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Abstract

Cartan's theory of a global 1-form of Action on a projective variety per-
mits the algebraic evaluation of certain useful geometric and topological
objects which can be singular. The projective algebraic methods there-
fore lend themselves to the development of a theory of coherent structures
and defects in which the concept of translational shear dislocations and
rotational shear disclinations can be put on equal footing. The topological
methods not only lead to a precise de¯nition of coherent structures in °u-
ids, but also produce a non-statistical test for thermodynamic irreversibility
on a symplectic manifold of dimension 4, and therefore yield a necessary
criteria for turbulence.

Prepared for presentation of the IUTAM Copenhagen meeting 1997 and
published in the proceedings.

1. Introduction

The objective is to devise non-statistical theoretical methods that will describe
the one key feature of a turbulent °ow that everyone agrees upon, the feature



of irreversibility, and then to show that topological torsion defects in such irre-
versible regimes have long lived observable consequences that permit the defects to
be de¯ned as coherent structures. The intuitive suggestion is that starting from
arbitrary initial conditions on 4 dimensional variety fx; y; z; tg, an irreversible
process will decay to one of its (non-unique) "stationary states", a long-lived
self-organized or coherent state. The mathematical suggestion is that irreversible
processes occur on symplectic manifolds of Pfa® dimension 4 (or topological class
[1]), and conformally decay or are attracted into closed sets of measure zero and
Pfa® dimension 3. On the 4 dimensional manifold, the anholonomic di®erential
(non-statistical) °uctuations in the classic kinematic formulas, which lead to irre-
versibility, disappear on the sub-manifolds of measure zero (the long-lived coherent
structure).
Most of these ideas are based primarily upon the calculus of variations as ex-

tended by Cartan's theory of di®erential forms [2], and secondly upon Cartan's
concept of the Repere Mobile on a projective manifold [3]. A particular topolog-
ical feature of the Cartan method that has been ignored by the hydrodynamic
community is the concept of the Torsion Current [4], perhaps because the idea in-
volves non-Riemannian manifolds and their implicit non-uniqueness of solutions.
It will be demonstrated below that when the Torsion Current has a non-zero
space-time divergence, then the associated dynamical system is irreversible in a
thermodynamic sense, and of topological dimension 4. The associated dynamical
system decays to "coherent" states where the divergence of the Torsion Current
vanishes, yielding a conservation law for the evolution of the resulting (coherent)
structure [5].
It is this Cartan idea of spaces with torsion [6] that is the major theme of this

article. It is known that in a space with an a±ne connection it is possible to have
torsion defects produced by shears of translation [7]. In this article, it is empha-
sized that in a °uid the dominant torsion defect is not induced by translational
shears, but instead is induced by rotational shears, and their attendant accel-
erations. Such rotational torsion defects (disclinations) do not occur in a±nely
connected manifolds, but are latent in projective manifolds. A±ne translational
shears preserve parallelism; rotational projective shears do not. In hydrodynamics,
such topological torsion defects are representatives of deRham period integrals,
and are generated by Harmonic vector ¯elds. As Harmonic vector ¯elds do not
produce any contributions to the RHS of the Navier-Stokes equations, no matter
how large the kinematic viscosity, they do not induce dissipation. They are topo-
logical limit sets which will produce the visible wakes or coherent structures often
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seen in experiments [8]. Often these wakes, as coherent structures or topological
defects, will appear as tangential discontinuities that, like minimal surface soap
¯lms, are globally stabilized. These concepts have been reported elsewhere [9].
In part 2, some historical background and motivation is provided for the

present stage of the theory. In part 3, Cartan's Magic Formula (from the cal-
culus of variations) will be used to describe topological evolution, and to develop
a thermodynamic criteria for irreversibility. Due to space limitations, part 4,
the constructive development of Cartan's Repere Mobile on a projective domain,
the demonstration of a new equation of di®erential geometric structure involving
rotational torsion 2-forms, and its application to disclination defects, rotational
shears and coherent structures in hydrodynamics, will be presented elsewhere.
(See http://www.uh.edu/~rkiehn)

2. Some Historical Motivation

It is important to understand the motivation behind this article. It started in
1974, when, using Cartan's techniques of exterior calculus [10], it was suggested
(on intuitive grounds) to examine evolutionary systems that satis¯ed the equation:

i(V)dA = ¡A+ d£; (1)

rather than the classic Cartan-Hamilton (extremal) equation:

i(V)dA = 0: (2)

