notations above equation make the assertion that the tautology is power
theorem more transparent, for if the equation is divided by dt, then the expres-
sion FLaGrangej dxj=dt represents the innerproduct of force times velocity; i.e., the
standard de¯nition of power. As it stands, the equation de¯nes the virtual work
1-formW as the sum of a contribution from divergence of the stress-energy tensor,
and a set of °uctuations.
The ¯eld momentum tensor is de¯ned by the expression

¦k¹ = (@L=@ª
¹
k): (2.16)

When the di®erentials dxj are presumed to be arbitrary, and when the °uctua-
tion term is ignored, then the Power Theorem becomes the classical stress-energy
theorem,

FLaGrangej = @[W k
j ]=@x

k = fLaGrange¹ ª¹
j ; (2.17)

which reads "The divergence of the Stress Energy Tensor = the Lagrangian Force".
This fundamental formalism was obtained without metric, without a connection
and is in accurate tensor format. The stress energy tensor is a mixed 2nd rank
tensor ¯eld, and the Lagrangian force is a covariant vector.
Note that W = FLaGrangej dxj is a 1-form whose closed loop integral represents

the cyclic work of thermodynamics. If dW = 0 (when the curl of FLaGrangej is zero)
then the system is thermodynamically reversible. In the more stringent extremal
situation the virtual work vanishes, W = 0 (where the "Lagrange generalized
force" FLaGrangej vanishes), and the "equations of motion" or "Field Equations"
are the ubiquitous Lagrange-Euler equations of classical mechanics:

f@(@L=@ª¹
k)=@x

k ¡ @L=@ª¹g = 0: (2.18)
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2.1. Examples

2.1.1. Example 1. Single parameter evolution in 3-space; the conserva-
tive particle.

Let
© : ftg ) fx;vg; (2.19)

where in the notation above

ª¹ ¼ x; and ª¹
t ¼ v: (2.20)

!¹ ¼ dx¡ vdt: (2.21)

Note that di®erential closure, d!¹ = 0 implies dv^dt = 0 and therefore v = v(t):
If !¹ = 0 then v = @x(t)=@t, and is equivalent to the assumption of a kinematic

topology without °uctuations.
Suppose the Lagrange function

L(x;v) = mv2=2¡ U(x) = KE ¡ PE (2.22)

Then
@L=@ª¹ ¼ @L=@x = ¡gradU ; (2.23)

@L=@ª¹
k ¼ @L=@v = mv; the momentum; p(t): (2.24)

The Stress Energy tensor has a single component

[W k
j ] = [(@L=@ª

¹
k)ª

¹
j ¡L±kj ] ¼ [p ± v¡mv2=2+U(x)] = KE+PE = TE (2.25)

The single component of W k
j , is recognized as the total energy, TE, which is

the sum of the kinetic and potential energy. As the assumed form of L is not an
explicit function of time, it follows that the divergence of the stress energy tensor
vanishes, @[TE]=@t = 0. This is a classic result that corresponds to the concept
of the conservation of total energy.
The Lagrange generalized (perhaps irreversible) force expression becomes

fLagrange¹ = f@(@L=@ª¹
k)=@x

k ¡ @L=@ª¹g ¼ [@p=@t+ gradU(x)]: (2.26)
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In the example, this expression is equal to zero (no dissipation) for null °uctua-
tions, as the \divergence" of the stress energy term vanishes. As there is only one
parameter, the partial derivative is a total derivative, and the above expression
leads to the classical Newtonian formula for the \equations of motion" of a con-
servative system, dp=dt = ¡gradU(x): Note that the Newtonian force, dp=dt; is
equal to the Lagrangian force, fLagrange¹ ; only when the gradient of the potential
vanishes.
When kinematic °uctuations are admitted, then the °uctuations contribute to

the work 1-form through the expression

W = (@L=@ª¹)!¹ ¼ ¡gradU(x) ± (dx¡ vdt): (2.27)

