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Abstract

Methods of continuous topological evolution, expressed in terms of Car-
tan’s theory of exterior differential forms, are used to construct a cosmo-
logical model of the present universe. The methods invoke topological,
non-statistical, thermodynamic principles without geometric constraints of
metric, connection or gauge. Stars and galaxies appear as self organizing
topological defects, or condensates, of Pfaff topological dimension 3, em-
bedded in a turbulent dissipative, but very dilute, non-equilibrium medium
of Pfaff topological dimension 4. Such defects form long lived states of Pfaff
dimension 3, and as such are states far from equilibrium which are of Pfaff
topological dimension of 2 or less. The Jacobian matrix of the 1-form
of Action used to describe the physical system leads to a universal phase
function as a characteristic polynomial of fourth degree. The similarity
invariants of the Jacobian matrix may be used to express the holomorphic
polynomial in an intrinsic manner. The phase function can be interpreted
as a family of implicit surfaces in an intrinsic 4D space, with a complex
family, or order, parameter. The envelope of the family is homeomorphic
to the Gibbs swallowtail surface of a van der Waals gas. The singular
set of the family is homeomorphic to the equation of state of a van der
Waals gas. The implication is that a domain of Pfaff topological dimen-
sion 4 can be deformed into a representation that mimics a van der Waals
gas. If the gas is near its critical point, there are large fluctuations in den-
sity, which Landau has shown are correlated with a 1/r? attractive force.
Hence, a cosmological model based on the assumption that the universe is
a dilute, non-equilibrium turbulent gas near its critical point explains the
the granularity of the night sky, the inverse square law of gravitation, and
the expansion of the universe.



1. Introduction

The objective of this article is to examine topological aspects and defects of ther-
modynamic physical systems and their possible continuous topological evolution,
creation, and destruction on a cosmological scale. The creation and evolution of
stars and galaxies will be interpreted herein in terms of the creation of topological
defects and evolutionary phase changes in a very dilute turbulent, non-equilibrium,
thermodynamic system of maximal Pfaff topological dimension 4. The cosmology
so constructed is opposite in viewpoint to those efforts which hope to describe the
universe in terms of properties inherent in the quantum world of Bose-Einstein
condensates, super conductors, and superfluids [1]. Both approaches utilize the
ideas of topological defects, but thermodynamically the approaches are oppo-
site in the sense that the quantum method involves, essentially, equilibrium sys-
tems, while the approach presented herein is based upon non-equilibrium systems.
Based upon the single assumption that the universe is a non-equilibrium thermo-
dynamic system of Pfaff topological dimension 4 leads to a cosmology where the
universe, at present, can be approximated in terms of the non-equilibrium states
of a very dilute van der Waals gas near its critical point. The stars and the galax-
ies are the topological defects and coherent - but not equilibrium - structures of
Pfaff topological dimension 3 in this non-equilibrium system of Pfaff topological
dimension 4.

The motivation for this conjecture is based on the classical theory of cor-
relations of fluctuations presented in the Landau-Lifshitz volume on statistical
mechanics [3]. However, the methods used herein are not statistical, not quan-
tum mechanical, and instead are based on Cartan’s methods of exterior differen-
tial forms and their application to the topology of thermodynamic systems and
their continuous topological evolution [4]. Landau and Lifshitz emphasize that
real thermodynamic substances, near the thermodynamic critical point, exhibit
extraordinary large fluctuations of density and entropy. In fact, these authors
demonstrate that for an almost perfect gas near the critical point, the correlations
of the fluctuations can be interpreted as a 1/r potential giving a 1/1* force law of
attraction. Hence, as a cosmological model, the almost perfect gas - such as a
very dilute van der Waals gas - near the critical point yields a reason for both the
granularity of the night sky and for the 1/r? force law ascribed to gravitational
forces between for massive aggregates.

In this article, a topological (and non statistical) thermodynamic approach
is used to demonstrate how a four dimensional variety can support a turbulent,



non-equilibrium, physical system with universal properties that are homeomor-
phic (deformable) to a van der Waals gas. The method leads to the necessary
conditions required for the existence, creation or destruction of topological defect
structures in such a non-equilibrium system. For those physical systems that
admit description in terms of an exterior differential 1-form of Action potentials
of maximal rank, a Jacobian matrix can be generated in terms of the partial
derivatives of the coefficient functions that define the 1-form of Action. When
expressed in terms of intrinsic variables, known as the similarity invariants, the
Cayley-Hamilton 4 dimensional characteristic polynomial of the Jacobian matrix
generates a universal phase function. Certain topological defect structures can
be put into correspondence with constraints placed upon those (curvature) sim-
ilarity invariants generated by the Cayley-Hamilton 4 dimensional characteristic
polynomial. These constraints define equivalence classes of topological properties.

The characteristic polynomial, or Phase function, can be viewed as represent-
ing a family of implicit hypersurfaces. The hypersurface has an envelope which,
when constrained to a minimal hypersurface, is related to a swallowtail bifurcation
set. The swallowtail defect structure is homeomorphic to the Gibbs surface of a
van der Waals gas. Another possible defect structure corresponds to the implicit
hypersurface surface defined by a zero determinant condition imposed upon the
Jacobian matrix. On 4 dimensional variety (space-time) , this non-degenerate
hypersurface constraint leads to a cubic polynomial that always can be put into
correspondence with a set of non-equilibrium thermodynamic states whose kernel
is a van der Waals gas. Hence this universal topological method for creating a
low density turbulent non-equilibrium media leads to the setting examined statis-
tically by Landau and Lifschitz in terms of classical fluctuations about the critical
point.

The conjecture presented herein is that non-equilibrium topological defects in
a non-equilibrium 4 dimensional medium represent the stars and galaxies, which
are gravitationally attracted singularities (correlations of fluctuations of density
fluctuations) of a real gas near its critical point. Note that the Cartan methods do
not impose (a priori) a constraint of a metric, connection, or gauge, but do utilize
the topological properties associated with constraints placed on the similarity
invariants of the universal phase function.



1.1. Topological Thermodynamics

The topological thermodynamic methods used herein are based upon Cartan’s the-
ory of exterior differential forms. The topological methods offer an understanding
of the cosmos which is considerably different from the geometric approach assumed
by the metrical theory of general relativity. The thermodynamic view assumes
that the physical systems to be studied can be encoded in terms of a 1-form of
Action Potentials, A, on a 4 dimensional variety of ordered independent variables,
{€',62,63 €'}, The variety supports a volume element Qy = d¢'"dé* de* de?.
No metric, no connection, no constraint of gauge symmetry is imposed upon the 4
dimensional variety. Topological constraints will be imposed in terms of exterior
differential systems [2]

In order to make the equations more suggestive to the reader, the symbolism
for the variety of independent variables will be of the format {x,y, z,t}, but be
aware that no constraints of metric or connection are imposed upon this variety.
For instance, it is NOT assumed that the variety is euclidean. In that which
follows another useful formalism of independent variables will be constructed in
terms of the ordered set of similiarity invariant functions, which are given the
symbols { Xy, Y, Za, Tk }. The similarity invariant functions are those deduced
from the Jacobian matrix of the coefficients of that 1-form of Action, A, presumed
to encode the properties of a physical system.

The 1-form of Action, A, will have components that form a covariant direction
field, Ag(z,y, z,t), to within a non-zero factor. Evolutionary processes will be
determined in terms of 4 dimensional contravariant direction fields, V4(x,y, z, 1),
to within a non-zero factor. Continuous topological evolution [4] will be defined
in terms of Cartan’s magic formula for the Lie differential, which, when acting on
an exterior differential 1-form of Action, A = A,dz®, is equivalent abstractly to
the first law of thermodynamics.

