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Abstract.  The fact that structures are recognized by their boundaries and the
topological coherence of their defects focuses attention on topological rather than
geometrical features of complex pattern forming systems.  By identifying fluctuations as
the compliment of a Pfaffian system, and by using Cartan's method of exterior
differential (Pfaffian) forms to develop a theory of topological evolution, methods of
differential topology may be used to find limit sets and boundaries of structures whose
very existence in dynamical systems is generated by the fluctuations.   This approach
can be related to a variational principle subjected to non-integrable Pfaffian constraints,
or fluctuations.  By restricting the analysis to self-similar homogeneous integrands, mod
fluctuations,  the robust limit sets that define boundaries of structures, and which may
contain a chaotic, fluctuating or turbulent interior dynamics, can be determined using
the methods of Chern and Finsler.

1.  Introduction
The recognition that a turbulent, irreversible, dissipative fluid can generate large

scale structures has been the theme of several recent scientific conferences. [Kiehn 1991a].
The existence of such structures was not anticipated intuitively.  At first glance, the result
seems paradoxical, for according to "conventional dogma", a random system should not
self-organize.   Prigogine's thesis [Prigogine,1982] pointed a way to an alternate
conclusion for non-linear synergetic systems.  However, the details of how such structures
are formed with finite robust lifetimes is not fully understood.

Recently it has been noted [Kiehn, 1992b] that the creation of persistent wake
instability patterns in dissipative hydrodynamic flows can be put into correspondence with
the creation of a class of topological limit sets.   Rather than asking the deterministic
question, "Given initial data, what is the UNIQUE outcome?", the alternate question can
be asked: "Upon what domain do the equations of evolution permit non-unique or
discontinuous solutions"?  This method led to the discovery of closed form solutions
[Kiehn 1992b,c] for those limits sets that form the classic Kelvin-Helmholtz and Rayleigh-
Taylor instability patterns.  The patterns, or structures, so formed are interpreted as the
limit sets of instabilities induced by fluctuations.

     
   Figure 1a.  The pattern of the
          Kelvin-Helmholtz instability.
             Q(s)  =  1/cos2(s).

    
   Figure 1b.  The pattern of the
          Rayleigh-Taylor instability.
               Q(s)  = tan(s)/cos(s).
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Formally, these plane curves can be generated by the equation of a complex unit tangent
vector, t,

dt/ds = exp(iQ(s)) .

The choice of a phase factor,  Q(s)  =  1/cos2(s), leads to the Kelvin-Helmholtz instability
pattern of Figure 1a.  Similarly, the Rayleigh-Taylor instability of Figure 1b is generated
by the choice, Q(s)  = tan(s)/cos(s).

The argument was made [Kiehn 1992c] that these ever present patterns in
hydrodynamic wakes, perhaps deformed, but always recognizable, are limit sets generated
by surfaces of characteristics for a system of partial differential equations of evolution.  In
particular, these wake patterns, as limit sets, define domains of tangential discontinuities.
However it is known that all such surfaces of tangential discontinuities [Landau, 1964] are
locally unstable (as are all characteristic surfaces of negative Gaussian curvature).  When
subjected to the smallest of fluctuations, according to conventional wisdom, these surfaces
should not persist.  However, the conventional conclusion must be tempered, for there
exists a globally stabilized subset of surfaces of negative Gaussian curvature that have
finite robust lifetimes.  The representatives of such robust surfaces are the minimal
surfaces created by soap films built on finite boundaries.  Recall that the theory of minimal
surfaces historically was one of the first examples of a physical "field" theory based upon a
variational principle [Nitsche,1990].

The concept to be studied in this article is the idea that, in locally unstable (or
fluctuating) dynamical systems, the existence of chaos and fluctuations can drive the
system to globally stabilized, persistently robust structures.  The structures are
observationally recognized by their boundaries of limit sets which can confine (like a Julia
set) an interior with a chaotic, fluctuating, or even turbulent, dynamics.  These topological
boundaries in hydrodynamic wakes are to be considered as the equivalent of minimal
surface soap films.  This idea that a chaotic fluctuating system can be related to a
variational principle is given further credence by the recognition that a minimal surface is
generated by every holomorphic function in four dimensions [Nitsche, 1990].   Hence a
sequence of functional iterates of holomorphic functions generates a sequence of minimal
surfaces.  However this is precisely the procedure used to generate the Julia set [Peitgen,
1988], which acts as a fractal boundary repellor in a dynamical system, separating those
trajectories which wander off to an exterior infinity from those trajectories confined to an
interior domain.  Visually, the fractal boundary (consider a cloud) is the epitome of a
"fluctuating" system.  As extraordinary as it may seem, the conclusion is reached that
fractal fluctuating boundaries, minimal surfaces, and coherent patterns in noisy fluctuating
systems are all related to a variational principle with constraints.