Note that this °uctuation term can vanish, even in the presence of kinematic
°uctuations, if the °uctuations are orthogonal (transverse) to the gradient of the
potential. The result implies that when °uctuations (if they exist) reside on the
surface of constant potential energy, they contribute nothing to the dissipative
power. Only the °uctuations normal to the surface of constant potential energy
will contribute to the 1-form of virtual work. In thermodynamics, the assump-
tion of a closed system implies that no massive particles pass through the system
boundary. This idea is analogous to the statement that the normal component of
the °uctuations must vanish on the surface of constant potential. The implica-
tion is that the surface of constant potential energy de¯nes the \boundary" of a
physical system, a well known result in electrostatics.
All of the above ideas are restricted to those physical systems that can be

described by a single evolutionary parameter, t, and a Lagrange function which
is explicitly independent from t.

2.1.2. Example 2. The two dimensional dynamical string; Laplace's
equation.

Let
© : fs; ctg ) fÁ(s; t); Ás; Áctg; (2.28)

where in the notation above

ª¹ ¼ Á; andª¹
s ¼ Ás:ª

¹
ct ¼ Áct: (2.29)
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!¹ ¼ dÁ¡ Ásds¡ Áctd(ct) (2.30)

Note that the closure condition, d!¹ = 0 implies dÁs^ds + Áct^d(ct) = 0 and
therefore

@Ás=@ct = @Áct=@s: (2.31)

Suppose the LaGrange function is

L(Á(s; t); Ás; Áct) = (Á
2
s + Á

2
ct)=2 (2.32)

Then
@L=@ª¹ ¼ @L=@Á = 0; (2.33)

@L=@ª¹
k ¼ @L=@Ásor; @L=@Áct: (2.34)

The Stress Energy tensor becomes a two dimensional matrix.

[W k
j ] = [(@L=@ª

¹
k)ª

¹
j ¡ L±kj ] ¼

"
(Á2s + Á

2
ct)=2 ÁsÁct

ÁsÁct (Á2s + Á
2
ct)=2

#
(2.35)

The Lagrange Euler force on N is of one component,

fLagrange¹ = f@(@L=@ª¹
k)=@x

k ¡ @L=@ª¹g ¼ @Ás=@s+ @Áct=@ct; (2.36)

which if the °uctuations go to zero becomes equal to the Laplacian of the func-
tion Á: In other words the generalized force is completely determined from the
functional forms assumed for Ás(s; ct) and Áct(s; ct):
The work one form on M however consists of two components,

W = [@W k
j =@x

k]dxj = (@Ás=@s+ @Áct=@ct)fÁsds+ Áctd(ct)g (2.37)

: Note for later discussion that the stress energy tensor, [W k
j ]; is symmetric.

The extremal case of zero virtual work implies that either the \string displace-
ment" is constrained to the surface fÁsds+Áctd(ct)g = 0;or (@Ás=@s+@Áct=@ct) =
0: If the °uctuations are zero, then the last equation implies that the virtual work
is zero only if the function Á is harmonic, r2Á = 0: In this case the function Á
satis¯es Laplace's equation.
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2.1.3. Example 3. Another two component Lagrangian; the Wave

Equation.

Let the map Á be de¯ned as:

Á : fs; ctg ) fª¹;ª¹
s ;ª

¹
ctg = fÁ; Ás; Áctg : (2.38)

The target space consists of a single ¯eld amplitude (or wave function, Á) that
corresponds to a "coordinate", but has several (two) components that correspond
to a "velocity".
Note that !¹ , dÁ¡Áctd(ct)¡Ásds. Now suppose that the Lagrange function

for this system is given in the form

L(Á;Ás; Áct) = fÁ2s ¡ Á2ctg=2: (2.39)

This di®ers by a sign from Example 2. Then the ¯eld momentum is the two
component contravariant vector