Cartan’s Magic Formula  Ly,)A = i(V4)dA + d(i(Va)A) (1.1)
First Law of Thermodynamics . WH+dU = Q, (1.2)
Inexact 1-form of Heat LA = @ (1.3)
Inexact 1-form of Work W = i(Vy)dA, (1.4)
Internal Energy U = i(VyA. (1.5)

In effect, Cartan’s methods establish a topological basis of thermodynamics in
terms of a theory of cohomology. The methods can be used to formulate precise



mathematical definitions for many thermodynamic concepts in terms of topolog-
ical properties -without the use of statistics or metric constraints. Moreover,
the method applies to non-equilibrium thermodynamical systems and irreversible
processes, again without the use of statistics or metric constraints.

1.1.1. The Pfaff Topological Dimension

One of the most useful topological tools is that defined as the Pfaff topolog-
ical dimension.  Recall that it is possible to define many topologies on the
same set of elements. For any given exterior differential 1-form of functions,
say A = Ay(z,y, 2, t)dz", it is possible to construct the Pfaff sequence of terms,
{A,dA, A"dA,dA"dA}. These elements may be used to construct a Cartan Topol-
ogy (for any 1-form [5]). In the Cartan topology, the exterior derivative acts as
limit point generator. Hence the union of a form and its exterior derivative create
the topological closure of the form.

For any given 1-form, the Pfaff sequence will contain M successive non-zero
terms equal to or less than N, the number of geometric dimensions of the base
independent variables. The number M is defined as the "Pfaff topological di-
mension" or class of the given 1-form. The three important 1-forms of thermo-
dynamics, A, W, and @, can have different Pfaff dimensions. Suppose the 1-form
of work is defined in terms of two functions as W = PdV. The Pfaff sequence
consists of the terms {W,dW,0,0}; hence in this example, the Pfaff dimension of
W is 2. From the first law, under the assumption that W = PdV,

Q = W+dU = PdV +dU, (1.6)
dQ = dW =dP dvV, (1.7)
QdQ = W dW +dU dW =0+ dU dP"dV (1.8)
dQ dQ = 0. (1.9)

Hence, the Pfaff dimension of 2 for the work 1-form can be associated with a
Pfaff dimension of 3 for the Heat 1-form, unless the Pressure is a function of the
internal energy and the volume. In this latter case, the Pfaff dimension of () and
W are both 2.

In this article, attention will be focused on dissipative Turbulent systems with
thermodynamic irreversible processes such that the Pfaff topological dimensions of
A, W, and @ will be maximal and equal to 4. (The techniques can be extended
to higher dimensional spaces.) These Turbulent systems of Pfaff dimension 4
are not topologically equivalent to Equilibrium systems (for which the topological
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dimension is 2, at most). Topological defects in the Turbulent state will be
associated with sets of space time where the Pfaff topological dimensions are not
maximal. It is remarkable that such topological defect sets can form attractors
causing self organization and long lived states of Pfaff dimension 3, which are far
from equilibrium.

1.1.2. Physical Systems

Isolated, Closed and Open Systems Physical systems and processes are
elements of topological categories determined by the Pfaff topological dimension
(or class) of the 1-forms of Action, A, Work, W, and Heat, ). For example,
the Pfaff topological dimension of the exterior differential 1-form of Action, A,
determines the various species of thermodynamic systems in terms of distinct
topological categories:

Systems : defined by the Pfaff dimension of A = pA® (1.10)
A"dA = 0  Isolated - Pfaff dimension 2 (1.11)
d(A"dA) = 0 Closed - Pfaff dimension 3 (1.12)
dA"dA # 0. Open - Pfaff dimension 4. (1.13)

In elementary thermodynamics it is often stated that isolated systems do not
permit transport of energy or mass to the environment. Closed systems permit
energy transport, but not mass transport to the environment. Open systems
permit both energy and mass transport to the environment. Note that these
topological specifications as given above are determined entirely from the func-
tional properties of the physical system encoded as a 1-form of Action, A. The
system topological categories do not involve a process, which is encoded by some
vector direction field, V4. The cosmological model presented herein is based on
an open, Pfaff dimension 4, non-equilibrium, Turbulent physical system, with in-
ternal defect structures of lesser Pfaff topological dimension acting as stars and
galactic mass aggregates.

Equilibrium vs. Non-Equilibrium Systems The intuitive idea for an equi-
librium system comes from the experimental recognition that the intensive vari-
ables of pressure and temperature become domain constants in an equilibrium
state: dP = 0, dT = 0. A definition made herein is that the Pfaff dimension of



a physical system in the equilibrium state is at most 2 [6]. The Cartan topology
generated by the elements of the Pfaff sequence for A is then a connected topology
of one component, {A # 0,dA # 0, A"dA = 0}. Although the Pfaff dimension of
A is at most 2 in the equilibrium state, processes in the equilibrium state are such
that the Work 1-form and the Heat 1-form must be of Pfaff dimension 1. For
suppose W = PdV, then dW = dP"dV = 0 if the pressure is a domain constant.
Similarly, suppose Q = T'dS, the dQ) = dT"dS =- 0 if the temperature is a domain
constant. Hence both W and @) are of Pfaff dimension 1 for this example.

A more stringent sufficient condition for equilibrium can be constructed in
terms of the structure of the system, valid for any choice of process. For if
the Pfaff dimension of the 1-form of Action is 1, then dA = 0. It follows that
W = 0, hence the Pressure must vanish, and Heat 1-form is a perfect differential,
Q =d(U).

The cosmological model proposed herein is of Pfaff dimension 4, with defect
structures of Pfaff dimension 3. Neither the dissipative system nor the defect
structure is an "equilibrium" thermodynamic system, as the Pfaff dimension of
such sets does not satisfy the criteria of equilibrium (where the Pfaff dimension
is 2 or less). Although the defects in the Turbulent non-equilibrium regime are
not necessarily equilibrium structures, once formed and self organized as coherent
topological structures, they can evolve along extremal trajectories that are not
dissipative, and may even have a Hamiltonian representation. These "stationary",
if not long lived (excited) states, indeed are states far from equilibrium.

The descriptive words of self-organized states far from equilibrium are ab-
stracted from the intuition and conjectures of I. Prigogine [7]. However, the
topological theory presented herein presents for the first time a solid formal jus-
tification (with examples) for the Prigogine conjectures. Precise definitions of
equilibrium and non-equilibrium systems, as well as reversible and irreversible
processes can be made in terms of the topological features of Cartan’s exterior
calculus. Thermodynamic irreversibility and the arrow of time are well defined
in a topological sense [8], a technique that goes beyond (and without) statistical
analysis.

Multiple Components One of the most remarkable properties of the Cartan
topology generated by a Pfaff sequence is due to the fact that when A"dA = 0,
(Pfaff dimension 2 or less) the physical system is reducible to a single connected
topological component. On the other hand when A"dA # 0, (Pfaff dimension 3
or more) the physical system admits more than one topological component. The



bottom line is that when the Pfaff dimension is 3 or greater (such that conditions
of the Frobenius unique integrability theorem are not satisfied), solution unique-
ness to the Pfaffian differential equation, A = 0, is lost. If there exist solutions,
there is more than one. Such concepts lead to propagating discontinuities (sig-
nals), envelope solutions (Huygen wavelets), an edge of regression and lack of
time reversal invariance, and the existence of irreducible affine torsion in the the-
ory of connections. It is the opinion of this author that a dogmatic insistence
on uniqueness historically has hindered the understanding of irreversibility and
non-equilibrium systems.