The constraints of a variational principle are often written as a null set of Pfaffian
forms, usually defined as a Pfaffian system.  However, such a null set is typically non-
integrable.  Hence, if solutions are available to the Pfaffian system, they are not necessarily
unique.  The compliment of the null set of a Pfaffian system (the non-null set) can be used
to define geometrically what intuitively are called "fluctuations".   For example, consider
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the usual hypotheses of kinematics in which it is assumed that there exists a 1-parameter
group of functions, v(x,t), that satisfy the constraints:

∆x  =   dx -  v dt = 0.

This is a classic example of a Pfaffian system.  The compliment of this Pfaffian system is
the set such that

  ∆x  =   dx -  v dt ≠ 0,

and indeed this is intuitively close to what is meant by a fluctuation.  However there is an
even more subtle situation, whereby in the neighborhood ∆x = 0, the question can be
asked, does the system admit unique solubility, or is there a possibility that more than one
solution exists such that the evolution would have the appearance of a discontinuous
bifurcation between the various solutions.  This latter concept of a fluctuation will be
defined as a second order fluctuation, where the first species, ∆x ≠ 0, will be called a first
order fluctuation.  The usual kinematic assumption is that "particle" dynamics is governed
by such Pfaffian systems without fluctuations, of the first or second order.  This kinematic
assumption need not be satisfied by the solutions to a set of partial differential equations
that describe the evolution of synergetic field systems.

The problem of second order fluctuations can be put into correspondence with the
classic problem of when is a Pfaffian system completely integrable? If the system is
integrable, then there are no fluctuations of the second order. A rather important result of
Cartan is that the closure of a Pfaffian system is always integrable [Slebodzinsky, 1964].
A simple application of this idea is to the special case where the Pfaffian system, Σ, is
closed, dΣ = 0, a case which according to Cartan's theorem is integrable.  The implication
of integrability leads to the conjecture that a frame of reference can be found in which the
fluctuations are null.  Cartan's idea of prolongation is to increase the dimensionality of the
domain to include more and more variables, until ultimately the Pfaffian system is
integrable.  Then by choosing the "right" set of coordinates, the fluctuations or
discontinuities, so apparent in the lower dimensional space, disappear.  This idea will not
be proved formally in this article, but the cases of closed, integrable and non-integrable
Pfaffian systems will be studied and related to a topological theory of fluctuations.

The Homogeneous Variational Principle
 This article is motivated by the fact that Cartan's theory of Action transforms the

mechanics of an integral variational principle into an exterior differential procedure
operating on sets of exterior differential p-forms. Indeed, if A is the integrand of a
variational integral, then the search for those vector fields that annihilate the exterior
derivative of A (e.g., those vector fields which are extremal and satisfy the equation
i(V)dA = 0) is equivalent to finding solutions to the necessary equations for an extremum
generated by variation of a Lagrange integral.  Associated vector fields satisfy the
"orthogonality" condition, i(V)A = 0.  Vector fields that satisfy both conditions generate
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the characteristics of any given problem.  AS will be developed below, extremal vector
fields preserve the even dimensional topological features of the system, but not the odd
dimensional topological features.  Characteristics preserve both odd and even dimensional
topological features, hence are homeomorphisms.

Perhaps surprisingly to some, the theory of differential forms, which at first glance
might be conceived as only a local linear theory without global qualities, is in fact a
mathematical vehicle that not only carries topological properties, but can also be used to
assess topological change.  In the standard integral form of the variational calculus, when
a Riemannian quadratic form such as the line element, ds2, is used as a variational
integrand, then the concept of measure and geometrical length enters naturally.  However,
the choice of the integrand as a quadratic form is in itself a constraint on the allowed
topologies.  It is the thesis of this article, that such topological constraints based on
quadratic invariants are too strong to describe all of nature's processes of evolution.
Instead, the variational process will be applied to linear forms, or their duals, and their
exterior derivatives, which makeup the Cartan exterior differential system.

This procedure is motivated by the known facts that when a projective geometry --
in which transformations necessarily do not preserve either size, or shape, (or parallelism)
-- is constrained by an invariant quadratic form, the constrained geometry leads to a class
of the euclidean similarities preserving geometric shape, and in the extreme, geometric
size.  On the other hand, when the projective geometry is constrained, not by a  quadratic
form, but by a contravaraint linear form, a deformable, (affine) space is produced, with an
associated group of transformations which preserve parallelism but not necessarily the
euclidean properties of size and shape.  A price is to be paid for such a constraint, for the
concept of a rational net of harmonically generated points [Meserve, 1978], always
permissible in a projective space, may not be globally preserved by the group of affine
transformations. Recall that a harmonic net of rationality is the foundation of what
physically is called a lattice.  A defect, in crystalline physics called a dislocation, may
appear in a quantized, discontinuous fashion.  This lattice defect is a topological
obstruction that destroys the global simple connectivity of a lattice without defects, such
as a tiled euclidean domain.  The dislocation defect is often recognized by the appearance
of a line that terminates within the interior of the domain in an anomalous manner, like a
zebra stripe.  Creation and destruction of such topological defects will lead to an
appearance of fluctuations.