¦k¹ = @L=@ª
¹
k ) ¼k =

"
Ás

¡Áct

#
: (2.40)

The stress energy tensor becomes a two by two matrix

W k
j = [@L=@ª

¹
k)ª

¹
j g ¡ L±kj ] =

"
fÁ2s + Á2ctg=2 fÁsÁctg

¡fÁsÁctg fÁ2s + Á2ctg=2

#
(2.41)

Note that the stress energy tensor is NOT symmetric (therefore the system will
have a spin component of angular momentum as well as a classical component of
angular momentum { see below).
The Lagrange force becomes a "scalar" 1 component object

fLagrange¹ = f@(@L=@ª¹
k)=@x

k ¡ @L=@ª¹g = @(Ás)=@s¡ @(Áct)=@(ct)¡ 0 (2.42)

Suppose that the °uctuations are zero, and that Ás ) @Á=@s and Áct ) @Á=@(ct):
Then if this "generalized" force is to vanish, the amplitude function, Á; satis¯es
the wave equation in the two variables, s and ct. That is, the Field Equations are
the one dimensional wave equation:

@2Á=@s2 ¡ @2Á=@(ct)2 = 0: (2.43)
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Problem 1. Consider the complex (or two dimensional) oscillator. Map t
into z = x+ iy; z = x¡ iy, Á(z; z); Â(z; z): Note that N is 4 dimensional. Set up
a Lagrangian equivalent to the Harmonic oscillator. Compute the stress energy
tensor, etc.

3. Comments about the stress energy tensor

3.1. Reversible processes

From the discussion above it is evident that if there are no °uctuations, and
if the virtual work 1-form vanishes, then the power theorem yields the classic
Lagrange-Euler formulas for the equations of motion. In general, the map and the
functional format of the Lagrangian will permit the computation of the generalized
(or external) force, and the virtual work 1-form, W: It is often di±cult to ¯nd the
functional form of L that will match a speci¯c generalized force. However, classes
of such "boundary" conditions can be studied for there topological properties.
First consider the case where the °uctuations vanish. Even then it is extraor-

dinary that the virtual work 1-form should vanish for arbitrary direction ¯elds.
This extremal constraint, for arbitrary direction ¯elds, requires that the stress
energy tensor should have a zero divergence. There may exist speci¯c (not arbi-
trary) direction ¯elds which cause the work 1-form to vanish. In these directions
the power (force times velocity) is zero. The Lagrange generalized forces then
are orthogonal to these special direction ¯elds in the sense of Bernoulli.
A less restrictive condition would be to require that the cyclic integral of the

Work 1-form should vanish. In such cases, it must be true that the exterior
derivative of the Work 1-form should vanish. In such circumstances, the Work
1-form must reduce to a perfect di®erential of some other function. In such cir-
cumstances, the new function has the appearance of a potential U in the equations
of motion. The generalized force is not zero, but is a gradient ¯eld which does
not contribute to cyclic integrals. The functional form of L dictates whether
or not such an option is possible. In certain instances the perfect di®erential
representing the work 1-form is such that the equations of motion are locally
adiabatic.
A even less restrictive condition is the constraint that the 1-form of virtual

work should be closed, but not identically zero (dW = 0; but W 6= 0). In this
case the "curl" of the Lagrange force should vanish, but the cyclic work need not
vanish. From the ¯rst law of thermodynamics, Q^dQ = (W + dU)^dW: Hence,
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dW = 0; implies that Q^dQ = 0; and therefore Q admits an integrating factor.
Such processes are reversible [G]. In physical examples, the closure constraint is
equivalent to the Helmholtz theorems in °uid dynamics, and the Master equation
constraint in plasma physics.
The stress energy tensor density, [W k

j ] = [(@L=@ª
¹
k)ª

¹
j ¡ L±kj ], is represented

on M by a m by m matrix of functions, and is not necessarily a symmetric matrix.
For a 1-dimensional space M of a single parameter (usually denoted as time, t, in
engineering and physics), the stress energy tensor is a single component function
and typically represents the total energy of a physical system. The symmetry
question of the single component matrix is mute . For a two parameter M space,
the stress energy tensor is represented by a two by two matrix of functions. De-
pending on the format of the Lagrange function, the matrix may be symmetric or
not. (See the examples above). For a four dimensional parameter space equivalent
to space-time, fx,y,z,tg, the stress energy tensor is a 4 by 4 matrix.
When the stress energy tensor is symmetric, it will be shown below that there