1.1.3. Processes

Reversible and Irreversible Processes The Pfaff topological dimension of
the exterior differential 1-form of Heat, (), determines important topological cat-
egories of processes. From classical thermodynamics "The quantity of heat in a
reversible process always has an integrating factor" [9] [10] . Hence, from the
Frobenius unique integrability theorem, all reversible processes are such that the
Pfaff dimension of () is less than or equal to 2. Irreversible processes are such that
the Pfaff dimension of () is greater than 2. A dissipative irreversible topologically
turbulent process is defined when the Pfaff dimension of @) is 4.

Processes = defined by the Pfaff dimension @ (1.14)
QdQ = 0 Reversible - Pfaff dimension 2 (1.15)
d(Q"dQ) # 0. Turbulent - Pfaff dimension 4. (1.16)

Note that the Pfaff dimension of () depends on both the choice of a process, Vg,
and the system, A, upon which it acts. As reversible thermodynamic processes
are such that Q)"d@ = 0, and irreversible thermodynamic processes are such that
Q" dQ # 0, Cartan’s formula of continuous topological evolution can be used to
determine if a given process, V4, acting on a physical system, A, is thermody-
namically reversible or not:

Reversible Processes V4 : Ly, A" Ly, dA =0,

Irreversible Processes V4 : Ly, A" Liv,)dA # 0. (1.17)

In this article it is assumed that the cosmological background for space-time
belongs to the dissipative irreversible Turbulent non-equilibrium category, where
the Pfaff topological dimension (or class) is maximal and equal to 4, almost



everywhere, for each of the 1-forms of Action, A, Work, W, and Heat, (). Of
particular interest will be those subsets of space and time where the Turbulent
non-equilibrium category admits, or evolves into, topological defects such that the
Pfaff topological dimension for all three 1-forms is no longer maximal and equal
to 4. Remarkably, Cartan’s magic formula can be used to describe the continuous
dynamic possibilities of both reversible and irreversible processes, in equilibrium
or non-equilibrium systems, even when the evolution induces topological change,
transitions between excited states, and changes of phase, such as condensations.

It is important to note that the velocity field need not be topologically con-
strained such that it is singularly parameterized. = That is, the evolutionary
processes described by Cartan’s magic formula are not necessarily restricted to
vector fields that satisfy the topological constraints of kinematic perfection, da* —
VEdt = 0. A discussion of topological fluctuations and an example fluctuation
process is described in the last section.

Adiabatic Processes - Reversible and Irreversible The topological for-
mulation permits a precise definition to be made for both reversible and an ir-
reversible adiabatic processes in terms of the topological properties of (). On a
geometrical space of N dimensions, a 1-form will admit N-1 vector fields such that
i(V4)Q = 0. Such processes V4 are defined as adiabatic processes [6]. Note that
adiabatic processes are defined by vector direction fields, to within an arbitrary
factor, 5(z,y, z,t). That is, if i(V4)Q = 0, then it is also true that i(5V4)Q = 0.
The differences between the inexact 1-forms of Work and Heat become obvious
in terms of the topological format. Both 1-forms depend on the process and
on the physical system. However, Work is always transversal to the process, as
i(Vo)W =1i(Vy)i(V4)dA = 0, but Heat is not, as i(V4)Q = i(V4)dU = 0, only
for adiabatic processes.

It is not obvious that the adiabatic direction fields are such that the Pfaff
dimension of () is 2. That is, it is not obvious that () can be written in the form,
@ = TdS, as is possible on the manifold of equilibrium states. From the Cartan
formulation it is apparent that if () is not zero, then

i(VA)L(VA)A = Z(VA)Z(VA)dA—l—Z(VA)d(Z(VA)A) (1.18)
= 0+i(Va)d(i(Va)A) =i(V4)Q

Hence, for an Adiabatic process:



Adiabatic process 0 +i(V4)d(i(Va)A) =i(V4)Q =0, Q #0. (1.19)

A reversible process is defined such that () is less than Pfaff dimension 3, or
Q"d@Q =0 Hence i(V4)(Q dQ) =0. But

i(Va)(QdQ) = (i(Va)Q) dQ — Q"i(V 4)dQ (1.20)

which permits reversible and irreversible adiabatic processes to be well defined*
when @) # 0:

Reversible Adiabatic Process = —Q"i(V4)dQ =0, i(V4)Q = 0,(1.21)
Irreversible Adiabatic Process = —Q7i(V4)dQ #0, i(V4)Q = 0(1.22)

It is certainly true that if LvyA = @ = 0, identically, then all such processes
are adiabatic, and reversible. In such cases, the Cartan formalism implies that
W 4+ dU = 0. Such systems are elements of the Hamiltonian class of processes,
where W = dO. Recall that all Hamiltonian processes are thermodynamically
reversible. Hamiltonian processes are adiabatic when the internal energy U =
(¢(V)A) is an evolutionary invariant.

Hamiltonian Adiabatic Process = L) {i(V)A} =i(V)Q =0, (1.23)
W = i(V)dA =do, (1.24)
VW = 0, i(V)A=U. (1.25)

Note that for a given 1-form of heat, ), it is possible to construct a matrix of
N-1 null vectors, and then to compute the adjoint matrix of cofactors transposed
to create the unique direction field (to within a factor), V yuiadjoins. Evolution
in the direction of V yuiagjom: does not represent an adiabatic process path, as
i(VNuiadgjoint)@ # 0. For a given @, the N-1 null vectors need not span a
smooth hypersurface whose surface normal is proportional to a gradient field.
The components of the 1-form may be viewed as the normal vector to an implicit
hypersurface, but the implicit hypersurface is not necessarily defined as the zero
set of some function.

Tt is apparent that i(V)Q= 0 defines an adiabatic process, but not necessarily a reversible
adiabatic process. This topological point clears up certain misconceptions that appear in the
literature.
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1.2. Topological Torsion

For maximal, non-equilibrium, turbulent systems in space-time the maximal ele-
ment in the Pfaff sequence generated by A, W, or @), is a 4-form. On the geometric
space of 4 independent variables, every 4-form is globally closed, in the sense that
its exterior derivative vanishes everywhere. It follows that every 4-form is exact
and can be generated by the exterior derivative of a 3-form. The exterior deriv-
ative of the 3-form is related to the concept of a divergence of a contravariant
vector field. Most of the development in this article will be devoted to the study
of such 3-forms, and their kernels. It is a remarkable fact that all 3-forms admit
integrating denominators, such that their exterior derivative of a rescaled 3-form
is zero almost everywhere. Space time points upon which the denominator has a
zero value form defect topological structures.

When the Action for a physical system is of Pfaff dimension 4, there exists a
unique direction field, T, defined as the topological torsion 4-vector, that can be
evaluated entirely in terms of those component functions of the 1-form of Action
which define the physical system. To within a factor, this direction field? has the
four components of the 3-form A"dA, with the properties such that

(T = A°dA (1.26)
W = i(T)dA =0 A, (1.27)
U = i(T)A=0, (1.28)
QUdQ = LA Lir)dA=o’A"dA (1.29)
JA"dA = 20 Q. (1.30)

Hence, evolution in the direction of T, is thermodynamically irreversible, when
o # 0 and A is of Pfaff dimension 4. The kernel of this vector field is defined as
the zero set under the mapping induced by exterior differentiation. In engineer-
ing language, the kernel of this vector field are those point sets upon which the
divergence of the vector field vanishes. The Pfaff dimension of the Action 1-form
is 3 in the defect regions defined by the kernel of T}.