However, though little used in the applied sciences, it should be noted that there is
both a covariant and a contravariant affine space, each of which is associated with a
linear form or its dual.  More will be said about the dual to the affine invariant linear
form, later, but at this point note that the constraint of a latent contravariant invariant
preserves the concept of parallelism with its associated defects of translational shears,
called dislocations.  On the other hand, the covariant linear form is to be associated with
the concept of rotational defects, called disclinations.  The two species of defects point out
that there can be two species of fluctuations (amplitude and phase), and these concepts
may be distinct an unrelated on non-compact or non-orientable domains, which are
subjected to irreversible transformations.
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The important point at this stage is to realize that these concepts of defects and
defect fluctuations are not dependent upon a metric. They are not geometrical ideas built
on sizes and shapes.  The concepts can be related to the cohomology of the domain.  This
topological idea is based on the fact that a system of exterior differential forms can contain
a certain number of harmonic p-forms.   For each defect (or hole) there will exist one
distinct harmonic p-form.  These defects are topological invariants in that they are
invariants of homeomorphisms, but they need not be invariants of continuous
transformations which are irreversible.  As will become apparent, it is the harmonic
components of the p-forms which will attract the most attention, for like a hole, they are
hard to miss, and they are rational. There can not be such a thing as 0.00034591 of a hole.
The hole might have a metric size that is minute, but it is still one (1) hole.

It is remarkable, that a course topology (called herein the Cartan Topology) for
any given domain may be determined merely by the specification of a global 1-form of
action, A, its exterior derivatives and exterior products.  This course topology can be
refined by adjoining to the 1-form of Action a system of non-integrable Pfaffian
constraints.  The totality of forms and their exterior derivatives forms an exterior
differential system, Σ.  A fundamental theoretical axiom for this article is that a system of
exterior differential forms and differential constraints may be used to define a topology on
a domain.  The fundamental intuitive idea is that the space-time domain of measurable
science, with its defects and discontinuities, may be embedded in a space of higher
dimensions in which the discontinuities disappear.  When the smooth results of the
embedding space are pulled back to the base space, the result can take on the appearance
of a set with discontinuities that may have the appearance of Brownian fluctuations.

For simplicity, the exterior differential system considered in this article will be a
single 1-form of action, A, constructed in part from a LaGrange function, L(x,v,t), and
subject to certain non-integrable Pfaffian constraints. The complete 1-form will be created
by use of a procedure classically called the method of LaGrange multipliers. The resultant
exterior differential system does not generate, necessarily, a Riemannian geometry.    A
point of departure in the method is to recognize that the usual kinematic statement, ∆x =
dx - vdt = 0, when interpreted as a Pfaffian system of constraints, is indeed a  topological
constraint on a domain, that need not be true for the evolution of deformable media.  The
non-zero values of ∆x will be defined as deformation-fluctuations of position.  Higher
order fluctuations also may be defined.  The base space for the system to be studied in this
article will be a space time variety of dimension 4.  This system will be prolonged to higher
dimensions to accommodate the possible fluctuations.  Then, following Cartan's method,
which is equivalent to a variational principle, certain topological constraints, not
equivalent to the null fluctuation constraints of rigid body dynamics, can be placed on this
higher dimensional space.  Finally, these results can be pulled back to space-time by
functional substitution.  An example of this technique will be used to demonstrate that the
Navier-Stokes equations follow from such a procedure.  For certain classes of solutions,
the resultant geometry is non-Riemannian, but contains many of the features developed by
Finsler [Chern 1948] and Cartan for spaces that support torsion, and non-integrable vector
fields.
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The Cartan Topology
Suppose that such a 1-form, A, is given.  Then,  the exterior derivative of A

produces a 2-form, F = dA, with components,

F = dA = Fµνdxµdxν
The 1-form, A, and the 2-form, F=dA, form a "closed" exterior differential system, {A,
F}.  Using these two elements, a sequence of higher order sets can be constructed
algebraically by forming all possible exterior products of A and F:  The resulting system of
forms is defined as the Pfaff sequence:  {A, F=dA, H=A^dA, K=dA^dA...}.  The union of
all elements of the Pfaff sequence and their closures forms the elements of the Cartan
topological base:   { A, A ∪ F, H, H ∪ K }.
     On space-time of 4 dimensions, there are only 4 possibilities for the Pfaff sequence, and
these sets are defined as:

TOPOLOGICAL ACTION

         A =  Aµdxµ
TOPOLOGICAL TORSION

         F = dA = Fµνdxµdxν
TOPOLOGICAL TORSION

         H = A^dA = Hµνρdxµdxνdxρ
TOPOLOGICAL PARITY    

         K = dA^dA= Kµνρσdxµdxνdxρdxσ.

The largest non-null element of the Pfaff sequence defines the Pfaff dimension of the
domain. Certain flows have Pfaff dimension 1; others, Pfaff dimension 2, 3, and 4.
Examples are given in Kiehn (1990).