exists a conserved third rank tensor ¯eld, symbolized by L, which can be inter-
preted as the ¯eld Orbital Angular Momentum. When the stress energy tensor
is not symmetric, and L is not an evolutionary invariant, it is sometimes possible
to ¯nd a conserved third rank tensor ¯eld, J, which is conserved. The classic
technique is to de¯ne a Spin component of angular momentum, S, to be added
to the conventional and classic Orbital angular momentum, L. The result is that
J = L+ S can be a conserved quantity (an invariant of the evolution) but the
individual components L or S are not. This concept was used by Dirac to justify
the spin properties of the electron in a Quantum Mechanical setting. Note that
the concept of Spin is a not solely a quantum mechanical e®ect, but also exists in
non-quantized classical ¯elds when the stress energy tensor is not symmetric.
None of these results above required the explicit use of the calculus of varia-

tions. When the system is without °uctuations (in the sense that the °uctuation
1 forms are both closed and zero) then the functions ª¹k ) @ª¹=@xk are indeed
the Jacobian coe±cients of the mapping. It follows that the \generalized force"
fLaGrange¹ ª¹

j on M is the covariant pullback of the Lagrange force, fLaGrange¹ , on
N.
Classical Hamiltonian mechanics on a state space of odd (2n+1) dimensions is

a study of those special extremal direction ¯elds such that the Virtual work 1-form
vanishes. As will be shown below, such a process is unique to a maximal rank
manifold of odd dimensions. Such extremal processes do not exist on maximal
rank manifolds of even dimension.
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4. The Method of Cartan Hilbert

4.1. Non-canonical evolution

The method of Lagrange can be modi¯ed to include constraints by using the so-
called Lagrange multipliers. From the point of view of the calculus of variations,
the variational integrand is prolonged from L(q;v;t)dt (which is of Pfa® dimension
2, and therefor always integrable) to a 1-form of possibly larger Pfa® dimension.
Consider those systems that can be described by a Lagrange function L(q;v;t)
and a 1-form of Action given by the expression:

A = L(q;v;t)dt+ p¢(dq¡ vdt); (4.1)

This formula de¯nes the Cartan-Hilbert 1-form of Action.
At ¯rst glance it appears that the domain of de¯nition is a 3n+1 dimensional

variety of independent variables, fq;v;p; tg:Where p 6= @L=@v and (dq¡vdt) 6=
0: The original Lagrange 1-form of Action, L(q;v;t)dt; has been prolonged by
the addition of (possibly zero) °uctuations, (dq¡vdt); and appropriate Lagrange
multipliers, p. It will not be necessary to impose a condition on the °uctua-
tions that will make them holonomic. In fact anholonomic constraints lead to
interesting e®ects of torsion.
For the given (prolonged) Action, construct the Pfa® sequence fA; dA;A^dA; dA^dA:::g:

The Top (non-zero) Pfa±an of this sequence is given by the formula,

(dA)n+1 = (4.2)

(n+ 1)!f§nk=1(@L=@vk ¡ pk) ² dvkg^dp1^:::dpn^dq1^::dqn^dt;(4.3)

which indicates that the Pfa® topological dimension is 2n+2, and not the geomet-
rical dimension 3n+1. This result means that there exits a map from the 3n+1
dimensional space to a 2n+2 dimensional space that captures the topological fea-
tures of interest. It follows that the exact two form dA satis¯es the equations

(dA)n+1 6= 0; but A^(dA)n+1 = 0: (4.4)

The result is true for any closed addition to the 1-form A; e.g., A +° with
d° = 0: The Pfa® dimension is independent from any "gauge" addition to the
prolonged Lagrangian 1-form. On the 2n+2 domain, the components of 2n+1
form T = A^(dA)n generate what is herein de¯ned as the Torsion Current, whose
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2n+2 components behave as a contravariant vector density, Tm. The components
of the "Torsion current" are orthogonal (transversal) to the 2n+2 components of
the covariant vector, Am; that make up the coe±cients of the Action 1-form. In
other words,