For purposes of more rapid comprehension, consider a 1-form of Action, A,
with an exterior differential, dA, and a notation that admits an electromagnetic

2A direction field is defined by the components of a vector field which establish the "line
of action" of the vector in a projective sense. An arbitrary factor times the direction field
defines the same projective line of action, just reparameterized. In metric based situations, the
arbitrary factor can be interpreted as a renormalization factor.
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interpretation (E = —0A /0t — V¢, and B = V x A)3. The explicit format of T,
becomes:

T, = —[ExA+B¢, AoB] Topological Torsion 4 vector, (1.31)
ATdA = i(Ty) (1.32)
= Tidy dz"dt — TYdx"dz"dt + Tidx dy dt — T'ydx"dy dz,(1.33)

dA"dA = 2(EoB) (1.34)
{075 )0z + 0T} |0y + 0T} |0z + 0Ty |0t} Q. (1.35)

When the divergence of the topological torsion vector is not zero, o = (EoB) # 0,
and A is of Pfaff dimension 4, W is of Pfaff dimension 4, and ) is of Pfaff
dimension 4. The process generated by T, is thermodynamically irreversible.
The evolution of the volume element relative to the irreversible process Ty is
given by the expression,

L(T4)Q = i(T4)dQ + d(i(T4)S2) (1.36)
— 0+d(A°dA) =2(EoB) Q. (1.37)

Hence, the differential volume element (and therefore the turbulent cosmological
universe) is expanding or contracting depending on the sign and magnitude of
EoB.

If A is (or becomes) of Pfaff dimension 3, then dA"dA = 0 which implies that
o2 = 0, but A"dA # 0. The differential volume element ), is subsequently
an evolutionary invariant, and evolution in the direction of the topological torsion
vector is thermodynamically reversible. The physical system is not in equilibrium,
but the divergence free T, evolutionary process forces the Pfaff dimension of W
to be zero, and the Pfaff dimension of () to be at most 1. Indeed, a divergence
free T4 evolutionary process has a Hamiltonian representation. In the domain
of Pfaff dimension 3 for the Action, A, the subsequent continuous evolution of the
system, A, relative to the process T, proceeds in an energy conserving manner,
representing a "stationary" or "excited" state far from equilibrium. These excited
states can be interpreted as the evolutionary topological defects in the Turbulent
dissipative system of Pfaff dimension 4.

3The bold letter A represents the first 3 components of the 4 vector of potentials, with the
order in agreement with the ordering of the independent variables. The letter A represents the
1-form of Action.
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On a geometric domain of 4 dimensions, assume that the evolutionary process
generated by T, starts from an initial condition (or state) where the Pfaff topo-
logical dimension of A is also 4. Depending on the sign of the divergence of Ty,
the process follows an irreversible path for which the divergence represents an
expansion or a contraction. If the irreversible evolutionary path is attracted to
a region (or state) where the Pfaff topological dimension of the 1-form of Action
is 3, then E o B becomes (or has decayed to) zero. The zero set of the function
E o B defines a hypersurface in the 4 dimensional space. If the process remains
trapped on this hypersurface of Pfaff dimension 3, E o B remains zero, and the T,
process becomes an extremal field. Such extremal fields are such that the virtual
work 1-form vanishes, W = i(T4)dA = 0, and the now reversible T, process has a
Hamiltonian representation. The system is conservative in a Hamiltonian sense,
but it is in a "excited" state on the hypersurface that is far from equilibrium, as
the Pfaff dimension of the 1-form of Action is 3, and not 2. (If the path is at-
tracted to a region where the function E o B is oscillatory, the system evolutionary
path defines a limit cycle.)

The fundamental claim made in this article is that it is these topological defects
that self organize from the dissipative irreversible evolution of the Turbulent state
into "stationary" states far from equilibrium that form the stars and the galaxies of
the cosmos. They are the long lived remnants or wakes generated from irreversible
processes in the dissipative non-equilibrium turbulent medium.

2. Thermodynamic Cosmology

2.1. The Jacobian Matrix of the Action 1-form.

The idea is to express the Jacobian matrix of the coefficient functions that define
the 1-form if Action, A, in terms of "universal" coordinates. = These universal
coordinates will be the similarity invariants of the Jacobian matrix. For a 1-
form of Action of Pfaff topological dimension 4, the Cayley-Hamilton theorem
produces a Universal Phase function as a polynomial of 4th degree. What is
remarkable about this Universal Phase function is that it has properties that are
homeomorphically deformable into the format of a classic van der Waals gas. It
is this universality that gives credence to the idea that the universe could be a
non-equilibrium van der Waals gas near its critical point.
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2.1.1. The Universal Characteristic Phase Function

The 1-form of Action, used to encode a physical system, contains other useful
topological information, as well as geometric information. Consider the Turbulent
thermodynamic state generated by a 1-form of Action, A, of Pfaff topological
dimension 4.  The component functions of the Action 1-form can be used to
construct a 4x4 Jacobian matrix of partial derivatives, [J;z] = [0(A);/02F]. In
general, this Jacobian matrix will be a 4 x 4 matrix that satisfies a 4th order
Cayley-Hamilton characteristic polynomial ©(x, y, z, t; W) with 4 perhaps complex
roots representing the perhaps complex eigenvalues, p;., of the Jacobian matrix.

Oz, y,2,t; ¥) = ¥ — XU 4+ YoU? — Z,¥' + T = 0. (2.1)

The functions Xy (x,y, z,t), Ya(z,y, 2,t), Za(x,y, 2,t), Tk (x,y, 2, t) are the simi-
larity invariants of the Jacobian matrix. If the eigenvalues are distinct, then the
similarity invariants are given by the expressions:

Xu = pr+pytp3+py (2:2)
Yo = pipa+ paps+ p3pr+ papr + papa + papss (2.3)
Za = P1P2pP3 T+ PaP1P2 + PaP2P3 + PaP3P1; (2.4)
Tk = p1P2P3Ps (2.5)

The similarity invariants may be considered as a coordinate map from the orig-
inal variety of independent variables, {x,y, z,t} = { Xy, Yg, Z4, Tk }. When the
similarity invariants are treated as generalized coordinates, then the characteris-
tic polynomial becomes a Universal Phase function, and will be used to encode
universal thermodynamic properties.

2.1.2. Minimal surfaces

The Universal Phase function, ©, may be considered as a family of hypersurfaces
in the 4 dimensional space, { Xy, Y, Z4, T} with a complex family (order) pa-
rameter, W. Moreover, it should be realized that the Universal Phase Function is
a holomorphic function, © = ¢ + iy in the complex variable ¥ = u + jv. That is

O( X, Yo, Za, Tre; W) = ¢ +ix, (2.6)

where
¢ = u' —6ur® + vt — Xpr(u? — 3un?) + Yo (u? —v?) — Zau+ Tk (2.7)
X = 4utv —4duv® — X (3uPv — v*) + 2Youv — Zyv. (2.8)
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As such, in the 4D space of two complex variables, {¢ + ix,u + iv}, according
to the theorem of Sophus Lie, any such holomorphic function produces a pair of
conjugate minimal surfaces in the 4 dimensional space {¢, x,u, v}. It follows that
there exist a sequence of maps,

{x,y,z,t} = {XM,Yg, ZAaTK} = {¢7X7U7U} (29)

such that the family of hypersurfaces can be decomposed into a pair of conjugate
minimal surface components. The criteria for a minimal surface is equivalent to
the idea that X,; = 0. By suitable renormalization, the similarity invariant X,
is equivalent to the Mean Curvature of the hypersurface.