These ideas were extended and compared to the projective features of the confor-
mal group. Later, more detailed applications to hydrodynamics were made that
led to a derivation of the Navier-Stokes equations on a 4-D space-time setting [11].
In 1975, Cartan's methods of di®erential topology were applied to the theory of
period integrals, with the introduction of a novel 3-dimensional period integral,
the integral of quantized spin [12]. The 3-dimensional spin integral is distinct
from, but related to, the 3-dimensional period integral of Topological Torsion,
which forms the basis of the current work.
Then in 1977 it was determined that irreversibility could be associated with

continuous topological evolution, which, although not deterministically predictive,
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was deterministically retrodictive on the space of exterior forms (covariant anti-
symmetric tensor ¯elds) [13]. A natural logical arrow of time is built into the set
of di®erentiable, but not homeomorphic maps. It was also suggested about that
time that the transition to turbulence must involve the failure of the Frobenius
integrability theorem, but the details were not clear. It was argued that the
streamline state of a °uid implied that the Frobenius condition, A^dA = 0; was
satis¯ed; as the turbulent state was the antithesis of the streamline state, the
Frobenius condition must fail in the turbulent regime. The key idea, however,
was that the failure of the Frobenius theorem implied the necessity of including
the topic of torsion into the analysis. In the current mathematics literature these
ideas have migrated into what are called the Chern-Simons forms.
For a vector ¯eld that fails the Frobenius condition, the associated dynamical

system can not be planar; the space curve has (Frenet) torsion and a helical signa-
ture. In 1979 it was determined that parity and time reversal symmetry breaking
could occur in macroscopic electromagnetic systems, but the Pfa® dimension had
to be 3 or greater [14] ( a necessary condition for the failure of the Frobenius
theorem). Moreover, such electromagnetic systems can support a new form of
propagating discontinuities de¯ned as a Torsion wave. In fact, it was determined
that helical or torsional electromagnetic waves propagate with di®erent speeds in
di®erent directions (a result veri¯ed by experiments in dual polarized ring laser
systems)! The Torsional waves could not be represented as functions of a single
variable (scalar longitudinal waves), or even an ordered pair of variables (complex
transverse polarizable waves), but were irreducibly 4 dimensional [15]. The basis
of the Torsional waves was the division algebra of quaternions. Such waves can
also appear in °uids, but have been little studied.
Then in 1986, while in Rio de Janeiro, the author became aware of what are

now known as Falaco Solitons [16]. They are easily produced - easily observed -
long lived topological defects, obviously involving rotational shears, in a dynamical
°uid system. Observations of these long lived topological defects gave credence to
the theory of topological defects in hydrodynamic systems. These defects are not
to be associated with a±ne translational shears as the Falaco e®ect is dominated
by rotational shears. The two 2D surface defects whose Snell projections produce
the black spots on the °oor of the swimming pool are connected by a 1D string
defect that is not visible in the photograph unless dye is injected into the water.
The 1D string connects the vertices of the two dimensional surface dimples, and
globally stabilizes the coherent structure. Helical torsion waves will propagate
along the guiding center furnished by the invisible string connecting the surface
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defects, much in the fashion of whistlers along the earth's magnetic ¯eld lines.
These topological defects will last for more than 15 minutes in a still pool of
water. For more details and pictures, see [17]
In 1990, using the ideas of Pfa® reduction, some exact solutions to the Navier

Stokes equations were obtained in a rotating frame of reference. The extraordinary
feature of such solutions is that they replicated certain features of the Falaco
Solitons, and exhibited topological phase changes as certain °ow coe±cients were
varied. In one example, bifurcation into a Torsion bubble was produced as the
mean °ow speed parameter was increased beyond a critical value; the bifurcation
took place at constant vorticity! These results are not too widely known, but
should be of interest to those at this conference who study coherent structures
in rotating systems. The results o®er another alternative to the problem that
goes by the name of "Vortex bursting" in the hydrodynamics literature. It is
suggested herein that this phenomena has nothing to do with vorticity per se, but
is an exhibition of one coherent structure of topological torsion transforming into
another [18].
The concept that a 1-form of Action for a °uid system, when constrained with

anholonomic di®erential °uctuations, would lead to a derivation of the Navier-
Stokes equations was presented at the 1992 SECTAM conference in Tennessee [4].
The idea was to de¯ne a hydrodynamic action as the 1-form constructed from a
classical Lagrange Action, but with possibly non-holonomic di®erential °uctua-
tions (dr ¡ vdt) 6= 0 included as constraints on the kinematics. In the following
equation, the coe±cients, p, are to be considered as Lagrange multipliers.