A^T = A^(A^(dA)n) = 0 ) i(T)(A) = TmAm = 0: (4.5)

This topological result does not depend upon geometric ideas such as metric.
The 2n+2 domain will be de¯ned as Thermodynamic Space. The 2n+2

domain so constructed can not be compact without boundary for it has a volume
element which is exact. It is orientable if the 2n+2 volume element does not
change sign.
For the 2n+2 domain to be symplectic, the top Pfa±an can never vanish,

therefore:

(@L=@vk ¡ pk) ² dvk 6= 0 (4.6)

If, however, the constraints of canonical momenta are subsumed, such that @L=@vk¡
pk = 0; then the 2-form dA is not symplectic on its maximal dimension 2n+2,
but instead the top Pfa±an de¯nes a contact manifold on a State Space of
topological dimension 2n+1 with the formula

A^(dA)n = n!fpkvk ¡ L(t; q; vgdp1^:::dpn^dq1^::dqn^dt+ :::terms involving °:
(4.7)

The Torsion current reduces to a single component on the contact manifold.
It is this 2n+1 dimensional contact manifold that serves as the arena for most of
classical mechanics prior to 1965, especially for those theories which were built
from the calculus of variations. The 2n+1 dimensional contact manifold, or State
Space, admits a unique "extremal" evolutionary ¯eld, that satis¯es "Hamilton's
equations" i(V)dA = 0. The coe±cient of the state space volume is to be recog-
nized as the Legendre transform of the physicist's Hamiltonian energy function.

H(t; q; v; p) = fpkvk ¡ L(t; q; v)g (4.8)

The Hamiltonian function can be decomposed into two parts:

H(t; q; v; p) = H0(t; q; p) + E(t; q; p; v); (4.9)

where the excess function E(t; q; p; v) vanishes if the momenta are canonically
de¯ned. In this case the Hamiltonian is related to the Lagrangian by means of
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a Legendre transformation. The constraint of zero excess function implies that
the LaGrange multipliers, p, satisfy the equations

p¡@L=@v = 0; v ¡ @H=@p = 0: (4.10)

This constraint is equivalent to the statement that the "Hamiltonian" is to
be expressed in terms of the variables ft; q; pg only. The 2n+1 space maintains
its contact structure as long as the "total Hamiltonian energy" is never zero, and
the momenta are canonically de¯ned. However, if the Lagrangian is homoge-
neous of degree 1 in the velocities, v, and if the momenta are canonically de¯ned
such that @L=@vk = pk, then the top Pfa±an of the sequence, now doubly con-
strained, de¯nes yet another non-compact symplectic manifold of Pfa® dimension
2n (a distinguished form of Phase Space) mod the closed contributions due to °.
These aforementioned constraints are precisely Chern's constraints used to de¯ne
a Finsler space which admits non-Riemannian geometries (when the Lagrange
function contains more than quadratic powers of v ) and spaces with torsion.[3]
Note that the processes of topological reduction described above are not equivalent
to forming an arbitrary section(s) in the form of holonomic constraints.

4.2. More on Fluctuations

Consider the extended format of the Cartan-Hilbert invariant integrand written
in slightly di®erent notation,

A = L(x;v;t)dt+ p¢(dx¡ vdt); (4.11)

Note that the original space-time, fx; tg has been extended to a 10 dimension
space of functions, fx; t;v;p g. On this set, it is convenient to de¯ne a vector
¯eld, V, with 10 components given by the functions, fv; 1; a; fg. Di®erential and
functional constraints will be imposed on this 10 dimension space thereby de¯n-
ing a topology. As before, the Cartan-Hilbert action involves a classic Lagrange
function, L(x;v;t), and a linear combination of non-zero position \°uctuation or
deformation\ 1-forms, de¯ned as:

¢x = (dx¡ vdt) 6= 0: (4.12)