2.1.3. Envelopes

The theory of implicit hypersurfaces focuses attention upon the possibility that the
Universal Phase function has an envelope. The existence of an envelope depends
upon the possibility of finding a simultaneous solution to the two implicit surface
equations of the family:

Oz, y, 2, t; V) = U — Xy 0% + Y02 — Z,¥ + Tk = 0. (2.10)

00/0¥ = Oy = 40° — 3X 3, 0% + 2V, ¥ — Z4 = 0. (2.11)

For the envelope to be smooth, it must be true that 9?0 /0¥? = Oyy # 0, and
that the exterior 2-form, d®"dOy # 0 subject to the constraint that the family
parameter is a constant: d¥ = 0. The envelope as a smooth hypersurface does
not exist unless both conditions are satisfied. = Recall that the envelope, if it
exists, is a hypersurface in the space of similarity coordinates, { X, Yo, Za, T }-

The envelope is determined by the discriminant of the Phase Function polyno-
mial, which as a zero set is equal to a universal hypersurface in the 4 dimensional
space of similarity variables { Xy, Yy, Z4, Tk }. This function can be written in
terms of the similarity "coordinates" (suppressing the subscripts) :

Discriminant of the Universal Phase Function (

= 18XPZYT — 21Z*+ Y2 X? 22 —4Y3 X°T + 144Y X*T? (2.13
18X ZPY — 192X ZT?*—6X2Z°T + 144T Z%Y — 4X* 73 (
—2TX*T?—4Y3 72 +16Y*T — 128Y*T?4-256T°—80X ZY>T. (
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The discriminant has eliminated the family order parameter. =~ Remarkably,
choosing the constraint condition in terms of the dual condition that the Mean
Curvature vanishes, X,; = 0, leads to a reduced discriminant, which defines a
universal swallow tail surface homeomorphic (deformable) to the Gibbs surface of
a van der Waals gas (subscripts suppressed):

Universal Gibbs Swallowtail Envelope (X =0,Y, Z, T) (2.16)
= —TZ*144T 7Y — 4Y3Z2+16Y*T — 128Y 2 T2 +256 T2 = 0.

In other words, the Gibbs function for a van der Waals gas is a universal idea
associated with minimal hypersurfaces, Xx = 0, of thermodynamic systems of
Pfaff topological dimension 4. The similarity coordinate Tk plays the role of the
Gibbs free energy, in terms of the Pressure ("Z4) and the Temperature ("Yg).
The Spinodal line as a limit of phase stability, and the critical point are ideas that
come from the study of a van der Waals gas, but herein it is apparent that these
concepts are universal topological concepts that remain invariant with respect to
deformations. The universal formulas for such constraints are presented in the
next section. The result is that all thermodynamic systems of Pfaff topological
dimension 4 are deformably equivalent to a van der Waals gas.
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Binodal Line
[envelope self intersection]

Spinodal Line

Critical Point [edge of regression]

A Universal Thermodynamic Swallowtail
The Gibbs surface of a Van der Waals gas

It is important to recognize that the development of a universal non-equilibrium
van der Waals gas has not utilized the concepts of metric, connection, statistics,
relativity, gauge symmetries, or quantum mechanics.

2.1.4. The Edge of Regression and Self Intersections

The envelope is smooth as long as 9?0 /0¥? = Oyg # 0, and that the exterior
2-form, dO"dOy # 0 subject to the constraint that the family parameter is a
constant: d¥ = 0. If dO"dOy # 0, but Ogy = 0, then the envelope has a self
intersection singularity. If d®"dO©y = 0, but Ogy # 0, there is no self intersection,
and no envelope.

If the envelope exists, further singularities are determined by the higher order
partial derivatives of the Universal Phase function with respect to W.

0’0/00? = Oy = 1207 — 6X ;U + 2V (2.17)
0?0/ = Ogyy = 24V — 6X ), (2.18)
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When 920 /0V3 = Oyyy # 0, and dO dOy " dOyy # 0, the envelope terminates
in a edge of regression. The edge of regression is determined by the simultaneous
solution of ©® =0,0¢ = 0 and O©yy = 0. For the minimal surface representation
of the Gibbs surface for a van der Waals gas, the edge of regression defines the
Spinodal line of ultimate phase stability. The edge of regression is evident in the
Swallowtail figure (Figure 2.1) describing the Gibbs function for a van der Waals
gas.

If Ogyy = 0, then for X, = 0, it follows that Yo =0, Z4 =0, Tx = 0, which
defines the critical point of the Gibbs function for the van der Waals gas. In
other words, the critical point is the zero of the 4-dimensional space of similarity
coordinates.

If ©yy = 0, then for X,; = 0 the envelope has a self intersection. It follows
from Ogy = 0, that U2 = —Y(;/6, which when substituted into

Op = 4U% + 2V, ¥ — Z, = 0, (2.19)
yields the

Universal Gibbs Edge of Regression: Z3 + Y3(8/27) = 0, (2.20)

which defines the Spinodal line, of the minimal surface representation for a uni-
versal non-equilibrium van der Waals gas, in terms of "similarity" coordinates.

Within the swallow tail region the "Gibbs" surface has 3 real roots and out-
side the swallow tail region there is a unique real root. The edge of regression
furnished by the Cardano function defines the transition between real and imagi-
nary root structures. The details of the universal non-equilibrium van der Waals
gas in terms of envelopes and edges of regression with complex molal densities or
order parameters will be presented elsewhere. These systems are not equilibrium
systems for the Pfaff dimension is not 2.  Of obvious importance is the idea that
the a zero value for both Zs and Ty are required to reduce the Pfaff dimension
to 2, the necessary condition for an equilibrium system.

2.1.5. Ginsburg Landau Currents

The Universal Phase function can be solved for the determinant of the Jacobian
matrix, which is equal to the similarity invariant Tk,

Tk = —{¥* — X 03 + Y U? — Z, U}, (2.21)
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All determinants are in effect N - forms on the domain of independent variables.
All N-forms can be related to the exterior derivative of some N-1 form or current,
J. Hence

dJ = KQq = divd + 0p/ot = —(U* — X, 0% 4+ Y2 — Z, )0y (2.22)

For currents of the form

J = grad ¥, (2.23)
p = U, (2.24)

the Universal Phase function generates the universal Ginsburg Landau equations
V2V + 00 /0t = —(U* — X, U3 + YoU? — Z,0). (2.25)

2.2. Singularities as defects of Pfaff dimension 3

The family of hypersurfaces can be topologically constrained such that the topo-
logical dimension is reduced, and/or constraints can be imposed upon functions of
the similarity variables forcing them to vanish. Such regions in the 4 dimensional
topological domain indicate topological defects or thermodynamic changes of
phase. It is remarkable that for a given 1-form of Action there are an infinite num-
ber rescaling functions, A, such that the Jacobian matrix [J552?] = [0(A/X);/0a*]
is singular (has a zero determinant). For if the coefficients of any 1-form of Action
are rescaled by a divisor generated by the Holder norm,

Holder Norm: A = {a(A;)? + b(A)P + c(A3)P + e(AL)P}™P, (2.26)

then the rescaled Jacobian matrix

(T3] = [0(A/N);/ 0] (2.27)

will have a zero determinant, for any index p, any set of isotropy or signature
constants, a, b, c, e, if the homogeneity index is equal to unity: m = 1. This
homogeneous constraint implies that the similarity invariants become projective
invariants, not just equi-affine invariants. Such species of topological defects can
have the image of a 3-dimensional implicit characteristic hypersurface in space-
time:
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Singular hypersurface in 4D: det[d(A/));/02"] = 0 (2.28)

The singular fourth order Cayley-Hamilton polynomial of [J;x] then will have a
cubic polynomial factor with one zero eigenvalue.