The domain of support of each element of the Pfaff sequence may be considered as
a "point" of what will be called the Cartan topology.  In this sense the "point", A, and its
closure, A∪F may be used as base elements to define "open sets" of the Cartan topology.
If the domain is such that H and K are null, then that is the end of the construction, and
the Cartan topology is a connected topology.  However, suppose that there exists a
domain of support for the exterior product of A and F, such that H is not empty.  Then
construct the closure of H as the union, H∪K, and use these 4 "points", {A, A∪F, H, H∪
K }, as a basis of open sets for the Cartan topology.  The resulting topology is NOT
connected! [Baldwin, 1991]   This choice for a topology is extraordinary in that the Cartan
exterior derivative may be interpreted as a "limit point operator" relative to the Cartan
topology.  Given any set of the topology, if the exterior derivative vanishes, then the set
has no limit points.  For currents constructed in terms of contravariant vector fields (or N-
1 forms), then the vanishing of the exterior derivative implies that no limit points exist
within the domain of support.  If true, then the associated axial vector current satisfies a
conservation law, equivalent to the vanishing of an N dimensional divergence.  The "lines"
associated with this vector field do not stop or start within the domain.
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In this article, the technique will be to define a 1-form of action, A, similar to that
variational integrand  proposed by Finsler [Chern 1948] and Cartan in their studies of non-
Riemannian geometries that admit torsion.  The Finsler methods motivated this author to
treat the general problem of topological evolution as an extremal problem on a variety of
higher dimensions. In effect, the classic kinematic constraints of rigid body motion are
considered to be "overly severe" topological constraints on fluid motion, and are relaxed
such that the new topology admits "fluctuations".  The fluctuations can be interpreted in
many ways;  in particular they can represent deviations from the classic kinematic
constraints, dx-vdt = 0.  These deviations may be interpreted as variations of the initial
conditions, or they may be interpreted as an uncertainty of the origin, but for this author
they do not imply that a statistical analysis is necessary.  A refinement, or specialization,
of this "fluctuation" topology leads to the set of necessary partial differential equations
which for the given example are recognized to be the Navier-Stokes equations for a
compressible, viscous flow.  Of particular importance is the recognition that the dynamics
of a deformable system are to be associated with a field of axial "current", whose 4
components form the 3-form of Topological Torsion on (x,y,z,t).  This axial-vector
current is a completely anti-symmetric third rank tensor field, and is evanescent in rigid
body systems that satisfy the topological constraints of a perfect kinematics.  The
divergence of this axial current may or may not vanish for deformable systems, and it may
or may not be an evolutionary invariant.  When the divergence is anomalous, the Torsion
Current can stop or start in the interior, thereby generating a topological defect in the
domain.  Almost no attention has been given to this Torsion Current by researchers in
hydrodynamics, but the relationship of this covariant tensor field to the theory of  non-
integrability will demonstrate its importance to systems with defects and  fluctuations.

In this article a specific class of variational principles with non-integrable
constraints will be studied.  The class associated with integrands which are homogeneous
of degree one is singled out as special  Not only is this the class that generates non-
Riemannian or Finsler spaces, but also it is the class that generates minimal surfaces, and,
perhaps not too surprisingly, the special theory of relativity.  This special class of
homogeneous integrands of degree one is directly related to the theory of projective
geometries, where a degree of self-similarity (a pattern generator) is evident immediately,
for in projective geometries, vectors v and λv are considered to be equivalent.  "Rays" -
not magnitudes - are of importance to projective geometries.  It also is of interest to note
that in projective geometries, the existence of duality implies that there are two species of
fundamental objects.  In projective 2-space, these dual sets are rays (lines) and surfaces, in
projective 3-space, the rays physically can be associated with currents, while their duals
are "hyper-surfaces" of Action.  More explicitly, the rays (or currents) are exterior 3-
forms, J, and the dual hyper-surfaces are 1-forms, A.

2. The Cartan Action as a Fluctuation 1-form
Global, or topological, features of limit sets and boundaries are the important

attributes of patterns,  hence in this article the emphasis is on the topological perspective
of dynamical synergetic systems.  It is known that a exterior differential system, Σ, and its
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closure formed by adjoining to the original system its exterior derivatives, dΣ, defines a
topology on the domain.  Herein, the topology of interest will be that defined by a single
1-form, the Cartan1-form of Action.
     The format of the Cartan 1-form, A, studied in this article will be taken to be that of
the Cartan-Hilbert invariant integrand,

                              A = L(x,t; v)dt + p •• (dx - vdt).                                                    (1)

The objective is to study the topology induced by such a form, without imposing a priori
constraints that correspond to "no fluctuations".  Note that the original space-time, {x, t}
has been extended or prolonged to a 10 dimensional space of functions, {x, t; v, p }.
Differential and functional constraints will be imposed on this 10 dimension space thereby
refining the topology.  Such constraints will add physical significance to the functions, {x,
t; v, p }, which at these point are arbitrary variables.  .Further note that formally the
Cartan-Hilbert action given by (1) involves a classic Lagrange function, L(x,t; v), and a
linear combination of non-zero position "fluctuation or deformation" 1-forms,   ∆x,
defined as:

                             ∆x = dx - vdt  ≠   0 .                                                (2)

The usual hypothesis of classical physics is that of kinematic perfection.  That is, the
"velocity" functions, v, admit a 1 parameter group of integrable solutions such that

      ∆x = dx - vdt  =  0.