The covariant array, p, of coe±cients of the °uctuation 1-forms may be de-
scribed as set of Lagrange multipliers. It will be demonstrated below that this
covariant ¯eld, p, dual to the contravariant velocity ¯eld, v, plays the role of the
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canonical momentum, when subjected to additional, but classic, constraints that
are equivalent to the constraint of zero temperature.
The 1-forms, ¢x, are de¯ned as °uctuation-deformation 1-forms, for they

represent deviations from the pure kinematic point of view associated with a rigid
body dynamics or the evolution of a point particle in terms of a single parameter
group of transformations. Although not always true, these deviations are often
small corrections to the kinematic constraints, ¢x = 0, and have the appearance
of \°uctuations\ about the \kinematic\ lines that act as guiding centers for the
evolution.
The °uctuation 1-forms are not necessarily zero for deformable media. If it is

assumed that the \points\, x, evolve in terms of a map, fk, from a set of initial
conditions, y, then the map

xk = fk(y; t) (4.13)

with the classic assumption that v = @fk(y; t)=@t leads to the di®erential expres-
sion,

¢x = (dx¡ vdt) = f@fk(y; t)=dyjgdyj (4.14)

First suppose that the °uctuations vanish, ¢x = 0. If the Jacobian deter-
minant, det[@fk(y; t)=dyj ], does not vanish, then the parameters, y, must be
constants, such that dyj = 0; that is, dy is a zero vector. The trajectories are
retraceable, for an inverse mapping exists. However, if the Jacobian determi-
nant vanishes, then the di®erentials dy need not be the zero vector. For zero
°uctuations, dy must be a null vector of the Jacobian.
Next suppose the °uctuations do not vanish. If the Jacobian determinant

does vanish, then the di®erentials dy must not be a null vector of the Jacobian,
for ¯nite °uctuations. If the Jacobian determinant does not vanish, then the
di®erentials dy must not be a zero vector for ¯nite °uctuations; that is, the y
are not constants. In otherwords, the \initial conditions" are not constants in a
single parameter evolutionary system that has °uctuations.
The criteria that ¢x = 0 has solutions is established by the Frobenius condi-

tion:

d(¢xk)^(¢x1)^(¢x2)^:::(¢xn) = 0: (4.15)

But the Frobenius construction produces a n+2 form on an n+1 dimensional
space. Hence it always vanishes; there always exist solutions with zero °uctuations
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for single parameter evolution of \points". The idea is that a set of points that
do not interact (ideal gas) always has an \equilibrium" state of zero °uctuations.
However, suppose that the system has a two parameter evolutionary map,

representing the evolution of a \string" rather than a \point". Consider the
map

xk = fk(y; t; ¾) with v = @fk(y; t)=@t;u = @fk(y; t)=@¾ (4.16)

such that ¢x = (dx¡ vdt¡ ud¾) = f@fk(y; t)=dyjgdyj (4.17)

Then the Frobenius condition is a 2n+2 form on a 2n+2 dimensional space
which need not vanish. Hence, it is not always true that solutions with zero
°uctuations exist. The 2 parameter concept is the simplest representation of a set
of interacting points. The second parameter, ¾, is a description of a constraint in
the sense that the points make up a \string", with an arc length parameter, ¾. If
d¾ is zero the string does not stretch as it evolves with dt. But if d¾ is not zero as
the evolution proceeds, it is not true that all such systems admit a state of zero
°uctuations. (Is this the meaning of a \zero-point energy"?)
If the parameters, y, which could be interpreted either as initial conditions,

or as the coordinates of the origin, are not constants, then the system does not
evolve according to the kinematic rules associated with a single parameter group.
The basic idea is that the statement, dx ¡ vdt = 0, must be interpreted as a
topological constraint, just as the statement xdx+ ydy+ zdz = 0 is a topological
constraint on Euclidean 3-space that produces the topology of a spherical surface.
In classical hydrodynamics, the non-zero °uctuations dx ¡ vdt are usually

constrained by topological conditions such that their associated 3-form admits an
integrating factor, . This topological constraint means that there must exist a
function, ½(x; y; z; t), such that the non-zero 3-form,