A = L(r;v; t)dt+ p±(dr¡ vdt) (3)

If all of the variables are independent, the domain of de¯nition is 10 dimensional,
fr; t;v;pg. For the 10 dimensional velocity vector V = fv; 1; a; fg; the virtual
work 1-form becomes

W = i(V)dA (2.1)

= (f ¡ @L=@r) ± (dr¡ vdt)¡ (p¡@L=@v)±(dv ¡ adt) 6= 0 (2.2)

The fundamental result is that if the system under consideration is without dif-
ferential °uctuations ((dr ¡ vdt) ) 0; (dv ¡ adt) ) 0); then the virtual work
must vanish. But this can happen only on a manifold of odd Pfa® dimension! In
contrast, if the system is a symplectic system of even Pfa® dimension, then the
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virtual work 1-form can never vanish. The key feature is that if the Pfa® dimen-
sion is even, then di®erential °uctuations are to be expected, and these lead to
dissipation. The result implies that the evolution is described only imperfectly by
a single parameter group of a dynamical system on the symplectic space. In the
SECTAM reference explicit expressions were given for a Navier-Stokes system, for
which the criteria of irreversibility required that

curlv± curl curlv 6= 0: (5)

Now it is known a Lagrange system constrained by non-holonomic di®erential
kinematic °uctuations leads to a non-compact symplectic manifold of dimension
2n+2. This (thermodynamic) manifold will not admit unique extremal vector
¯elds that will leave the action integral stationary as a relative integral invariant
(the virtual work must vanish for extremal ¯elds, which is impossible on the
symplectic manifold). There do exist non-extremal vector ¯elds on the symplectic
manifold that leave the Action integral invariant, but they are non unique and
are dependent upon initial conditions that may require closed additions to be
imposed on the Action 1-form. In modern language, the vector ¯elds that produce
stationary states (Bernoulli-Casimir functions) in a symplectic system are not
gauge invariant. However, it has been observed that there does exist a unique,
gauge independent, vector ¯eld on the symplectic manifold that would leave the
Action integral a conformal, but not a stationary, invariant; this unique vector
¯eld, the Torsion vector ¯eld, satis¯es the thermodynamic criteria of irreversibility
de¯ned below.

3. Di®erential Topology - Pfa® Dimension

A basic tool of the ¯rst method is Cartan's magic formula [19], in which it is
presumed that a physical (hydrodynamic) system can be described adequately
by a 1-form of Action, A, and that a physical process can be represented by a
contravariant vector ¯eld, V, which can be used to generate a dynamical system
or a hydrodynamic °ow:

L(V)
Z b

a
A =

Z b

a
L(V)A =

Z a

b
fi(V)dA+ d(i(V)A)g (6)
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=
Z a

b
fW + d(U)g =

Z b

a
Q: (3.1)

The base manifold will be the 4-dimensional variety fx; y; z; tg of engineering
practice, but no metrical features are presumed a priori. In fact, the defect analysis
is based upon a projective space in which concept of length has been abrogated
away.
From the point of view of di®erential topology, the key idea is that the Pfa® di-

mension, or class [20], of the 1-form of Action speci¯es topological properties of the
system. Given the Action 1-form,A, the Pfa® sequence, fA; dA;A^dA; dA^dA; :::g
will terminate at an integer number of terms � the number of dimensions of the
domain of de¯nition. On a 2n+2=4 dimensional domain, the top Pfa±an, dA^dA,
will de¯ne a volume element with a density function whose singular zero set (if it
exists) reduces the symplectic domain to a contact manifold of dimension 2n+1=3.
This (defect) contact manifold supports a unique extremal ¯eld that leaves the
Action integral "stationary", and leads to the Hamiltonian conservative represen-
tation for the Euler °ow in hydrodynamics.
The irreversible regime will be on an irreducible symplectic manifold of Pfa®

dimension 4, where dA^dA 6= 0;with topological defects (or coherent structures)
appearing as singularities of lesser Pfa® (topological) dimension, dA^dA = 0:
On the non-singular symplectic space there do not exist unique extremal sta-
tionary states, but there can exist Bernoulli-Casimir functions, £; that generate
non-extremal but stationary states that are invariants of Hamiltonian processes
generated from the Casimirs. Recall that in order to be Extremal, the process,
V, must satisfy the equation

Extremal ¡ ¡Hamiltonian i(V)dA = 0; (7)

in order to be Hamiltonian the process must satisfy the equation

Bernouilli¡ ¡Casimir ¡ ¡Hamiltonian i(V)dA = d£; (8)

in order to be Symplectic, the process must satisfy the equation

Helmholtz ¡ ¡Symplectic di(V)dA = 0: (9)
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Extremal processes do not exist on the symplectic domain, for a anti-symmetric
matrix of maximal rank on space of even dimensions does not have null eigen-
vectors. The Bernoulli processes correspond to energy dissipative symplectic pro-
cesses, but they, as well as the Symplectic processes are reversible in the thermo-
dynamic sense described below. The mechanical energy need not be constant,
but the Bernoulli-Casimir function(s), £; are evolutionary invariant(s), and may
be used to describe non-unique stationary state(s).
A crucial idea is the recognition that irreversible processes must support Topo-