It is not generally appreciated that this kinematic assumption of point particle mechanics is
a topological constraint on the domain that need not be true for the evolution of synergetic
systems, such as a turbulent fluid.  It is possible that there exist vector field solutions to,
say, the Navier-Stokes equations, that do not admit a 1 parameter group.

The covariant array, p, of coefficients of the fluctuation 1-forms in (1) may be
described as set of Lagrange multipliers.  It will be demonstrated that this covariant field,
p, dual to the contravariant velocity field, v, plays the role of the canonical momentum,
when the system is subjected to those additional, but classic, constraints that are
equivalent to the constraint of zero temperature.  It follows that the concept of
temperature can be given meaning in terms of the non-null fluctuations associated with the
difference between, the Lagrange multipliers, p, and the canonical momentum, ∂L/∂v.

The 1-forms, ∆x, are defined as fluctuation-deformation 1-forms for they represent
deviations from the pure kinematic point of view associated with a rigid body dynamics or
the evolution of a point particle in terms of a single parameter group of transformations.
Although not always true, these deviations are often small corrections to the kinematic
constraints, ∆x = 0, and have the appearance of "fluctuations" about the "kinematic" lines
that act as guiding centers for the evolution.  The idea is that  ∆x  ≈ 0, but d( ∆x ) ≠ 0.
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     The fluctuation 1-forms given by (2) are not necessarily zero even for classical
deformable media.  For example consider a flowing fluid in the Lagrangian representation.
Assumed that the "points", x, evolve in terms of a map, f, from a set of initial conditions,
y, such that the map

                                             xk  =  fk(y,t),
describes the evolution of the fluid.  Then, it is apparent that the fluctuation,  ∆x,  is not
zero, and can be explicitly written as:

   ∆xk = dxk - vkdt = ( ∂fk/∂yi) dyi  ≠ 0  .                                    (2b)

If the parameters, y, which could be interpreted either as initial conditions or as the
coordinates of the origin, are not constants, then the RHS of (2b) is not zero, and the
system does not evolve according to the kinematic rules associated with a single parameter
group.  The basic idea is that the statement, dx - vdt = 0, must be interpreted as a
topological constraint, just as the statement xdx+ydy+zdz = 0 is a topological constraint
on Euclidean 3-space that produces the topology of a spherical surface.
     In classical hydrodynamics, the non-zero "fluctuations" given by (2) are usually
constrained by topological conditions such that even though the individual values of ∆xk

are not zero identically, their associated 3-form exterior product admits an integrating
factor, ρ =  ρ(x,y,z,t).  In other words, the non-zero 3-form,

             Ω = ρ(dx-vxdt)^(dy-vydt)^(dz-vzdt) ,                                           (3)

is presumed to have a vanishing exterior derivative,

                  dΩ = { div ρv + ∂ρ/∂t } dx^dy^dz^dt = 0,                                       (4)

and is therefore integrable. This topological constraint represented by the vanishing of the
partial differential equation in the brackets is usually called the "equation of continuity" for
deformable media.  Such a constraint makes  Ω an absolute invariant of the evolution.  If
the flow lines are retraceable, implying that the Jacobian determinant of the assumed
mapping is of rank 3, then the topological constraint may be interpreted as the
"conservation of mass".  However, it is not apparent that nature always insists on the such
a topological constraint among the fluctuation-deformation 1-forms.  Such a constraint is
a matter for test, especially in the case of a turbulent, irreversible, evolutionary process.

The Cartan 1-form will be used not only to generate the Cartan topology, but also
to generate, by means of a procedure equivalent to a variational principle, a set of partial
differential equations of evolution with solution vector fields, V. These vector fields, V,
will have smooth curves tangent to the V in the higher dimensional or prolonged geometry
necessary to admit fluctuations.  When these smooth curves are pulled back, or projected
to the lower dimensional geometry, they may have a  discontinuous appearance  of
fluctuations.  The ordinary kinematic differential equations based on v, not V, yield
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solutions that act as "guiding centers"  for the "fluctuation" fields, V, in the limit that the
fluctuations are small.  The projections of the continuous curves in the geometry of the
higher dimensional space may have gaps and tangential discontinuities on space-time.  The
discontinuities would be interpreted as defects or fluctuations in an otherwise
homogeneous and continuous system.  These ideas  may be compared to the concept of
Poincare sections in the theory of non-linear dynamics.  The Cartan method permits the
concepts of discontinuous fluctuations to be put on a continuous basis in a space of higher
dimension.  This topological idea is similar to the geometric idea where a curved space
may be embedded in a higher dimensional euclidean flat space.
    Physicists often recognize the Cartan Action in the format,