For example, consider the simple case where the determinant of the Jacobian
vanishes: Tk = 0. Then the Phase function becomes

Universal Equation of State :  ©({ X, Yo, Z4, Tk = 0}; V) (2.29)
= V(U — X 0% 4+ Yo — Z4) = 0. (2.30)

The space has been topologically reduced to 3 dimensions (one eigen value is
zero), and the zero set of the resulting singular Universal Phase function becomes
a universal cubic equation that is homeomorphic to the cubic equation of state
for a van der Waals gas.

When the rescaling factor A is chosen such that p=2,a=b=c=1,m =1,
then the Jacobian matrix, [J ;x| , is equivalent to the "Shape" matrix for an implicit
hypersurface in the theory of differential geometry. (See appendix 1.) Recall that
the homogeneous similarity invariants can be put into correspondence with the
linear Mean curvature, X, = (), the quadratic Gauss curvature, Yo = Cg, and
the cubic Adjoint curvature, Z4 = C}, of the hypersurface. The characteristic
cubic polynomial can be put into correspondence with a nonlinear extension of an
ideal gas not necessarily in an equilibrium state.

2.2.1. The Universal van der Waals gas

More that 100 years ago van der Waals introduced into the science of thermody-
namics the equation of state now called the van der Waals gas:

P = pRT/(1 — bp) + ap* (2.31)

The van der Waals equation may be considered as a cubic constraint on the space
of variables {n; P,V,T} where p = n/V is defined as the molar density.

p* — (1/b)p* + {—(RT + bP)/ab}p + P/ab = 0. (2.32)

This cubic equation is to be compared with the characteristic polynomial written
in terms of the similarity invariants, M, G, and A. Note that the roots of the
characteristic polynomial are not necessarily real. This observation leads to a
well defined procedure for treating non-equilibrium thermodynamics systems as
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complex deviations from the real, or equilibrium, systems. The reality condi-
tion is determined by the Cardano function that describes an edge of regression

discontinuity:.
For a transformation such that
(8T + P)/3 = Yq/(M/3)?, (2.33)
P = Zx/(M/3), (2.34)
N o= —p/(M/3), (2.35)

the characteristic polynomial becomes an equation in terms of dimensionless pa-
rameters,

UNT,P)=(\)?—=3\)?*+[(8T + P)/3](\) — P =0. (2.36)

The last format given above is to be recognized as the Equation of State of a van
der Waals Gas (compare to 2.29), in terms of dimensionless Pressure, Temperature
relative to their values at the critical point.

2.3. The Falaco Cosmological Soliton

Although of importance to the cosmological concept of a universe expressible as
a low density (non-equilibrium) van der Waals gas near its critical point, the fac-
torization of the Jacobian characteristic polynomial into a cubic is not the only
cosmological possibility. Of particular interest is the factorization that leads to
a Hopf bifurcation. In this case the characteristic determinant vanishes, the Ad-
joint cubic curvature vanishes, the mean curvature vanishes (indicating a minimal
surface), but the Gauss curvature is positive, and the two remaining eigenvalues
of the characteristic polynomial are pure imaginary conjugates. Such results
indicate rotations or oscillations (as in the chemical Brusselator reactions) and
the possibility of spiral concentration or density waves on such minimal surfaces.
Such structures at a cosmological level would appear to explain the origin of spiral
arm galaxies. The Hopf type minimal surfaces of positive Gauss curvature do
not represent thermodynamic equilibrium systems, for their curvatures, although
two in number, are pure imaginary. The molal density distributions (or order
parameters) are complex.

Evidence of such topological defects (at the macroscopic level) can be demon-
strated by the creation of Falaco Solitons in a swimming pool [14]. These exper-
iments demonstrate that such topological defects are available at all scales. The

21



Falaco Solitons consist of spiral "vortex defect" structures (analogous to CGL
theory) on a two dimensional minimal surface, one at each end of a 1-dimensional
"vortex line" or thread (analogous to GPG theory). Remarkably the topological
defect surface structure is locally unstable, as the surface is of negative Gauss
curvature. Yet the pair of locally unstable 2-D surfaces is globally stabilized by

the 1-D line defect attached to the "vertex" points of the minimal surfaces.
Spiral amms (o the E'D'al.ﬁll:l:' delecl) disappear as delec] becomes a minimal suslace.

Dimples greally exaggeraled. Deplh = 1mm

!
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Elaok Hokes by Sl Rofraaton from Mnimal Surinoo

Falaco Solitons

Adapled Bos 0. Tesrlsal ind E Sehosdsr, PRL, T4, 10 1957 p. 1508

For some specific physical systems it can be demonstrated that period (cir-
culation) integrals of the 1-form of Action potentials, A, lead to the concept of
"vortex defect lines". The idea is extendable to "twisted vortex defect lines"
in three dimensions. The "twisted vortex defects" become the spiral vortices of
a Complex Ginsburg Landau (CGL) theory , while the "untwisted vortex lines"
become the defects of Ginzburg-Pitaevskii-Gross (GPG) theory [13].

In the macroscopic domain, the experiments visually indicate "almost flat"
spiral arm structures during the formative stages of the Falaco solitons. In the
cosmological domain, it is suggested that these universal topological defects repre-
sent the ubiquitous "almost flat" spiral arm galaxies. Based on the experimental
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creation of Falaco Solitons in a swimming pool, it has been conjectured that M31
and the Milky Way galaxies could be connected by a topological defect thread
[14]. Only recently has photographic evidence appeared suggesting that galaxies
may be connected by strings.

3

Interacting Galaxias NGC 1408 and NGC 1470

At the other extreme, the rotational minimal surfaces of negative Gauss cur-
vature which form the two endcaps of the Falaco soliton, like quarks, apparently
are confined by the string. If the string (whose "tension" induces global stabil-
ity of the unstable endcaps) is severed, the endcaps (like unconfined quarks in
the elementary particle domain) disappear (in a non-diffusive manner). In the
microscopic electromagnetic domain, the Falaco soliton structure offers an alter-
nate, topological, pairing mechanism on a Fermi surface, that could serve as an
alternate to the Cooper pairing in superconductors.

2.4. The Adjoint Current and Topological Spin

From the singular Jacobian matrix, [J5?] = [0(A/X);/0x*], it is always possible
to construct the Adjoint matrix as the matrix of cofactors transposed:

Adjoint Matrix : [jky } = adjoint [sz“led} (2.37)
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When this matrix is multiplied times the rescaled covector components, the result
is the production of an adjoint current,

T = [19] o 1ag/) (2.38)

It is remarkable that the construction is such that the Adjoint current 3-form, if
not zero, has zero divergence globally:

Adjoint current :

(I (2.39)
= 0. (2.40)

~ <

d

From the realization that the Adjoint matrix may admit a non-zero globally con-
served 3-form density, or current, J, it follows abstractly that there exists a 2-form
density of "excitations", GG, such that

Adjoint current : J = dG. (2.41)

G is not uniquely defined in terms of the adjoint current, for G could have closed
components (gauge additions G, such that dG. = 0), which do not contribute to

~

the current, J.
From the topological theory of electromagnetism [11] [12] there exists a fun-
damental 3-form, A" G, defined as the "topological Spin" 3-form,

Topological Spin 3-form : A"G. (2.42)