­ = (dx¡ vxdt)^(dy ¡ vydt)^(dz ¡ vzdt) (4.18)

has a vanishing exterior derivative,

d­ = fdiv3½v + @½=@tgdx^dy^dz^dt = 0: (4.19)

This topological constraint is usually called the \equation of continuity\ for de-
formable media. Note that the 3-form is trivially zero if there are no °uctuations.
It may be shown that this topological constraint makes an absolute invariant

of the evolution. If the °ow lines are retraceable, implying that the Jacobian
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determinant of the assumed mapping is of rank 3, then the topological constraint
may be interpreted as the \conservation of mass\. However, it is not apparent that
nature always insists on the assumed topological constraint among the °uctuation-
deformation 1-forms. Such a constraint is a matter for test, especially in the case
of a turbulent, irreversible, evolutionary process.
The Cartan 1-form will be used not only to generate the Cartan topology, but

also to generate, by means of a procedure equivalent to a variational principle,
a set of partial di®erential equations of evolution with solution vector ¯elds, V.
The continuous smooth curves tangent to the vector ¯elds, V, in the higher di-
mensional geometry of the partial di®erential system may pullback, or intersect,
or project, discontinuously in the lower dimensional geometry. The ordinary kine-
matic di®erential equations based on v, without °uctuations, yield solution curves
that act as \guiding centers\ for the °uctuation ¯elds, V, in the limit that the
°uctuations are small. The projections of the continuous curves in the geometry
of the higher dimensional space may have gaps and tangential discontinuities on
space-time. The discontinuities would be interpreted as defects or °uctuations in
an otherwise homogeneous and continuous system. These ideas may be compared
to the concept of Poincare sections in the theory of non-linear dynamics. The
Cartan method permits the concepts of discontinuous °uctuations to be put on
a continuous basis in a space of higher dimension. This topological idea of re-
moving apparent discontinuities by embedding in a space of higher dimensions is
similar to the geometric idea where a curved space may be embedded in a higher
dimensional euclidean °at space.
Physicists often recognize the Cartan Action in the format,

A = L(x;v;t)dt+ p±(dx¡ vdt) = p±dx¡H(t;x;v;p)dt; (4.20)

but do not seem to appreciate that this composition may be interpreted in terms
of a °uctuation geometry on a space of 10 dimensions. The additional assumption
that the momenta are canonically de¯ned corresponds to a functional relationship
or constraint between the variables such that the excess function vanishes. If the
relationship is linear, then there would exist a constitutive or metrical relationship
between the dual ¯elds, v and p. Such assumptions are NOT made a priori in
this article.
Consider ¯rst a Cartan 1-form of action where the °uctuations vanish over

a domain. Then the 2-form of limit points is F = dA = dL^dt: It follows that
H = A^dA = 0, and K = dA^dA = 0. The Pfa® dimension of such systems is 2
at most. Such systems can have vorticity but are without helicity, or Topological
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Torsion. However, in this article, systems of non-zero H and non-zero K are of
interest. Examples of systems that do support Topological Torsion are presented
in reference [Kiehn 1991a]. From this point of view, both Topological Torsion and
Topological Parity are to be associated with the concept of non-null kinematic
°uctuations which are not transversal to the system momentum, p x 0.
When °uctuations are permitted, then the exterior derivative of the Cartan

action on the 10 dimensional space becomes explicitly,

dA = (@L=@v ¡ p)dv^dt+ dp±(dx¡ vdt) + @L=@x(dx^dt) (4.21)

which can be rewritten in the equivalent suggestive format

dA = (@L=@v ¡ p)¢v^dt+¢p±¢x: (4.22)