 A = p ••  dx - (p ••  v - L(x,t; v) )dt   =   p ••  dx - H (x,t; p,v)dt  ,                       (5)

but do not seem to appreciate that this composition may be interpreted in terms of a
fluctuation geometry on a space of 10 dimensions, as given by (1).   In current physical
theories, it is often assumed that the function, H(x,t; p,v), can be written entirely in terms
of the variables (x,t; p) alone.  In such cases the function H*(x,t; p) becomes the
Hamiltonian function of classical mechanics, and the Lagrange multipliers, p, would be
identified as the canonical momentum.  This assumption corresponds to a functional
relationship or constraint between the variables v and p such that  ∂H/∂v = 0.    If the
relationship is linear, then there would exist a constitutive or metrical relationship between
the dual fields, v and p.   Such assumptions are NOT made a priori in this article.

Consider first a Cartan 1-form of action where the fluctuations, ∆x, are assumed to
be identically zero over the domain.  Then by taking the exterior derivative of (1), the 2-
form of limit points becomes F = dA = dL^dt.  It follows that H= A^dA = 0, and K = 0.
The Pfaff dimension of such systems is 2 at most, and the system is completely integrable
in the sense of Frobenious.  Such systems in a fluid sense can have vorticity but are
without helicity, or Topological Torsion.  Examples of systems that do support
Topological Torsion are presented in reference [Kiehn 1991a].  In this article, systems of
non-zero H and non-zero K are of interest.  From this point of view, both Topological
Torsion and Topological Parity are to be associated with the concept of non-null
kinematic fluctuations which are not transversal to the system momentum, p •• ∆x ≠ 0.

When fluctuations are permitted, ∆x ≠ 0, then the exterior derivative of the Cartan
action on the 10 dimensional space becomes explicitly,

            dA = (∂L/∂v - p) ••  dv^dt  + dp  ••  (dx-vdt)  + ∂L/∂x  •• (dx^dt)

  = (∂L/∂v - p) •• ∆v^dt  + ∆p ^ ∆x                                                                   (6)

Continuing with the objective to study the Cartan topology, without a priori constraints,
note that the term, ∆v, represents the non-zero 1-forms of velocity fluctuations, defined
as,



11

∆v  = dv - adt  ≠ 0 ,                                                                       (7)

and, ∆p, represents the non-zero 1-form of Lagrange multiplier fluctuations,

∆p = dp - (∂L/∂x) dt ≠ 0.                                                                  (8)

The functions, a, are defined to be to the contravariant acceleration vector field (with
velocity fluctuations) in the same extremal sense that v is defined as the contravariant
velocity vector field (with position fluctuations).
     The notation,  (∆p ^ ∆x),  stands for  the sum of 2-forms,

                  (∆p ^ ∆x)  =   ( { / } )^ ( )dp x dt dx v dtk
k

k

k k−∑ −∂ ∂L                                      (9)

which is similar to the dot product of two vectors, but here the combinatorial action is
through the exterior product, ^.  Although closely related to an expectation value
generated by an inner product, or to the integrand of a cross-correlation integral, no
statistical or ensemble averaging of (9) is assumed in this article.  The beauty of the Cartan
analysis is that it is retrodictively deterministic and well defined in a pullback sense, even
when unique, deterministic prediction is impossible [Kiehn,1976b].
     The bracket factor, (∂L/∂v - p) = - ∂H/∂v  will be defined as the scaled covariant
vector field, k/S.  The topological constraint k = 0 permits the Lagrange multipliers to be
uniquely determined as the canonical momenta of classical mechanics, p = ∂L/∂v.
    A direct computation of the Topological Torsion, H, on the 10 dimensional space
yields,

H = A^dA  =  L dt^ (∆p ^ ∆x) +   (k/S •• ∆v)^(p ^ ∆x)^dt.                          (10)

which may be evaluated in principle on  4 dimensional space time by functional
substitution.   A similar direct computation in the higher dimensional geometry of variables
{x, t;  v, p} of the exterior derivative, K = dH,  produces a 4-form that also can be pulled
back to {x,y,z,t} by functional substitution.   The Topological Parity 4-form becomes,

 K = dA^dA  =  2  {(∂L/∂v - p) •• ∆v }^ (∆p ^ ∆x)  +  2 (∆p ^ ∆x)^ (∆p ^ ∆x).     (11)

On a space-time variety, this 4-form becomes Chern's top Pfaffian whose integral gives
information concerning the Euler characteristic of space-time.  It is apparent that K
depends on the triple exterior product of the fluctuations of position, Lagrange multipliers,
and velocity, as well as the bracket factor,  (∂L/∂v - p) = - ∂H/∂v , involving the Lagrange
multipliers, and dt.