The exterior derivative of this 3-form produces a 4-form, with a coefficient energy
density function that is composed of two parts:

d(A°G)=F G- A"J. (2.43)

The first term is twice the difference between the "magnetic" and the "electric"
energy density, and is a factor of 2 times the Lagrangian usually chosen for the
electromagnetic field in classic field theory:

Lagrangian Field energy density : "G =Bo H—DoE (2.44)
The second term is defined as the "interaction energy density"

Interaction energy density : A°J = AoJ — po. (2.45)
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For the special (Gauss) choice of integrating denominator, A with (p =2,a = b =
c=1,m = 1) it can be demonstrated that the Jacobian similarity invariants are
equal to the classic curvatures:

{XMa YG, ZA, TK} = {CM(mean_linem‘)a CG(gauss_quad’ratic)a CA(adjoint_cubic)a O}
(2.46)
It can be demonstrated that the interaction density is exactly equal to the Adjoint
curvature energy density:

Interaction energy A" J = Cy U (The Adjoint Cubic Curvature).  (2.47)

The conclusion reached is that a non-zero interaction energy density implies the
thermodynamic system is not in an equilibrium state. R
However, it is always possible to construct the 3-form, S :

Topological Spin 3-form : S = A°G (2.48)

The exterior derivative of this 3-form leads to a co-homological structural equation
similar the first law of thermodynamics, but useful for non-equilibrium systems.
This result, now recognized as a statement applicable to non-equilibrium thermo-
dynamic processes, was defined as the "Intrinsic Transport Theorem" in 1969 [15]

Intrinsic Transport Theorem (Spin) :  dS = F"G — A"J, (2.49)
First Law of Thermodynamics (Energy) : dU =Q — W (2.50)

If one considers a collapsing system, then the geometric curvatures increase with
smaller scales. If Gauss quadratic curvature, C, is to be related to gravitational
collapse of matter, then at some level of smaller scales a term cubic in curvatures,
Cy, would dominate. It is conjectured that the cubic curvature produced by
the interaction energy effect described above could prevent the collapse to a black
hole. Cosmologists and relativists apparently have ignored such cubic curvature
effects.

2.5. Topological Fluctuations

Topological fluctuations are admitted when the evolutionary vector direction
fields are not singly parametrized:

25



Fluctuations in position (pressure) : dx —vdt = Ax #0 (2.51)
Fluctuations in velocity (temperature) : dv—adt=Av#0 (2.52)
Fluctuations in momenta (viscosity) : dp — fdt = Ap #0. (2.53)

These failures of kinematic perfection undo the topological refinements imposed
by a "kinematic particle" point of view, and place emphasis on the continuum
methods inherent in fluids and plasmas. For example, consider the Cartan-
Hilbert 1-form of Action on a space of 3n+1 independent variables (the p, are
presumed to be independent Lagrange multipliers):

A = L(x,v,t)dt + p,(dzt — v*dt) = L(z,v,t)dt + p,Azt) (2.54)
The Top Pfaffian in the Pfaff sequence is

(dA)"™ = (n + DY (OL/Ov" —p,) e dv*} dp,”...dp, dq'"..dq""dt, (2.55)

and yields a Pfaff dimension of 2n+2 for the 1-form of Action, defined on the
geometric space of 3n+1 variables {z*,p,,v*,t}. This even dimensional space
defines a symplectic manifold.

For the maximal non-canonical symplectic physical system of Pfaff dimension
2n+2, consider evolutionary processes to be representable by vector fields of the
form vV3,1 = 7{v,a, f, 1}, relative to the independent variables {x, v, p,t}. De-
fine the ”virtual work” 1-form, W, as W = i(W)dA, a 1-form which must vanish
for the extremal case, and be non-zero, but closed, for the symplectic case. For any
n, it may be shown by direct computation that the virtual work 1-form consists
of two distinct terms, each involving a different fluctuation:

W={p—0L/Ov}eAv+ {f —OL/0x} e Ax (2.56)

When the fluctuations in velocity are zero (temperature) and the fluctuations in
position are zero (pressure), then the work 1-form will vanish, and the process and
physical system admits a Hamiltonian representation. On the other hand if the
fluctuations in velocity are not zero and the fluctuations in position are not zero,
then the Work 1-form vanishes only if the momenta (the Lagrange multipliers, p,
are canonically defined ({p—0JL/0v} = 0) and the Newtonian force is a gradient,
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{f — 0L/0x} = 0. These topological constraints are ubiquitously assumed in
classical mechanics.

When Az* = 0, such that all topological fluctuations vanish, then the Pfaff
dimension of the physical system defined in terms of the Cartan-Hilbert 1-form of
Action, A, is 2 (the equilibrium requirement).

3. Examples

In order to demonstrate content to the thermodynamic topological theory, two
algebraically simple examples are presented below. The first corresponds to a
Jacobian characteristic equation that has a cubic polynomial factor, and hence
can be identified with a van der Waals gas. The second example exhibits the
features associated with a Hopf bifurcation, where the characteristic equation has
a quadratic factor with two pure imaginary roots, and two null roots. The third
example demonstrates how a bowling ball, given initial angular momentum and
energy, skids and/or slips changing its angular momentum and kinetic energy
irreversibly via friction effects, until the dynamics is such that the ball rolls with
out slipping. Once that "excited" state is reached, and topological fluctuations
are ignored, the motion continues without dissipation. The system is in an excited
state far from equilibrium.

3.0.1. Example 1: van der Waals properties from rotation and contrac-
tion

In this example,the Action 1-form is presumed to be of the form
Ay = a(ydx — xdy) + b(tdz + zdt). (3.1)

The 1-form of Potentials depends on the coefficients a and b. The results of the
topological theory are (for r? = 22 + y? + 2% + t?):

Mean curvature : Cyy = —2btz/(r?)3/?
Gauss curvature : COg = —{b*(z* +9?) — a*(z* + t*)}/(r*)?
Adjoint curvature : Cy = A"J, = —2a°btz/(r?)>/?
Top_Torsion = 2ab -[0,0,z,—t]/(r?
Adjoint Current c gy = (a0 3,y 2, 1) [(r7)?
Pfaff Dimension 4 : dA"dA = 2ba(t* — 2%)/(r?)? Q4

N N N N N N
N O Ut =W N
~— — — N
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The Jacobian matrix has 1 zero eigen value and three non-zero eigenvalues. Hence,
the cubic polynomial will yield an interpretation as a van der Waals gas. The
Adjoint current represents a contraction in space-time, while the flow associated
with the 1-form has a rotational component about the z axis.