logical Torsion, A^dA 6= 0; with its attendant properties of non-uniqueness, en-
velopes, regressions, and projectivized tangent bundles. The existence of Topo-
logical Torsion leads to the realization that the classical constraints of kinematic
perfection, ¢x = (dr¡ vdt) ) 0; and ¢v = (dv ¡ adt) ) 0 put severe restric-
tions on the topology of the evolutionary process, restrictions that need not be
realized in nature. Indeed, it appears that such constraints of null anholonomic
di®erential °uctuations, such as ¢x = 0;¢v = 0; are not realized during the
irreversible phase of a process, and such di®erential °uctuations can cause the
lifetime of a "stationary state" to be ¯nite. Anholonomic di®erential °uctuations
may be viewed as multiple parameter topological replacements for Langevin noise.
Although there does not exist a unique gauge independent stationary state

on the symplectic manifold, remarkably there does exist a unique vector ¯eld on
the symplectic domain, with components that are generated by the 3-form A^dA.
This unique (to within a factor) vector ¯eld is de¯ned as the Torsion Current, T,
and satis¯es (on the 2n+2=4 dimensional manifold) the equation,

i(T)dx^dy^dz^dt = A^dA (10)

This vector ¯eld, T, has a non-zero divergence almost everywhere, for if the di-
vergence is zero, then the 4-form dA^dA vanishes, and the domain is no longer a
symplectic manifold! The Torsion vector, T, can be used to generate a dynamical
system that will decay to the stationary states (div(T) ) 0) starting from ar-
bitrary initial conditions. These processes are irreversible in the thermodynamic
sense.
To understand what is meant by thermodynamic irreversibility, realize that

Cartan's magic formula of topological evolution is equivalent to the ¯rst law of
thermodynamics.

L(v)A = i(V)dA+ d(i(V)A) = W + dU = Q: (11)
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A is the "Action" 1-form that describes the hydrodynamic system. V is the vector
¯eld that de¯nes the evolutionary process. W is the 1-form of (virtual) work. Q is
the 1-form of heat. From classical thermodynamics, a process is irreversible when
the heat 1-form Q does not admit an integrating factor. From the Frobenius
theorem, the lack of an integrating factor implies that Q^dQ 6= 0: Hence a simple
test may be made for any process, V, relative to a physical system described by
an Action 1-form, A:

If L(v)A^L(v)dA 6= 0 then the process is irreversible:

This de¯nition implies that symplectic processes are reversible (as L(S)dA =dQ =
0); but vectors in the direction of the Torsion vector are irreversible. For the Tor-
sion vector, the fundamental equations are given by the constraints of conformal
invariance,

L(T)A = ¾A and i(T)A = 0; (11)

such that

L(T)A^L(T)dA = Q^dQ = ¾2A^dA 6= 0: (12)

Turbulent °ows must have a component along the Torsion vector to be irreversible.
A coherent structure is the end result of an irreversible decay process that forms
a set of measure zero on space time,

RRRR
dA^dA = 0; but such that the integral

over a closed 3-dimensional hypersurface,
RRR

closedA^dA 6= 0; is a relative integral
invariant of the remainder of the evolution. For a system constrained by the
Navier-Stokes equations, the Torsion vector has 4 space time components:

T = f(v ± curl v)v ¡ (v ± v=2) curl v ¡ º curl curl v; (v ± curl v)g;

and a 4 divergence given by the expression:

div4T = ¡2º curl v± curl curl v:

The set of measure zero implies that for the Navier-Stokes °uid the vorticity ¯eld
must be proportional to a gradient.
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It would appear that the concept of two dimensional turbulence is paradoxical,
for it requires four dimensions to support an irreversible °ow according to the
de¯nitions above. It should be remarked that the de¯nition of irreversibility,
Q^dQ 6= 0; implies that there are two topological classes of irreversibility. Either
dQ^dQ = 0; implying that the "heat current" does not stop or start in the interior,
or dQ^dQ 6= 0, implying internal sources of heat current (pinch points).

4. Epilogue

It is a rare thing to attend a conference where on one day a new theoretical
prediction is made, and then on the following day of the conference experimental
evidence is presented to support the abstract theory. During the presentation
of the material described above on May 27 of the SIMFLO conference, it was
stated that in an irreversible turbulent °ow there should exist a 4 dimensional
defect of topological torsion. For a Navier-Stokes °uid, the signature of such a
defect would be a curve of vorticity in the form of a twisted helix, and the basic
requirement for the existence of the 4 dimensional symplectic manifold is given
by the condition, curlv± curl curlv 6= 0: The following day Kuibin and Okulov
presented experimental observations with a detailed analysis of a dynamical helical
curve of vorticity in a swirling °uid. On the following day, they determined that
their independent analysis supported the idea that curlv± curl curlv 6= 0; thereby
giving credence to the abstract theory of Topological Torsion defects presented
above.
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