The term ¢v =dv ¡ adt represents the °uctuations in velocity (temperature?) in
the same sense that ¢x = (dx ¡ vdt) represents °uctuations in position (pres-
sure?). The term ¢p = (dp ¡ @L=@x)dt has the appearance of a °uctuation in
the Newtonian force. The functions, a, are de¯ned to be to the contravariant ac-
celeration vector ¯eld (with velocity °uctuations) in the same extremal sense that
v is de¯ned as the contravariant velocity vector ¯eld (with position °uctuations).
The Heisenberg like notation, ¢p±¢x; stands for the sum of 2-forms,

¢p±¢x = (dp¡ @L=@x)dt^(dx¡ vdt): (4.23)

which is similar to the dot product of two vectors, but here the combinatorial ac-
tion is through the exterior product, ^. Although closely related to an expectation
value generated by an inner product, or to the integrand of a cross-correlation
integral, no statistical or ensemble averaging is assumed in this article. The
beauty of the Cartan analysis is that it is retrodictively deterministic and well de-
¯ned in a pullback sense, even when unique, deterministic prediction is impossible
[Kiehn,1976b].
The bracket factor, (@L=@v¡ p) = ¡@H=@v will be de¯ned as the scaled co-

variant vector ¯eld, k=S. The topological constraint k = 0 permits the Lagrange
multipliers to be uniquely determined as the canonical momenta of classical me-
chanics, p = @L=@v.
A direct computation of the Topological Torsion, H, on the 10 dimensional

space yields,
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H = A^dA = Ldt^(¢p^¢x) + (k=S ± v)^(p ±¢x)^dt: (4.24)

which may be evaluated in principle on 4 dimensional space time by functional
substitution. A similar direct computation in the higher dimensional geometry of
variables fx; t;v;pg of the exterior derivative, K = dH, produces a 4-form that
also can be pulled back to fx; y; z; tg by functional substitution. The Topological
Parity 4-form becomes,

K = dA^dA = 2f(@L=@v ¡ p) ±¢vg^(¢p^¢x)^dt+ 2(¢p^¢x)^(¢p^¢x):
(4.25)

On a space-time variety, this 4-form becomes Chern's top Pfa±an whose in-
tegral gives information concerning the Euler characteristic of space-time. It is
apparent that K depends on the exterior product of the °uctuations of position,
Lagrange multipliers, and velocity, as well as the bracket factor, (@L=@v ¡ p) =
¡@H=@v, and dt.
The classic ¯rst variation of the Action integral,

R
A , is an extremal principle

which, for the action speci¯ed above, will generate a Finsler geometry. According
to Chern, the Finsler variation is equivalent to setting dA = 0, mod ¢x . In
addition, for Finsler geometries, the Lagrange function is presumed to be homo-
geneous of degree 1 in the v. This constraint is used by Chern to construct or
de¯ne a \projectivized\ tangent bundle. The homogeneity condition implies that
the variable, t, can be reparametrized, and the vector v forms the elements of a
projective geometry.
In classical ¯eld theory, the Finsler constraint is often imposed arbitrarily:

k=S = (@L=@v ¡ p) = ¡@H=@v = 0: (4.26)

As mentioned above, such a constraint uniquely de¯nes the Lagrange multipliers,
p, as the components of the canonical momentum. The Topological Parity 4-
form is then dependent on the exterior product of \°uctuations\ in position and
momentum only, and has the same physical dimensions as the square of Planck's
constant. From a qualitative point of view, °uctuations in velocity correspond to
the property of temperature. Hence, the Finsler constraint can be interpreted as
a constraint of constant ( or zero ) temperature
Now examine the closed loop integrals on the space M of the components that

make up the power theorem. The loop integral of the work 1-form represents the
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net heat °ow around the cycle, or equivalently the cyclic work in a thermody-
namic sense. If the divergence of the stress energy tensor vanishes, then non-zero
cyclic work must be caused by °uctuations. Note that even if there are non-zero
°uctuations, ¢x 6= 0, it is possible that there is no cyclic work subject to the
condition that the \gradient" terms @L=@x form a null (or adjoint ) vector to all
of the °uctuations. Such states should have long lifetimes, and be with minimal
dissipation. (Wakes, superconductivity??)
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