3.0.2. Example 2: A Hopf 1-form

In this example,the Hopf 1-form is presumed to be of the form
Ay = a(ydx — xdy) + b(tdz — zdt). (3.8)

The 1-form of Potentials depends on the coefficients a and b. There are two cases
corresponding to left and right handed ”polarizations”: a = b or a = —b. The
results of the topological theory are (for r? = 2% + 3? + 22 + t2):

Mean curvature : Cy =0, (3.9)

Gauss curvature :  Cg = {b*(z® +9°) + a*(2* +t*)}/(r*)*(3.10)
Adjoint Cubic curvature : Cy=A"J, =0 (3.11)
Top_Torsion = 2ab -[z,y,2t]/(r? (3.12)

Adjoint Current . Js=(ab/2) -Top_Torsion (3.13)

Pfaff Dimension 4 : dA dA = 4ab/(r*) Q4 (3.14)

What is remarkable for this Action 1-form is that both the mean curvature and
the Adjoint curvature of the implicit hypersurface in 4D vanish, for any choice
of a or b. The Gauss curvature is non-zero, positive real and is equal to the
inverse square of the radius of a 4D euclidean sphere, when a? = . The Adjoint
cubic interaction energy density is zero. The two non-zero curvatures are pure
imaginary conjugates equal to

p=Ey/ =0 (a? +12) - a?(2 +12)/(r?). (3.15)

The Hopf surface is a 2D imaginary minimal two dimensional hyper surface
in 4D and has two non-zero imaginary curvatures! Strangely enough the charge-
current density is not zero, but it is proportional to the Topological Torsion vector
that generates the 3 form A" F. The topological Parity 4 form is not zero, and
depends on the sign of the coefficients a and b. In other words the ’handedness’ of
the different 1-forms determines the orientation of the normal field with respect to
the implicit surface. It is known that a process described by a vector proportional
to the topological torsion vector in a domain where the topological parity is non-
zero 4ba/(x? + y? + 2% + %) # 0 is thermodynamically irreversible.
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3.0.3. The sliding bowling ball

Assume that the physical system of a bowling ball may be represented by a 1-form
of Action constructed from a primitive Lagrange function with constraints. The
Lagrange function is defined as

L= L(z,0,v,w,t) = {Bm(A\w)*/2 — mv?/2} (3.16)
Let the topological constraints be defined anholonomically by the Pfaffian system:
{de —vdt} =0, {df —wdt} =10, {dx— b} =0 (3.17)

The constrained 1-form of Action becomes:

A= L(x,0,v,w,t)dt + p{de — vdt} + I{d0 — wdt} + s{\db — dz} (3.18)

where {p, [, s} are Lagrange multipliers. For simplicity, assume initially that two
of the Lagrange multipliers (momenta) are defined canonically; e.g.,

p=0L/Ov=—mv, [=0L/0w= Bm\w (3.19)
which implies that

A = (—mv — s)dz + (BmNw + \s)dO — {—mv?/2 + fm( w)?/2}dt.  (3.20)

The Pfaff dimension of this action 1-form is 6. The volume element of the
associated symplectic manifold is given by the expression

6V ol = 6m?BAN*{v — \wldr " df dvdw ds dt = dA"dA dA (3.21)

The symplectic manifold has a singular subset upon which the Pfaff dimension
of the Action 1-form is 2n+1 = 5. The constraint for such a contact manifold is
precisely the no-slip condition:

{v—2w}=0. (3.22)

On the 5 dimensional contact manifold there exists a unique extremal (Hamil-
tonian) field which (to within a projective factor) defines the conservative re-
versible part of the evolutionary process.
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However, on the 6 dimensional symplectic manifold, there does not exist a
unique extremal field, nor a unique stationary field, that can be used to define the
dynamical system. There does exist a unique Topological Torsion direction field
(or current) defined (to within a projective factor, o) by the 6 components of the
5 form,

Torsion = A"dA"dA (3.23)
This unique vector, T', has the properties that

L(T)A =I-A and Z(T)A =0. (324)

This ”Torsion” vector direction field satisfies the equation

LimyA" LimydA = Q" dQ # 0. (3.25)

Hence a process having a component constructed from this unique Torsion vector
field becomes a candidate to describe the initial irreversible decay of angular
momentum and kinetic energy.

Solving for the components of the Torsion vector for the bowling ball problem
leads to the (unique) decaying dynamical system:

dv/dt = —0/2{AN*w? — 20w + v*}/ (v — Iw) (3.26)
dw/dt = —7 /2{—BN*w* + 2B vw — v2}/AB(v — Iw) (3.27)
ds/dt — os = 0 /2{—mBNw? + mv?} /(v — \w) (3.28)
da/dt = v (3.29)

df/dt = w (3.30)

It is to be noted that the non-canonical ”symplectic momentum” variables, defined
by inspection from the constrained 1-form of Action as

P, = —(mv + s), Py = (mBN2w + s)), (3.31)
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both decay irreversibly at the same (unit o) rate on the manifold of Pfaff topo-
logical dimension 6, until the NoSlip condition is satisfied and the topology has
become of Pfaff topological dimension 5.

Once the NoSlip condition is reached (irreversibly), the evolution proceeds
without further topological change, in a conservative Hamiltonian manner.

4. Conclusions

Based upon the single assumption that the universe is a non-equilibrium thermo-
dynamic system of Pfaff topological dimension 4 leads to a cosmology where the
universe, at present, can be approximated in terms of the non-equilibrium states
of a very dilute van der Waals gas near its critical point. The stars and the galax-
ies are the topological defects and coherent (but not equilibrium) self-organizing
structures of Pfaff topological dimension 3 formed by irreversible topological evo-
lution in this non-equilibrium system of Pfaff topological dimension 4.

The turbulent non-equilibrium thermodynamic cosmology of a real gas near
its critical point yields an explanation for:

1. The granularity of the night sky as exhibited by stars and galaxies.
2. The Newtonian law of gravitational attraction proportional to 1/r%.

3. The expansion of the universe.

5. Appendix 1. The shape matrix for implicit hypersur-
faces.

Hypersurfaces can be defined in several ways. The most common is a differen-
tiable parametric map from M dimensions into a variety of M+1 dimensions. The
surface is uniquely defined, with 1 component, and can be orientable or not ori-
entable. A second way is to define the surface implicitly, in terms of the zero set of
a function. Such surfaces are orientable, but can consist of multiple components.
Some surfaces have both a parametric formulation and an implicit representation.

If in the parametric process the mapping is to a space constrained by a metric
(not necessarily euclidean), then the M+1 x M+1 covariant metric on space M+1
has a well defined pullback, or preimage on the hypersurface, M. The induced M x
M metric defines the first fundamental form of the surface. The more interesting
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properties are determined by the second fundamental form, or the shape matrix,
which is related to properties of the normal field to the surface in M+1 space.
Classical texts on differential geometry cover the parametric methods quite well.

However, the same cannot be said for implicit hypersurfaces, especially for the
development of the equivalent of the shape matrix in terms of an implicit function
representation. A somewhat obscure presentation is given by Harley Flanders.
A more detailed presentation for implicit surface functions is given in O’Neill
[16]. For surfaces that have both a parametric and an implicit representation,
the present author discovered that there is an equivalence between the shape
matrix, the Repere Mobile, and the Jacobian matrix of the surface normal field
(the gradient of the implicit function) - if the normal field is scaled (divided) by
the euclidean norm (the Gauss map). These results led to a more important
formulation, where the previous results are extended to more general implicit
surfaces, where the normal field is given, yet the normal field cannot be defined
as a gradient of a single function. The normal field when expressed as a 1-form,
need not be exact as it is in the classic theory of implicity surfaces. Indeed, the
1-form whose coefficients are form the normal field at a point can be of any Pfaff
topological dimension in the general case, where it is always zero in the classic
case.

The scaling of the normal field can also be done using the generalization of
the euclidean distance given by the Holder norm 2.26. The key idea is that any
form of the Holder norm which is homogeneous of degree 1 in the components of
the normal field always leads to a Jacobian matrix with zero determinant. The
constraint of a zero determinant forms a projective invariant system. Application
to 4 dimensional spaces indicates a change of topological dimension as evolutionary
properties evolve or are attracted to topological defect regions of zero determinant.
The result is a domain of Pfaff dimension 3 occurring in regions of Pfaff topological
dimension 4 [17]. For the Gauss map, the origin becomes a singular point, and
is "removed" as a topological defect. For other versions of the Holder norm, the
singular "points" have a variety of shapes. The theory of Homogeneous normal
fields and the applications of the Holder norm will appear elsewhere.
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