A first constraint on the Cartan system will be to consider the classic first variation
of the Action integral, ∫A, as an extremal principle in the sense of Finsler.  The geometries
so constructed are not necessarily Riemannian.  According to Chern, the Finsler variation
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is equivalent to setting dA of equation (6) equal to zero, mod ∆x .  In addition, for Finsler
geometries, the Lagrange function is presumed to be homogeneous of degree 1 in the
functions, v, and this constraint is used by Chern to construct what he calls a
"projectivized" tangent bundle.  The homogeneity condition implies that the variable, t,
can be reparametrized, and the vector v forms the elements of a projective geometry.  If it
is further assumed that the velocity fluctuations do not vanish, ∆v ≠ 0, then the only way
for the Finsler variation to be valid is for the factor, (∂L/∂v - p), to vanish.

In classical field theory, this Finsler constraint is often imposed arbitrarily:

                      k/S  ≈ (∂L/∂v - p) = - ∂H/∂v  =  0.                                                   (12)

As mentioned above, such a constraint uniquely defines the Lagrange multipliers, p, as the
components of the canonical momentum.   The Topological Parity 4-form (11) is then
dependent on the exterior product of "fluctuations" in position and momentum only, and
has the same physical dimensions as Planck's constant.  The Euler characteristic of the
constrained topology does not depend upon the velocity fluctuations. From a qualitative
point of view, fluctuations in velocity correspond to the property of temperature.   In this
sense, the fluctuations of temperature are distinct from the fluctuations of spin.

4. Equations of Topological Evolution
From the dynamical point of view, the variation procedures that lead to

integrability of the Action depend upon the choice of paths.  Note that for a 1-form of
action, A, to be closed, such that dA = 0, and hence A is integrable, makes no statement
about paths.  In fact, if dA = 0, then the system, {A, dA} is equivalent to {A} and as {A,
dA} is completely integrable, then so is {A}, for all paths.  This is the basis of exact
systems.  But a somewhat different idea is that dA may be zero when projected along
certain paths.  Then integrability is path dependent.  The criteria will be given by
expressions of the form i(V)dA = 0, where the objective, given the A, is to find the V and
thereby the paths, for which the Extremal condition is true.  The basic constraint i(V)dA =
0 leads to systems of partial differential equations of evolution.

In the Cartan method, an evolutionary process relative to a vector field, V, is
described by the action of the Lie derivative on the p-forms of interest [Slebodzinsky,
1970].  The action of the Lie derivative on 1-forms is equivalent to the "convective"
derivative in Cartesian hydrodynamics, but the Lie derivative is defined without the
geometric constraints of a metric or a connection.  In the present article, the p-forms of
evolutionary interest are those p-forms that make up the Pfaff sequence.  If any p-form is
invariant with respect to the evolutionary process, V, then its Lie derivative vanishes:
L(V)A = 0.   If all p-forms that make up the topological base of the Cartan topology are
invariant, then the topology is invariant, and the process generated by V is a
homeomorphism: (L(V) A = 0 and L(V)dA =0).   Such processes are both continuous and
reversible, and are to be ignored in this article.
     A more general set of evolutionary processes that can admit topological evolution is
described by the topological constraint that the limit sets, dA=F, are evolutionary
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invariants, but no such constraint is placed on A.  Such processes are described by the
statements:

L(V)dA = 0,     L(V)A = Q ≠ 0.                                                  (13)

It may be demonstrated that such concepts are equivalent to Helmholtz theorem of the
conservation of vorticity [Kiehn 1975, Tur 1991].  In terms of the Cartan topology , such
processes are uniformly continuous.  In engineering terms, such results correspond to the
master equation for the "perfect plasma" of magneto-hydrodynamics, ∂B/∂t = curl(v x B).
Direct computation on C2 functions indicates that the statement is equivalent to the
constraint that  1-form, W = i(V)dA, is closed (and therefore has no limit points with
respect to the Cartan topology):

                             d(i(V)dA) = 0.                                                                          (14)

This constraint of uniform continuity is satisfied by the more stringent sufficient condition,

                               i(V)dA = 0 .                                                                           (15)

For a given Lagrange Action, A, Cartan has demonstrated that the first variation of
the Action integral is equivalent to the search for those vector fields, V, that satisfy the
equation (15) given above.  Such vector fields are called extremal vector fields [Klein
1962, Kiehn 1975].  The resultant equations deduced from (15) are a set of partial
differential equations that represent extremal evolution.  Note that the extremal conditions
are insensitive to any renormalization of the vectors, V.  That is, if  V satisfies the
equations, then ρV also satisfies the equations.  Such a result is commonplace in the
projective geometry of lines, and does not require the Riemannian or euclidean concept of
an inner product or a metric [Meserve 1983].  Cartan [1958] has shown that this
projective extremal condition is necessary and sufficient for the dynamical system, V,
relative to the action, A, to be Hamiltonian [Kiehn 1974].    Such Hamiltonian systems are
not dissipative, and guarantee the existence of a single parameter group for the velocity
field generated by the solutions of the necessary partial differential equations that describe
the topological constraint.

However, on the fluctuation space of 10 dimensions, {x, t; v, p}, contraction of
dA with the vector field,  V = {v, 1; a, f }, yields explicitly,

 i(V)dA = -F  •• (dx - v dt)   -  k/S  •• (dv - a dt) = -F  •• ∆x  - k/S  •• ∆v ,            (16)

where F = f - ∂L/∂x  represents the dissipative components of the "force".  The RHS of
(16) is not necessarily zero, so such evolutionary processes are not necessarily
Hamiltonian.   The RHS of (16) depends explicitly upon the fluctuations in position and
velocity, and is explicitly independent from fluctuations in momentum.   The two covariant
vector fields, F = i(V)∆p,  and k/S, represent the irreversible dissipative mechanisms of



14

friction and radiation in the system fluctuation dynamics.   These dissipative terms are not
included explicitly in the usual Lagrange theory, and represent fluctuation interactions with
the environment.  Note that the Finsler-Chern condition,  dA = 0 mod ∆x , implies that k/S
= 0, a constraint that on physical grounds implies that the system does not depend on
velocity fluctuations (temperature).   Further note that the Cartan-Hamilton constraint
given by (15) is satisfied by eight distinct sets of sufficient conditions, depending on
choices for the four factors in the RHS of (16).

5.  The  Navier Stokes equations
For the liquid state,  guided by the physical idea that fluctuations in velocity are

related to the concept of temperature, assume that the equations of topological evolution
are refined by the constraints,

 k ≠ 0 ,  k  •• ∆v =S d(kT), F = υ curl curl v ,   F  •• ∆x ≠ 0.                 (17)

In this example, the constraint of canonical momentum ( k /S = 0 ) is relaxed to the
alternate constraint that the deviation from canonical momentum, k/S, be  transversal to
the fluctuations in velocity, if the system is at constant temperature, then d(kT) = 0.   The
equations of motion (16)  become

i(V)dA = -  υ( curl curl v) ••   ∆x  + d(kT)                                      (18)

For the case of a fluid, define the Cartan fluctuation 1-form, A, as,

                           A = v ••  dx - H dt,                                                         (19)

with the "barotropic Hamiltonian" function specified as,

H =  v v v• + − +∫/ /2 dP div kTρ λ                                                  (20)

Substitution into (16) yields a necessary system of partial differential equations for the
constrained topological evolution:

∂ ∂ ρ λ νv v v v v v v/ ( / ) ) /t grad curl grad grad curl+ • − × = − + −2  P  div   curl ,                (21)

Equations (21) are exactly the Navier-Stokes partial differential equations for the
evolution of a compressible viscous irreversible flowing fluid.   In other words, the Navier-
Stokes equations of hydrodynamics have been deduced by imposing a set of topological
constraints on the equations of topological evolution.  However, the vector field which is
a solution to the partial differential system may not be the generator of a single parameter
group of transformations, and thereby may exhibit fluctuations and tangential
discontinuities when projected to space time.
     By direct computation, the 2-form F = dA has components
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                            F = dA = ωωz dx^dy + ωωx dy^dz + ωωy dz^dx  +  (a  ••  dr) ^dt                          
where

              ωω  = curl v        and       a = - ∂v/∂t - grad H                                  ( 22)

    The 3-form of Helicity or Topological Torsion, H, is constructed from the exterior
product of A and dA as,

               H = A^dA = Hijk dxi^dxj^dxk

    = Tx dy^dz^dt + Ty dz^dx^dt + Tz dx^dy^dt + h dx^dy^dz,             (23)

where T is the fluidic Torsion axial vector current,

T = (a x v) + H  ωω    ,                                                  (24)

and h is the torsion (helicity) density,

                       h  = v  ••  ωω.                                                                   (25)

The torsion axial vector, T, consists of two parts.  The first term represents the shear of
translational accelerations,  (a x v), and the second part represents the shear of rotational
accelerations, H  ωω .   Tubular domains, or singular lines of T, in a hydrodynamic system
can be interpreted as "defect" structures that can be put into correspondence with
dislocation and disclination defects in continuous media, depending on whether or not the
field is dominated by translational or rotational shears.  The topological torsion tensor,
Hijk , is a third rank completely anti-symmetric covariant tensor field, with four
components on the variety {x,y,z,t}.
    The Navier-Stokes constraint given by (21) may be used to express the acceleration
term, a,  kinematically; i.e.,

               a = - grad H - ∂v/∂t = - v x curl v + υ{curl curl v }.                           (26)

By substituting (26) into (24), the torsion axial vector current becomes expressible in
terms of the helicity density, h, the Lagrangian function, L, and the viscosity as:

                T  = { h v - L curl v }  - υ {v  x (curl curl v) }                                        (27)

Note that the torsion axial vector current persists even for Euler flows, where υ = 0.  The
measurement of the components of the Torsion vector have been completely ignored by
experimentalists in hydrodynamics.

The Topological Parity 4-form can be evaluated by exterior differentiation as,

                  K  =  dH = dA^dA = - 2 ( a  •• ωω )  dx^dy^dz^dt.                           (28)
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The identity given by eq. (24) is in the form of a divergence when expressed on {x,y,z,t},

                         div T + ∂h/∂t  =   - 2( a  •• ωω )  ,                                                  (29)

and yields the helicity-torsion current conservation law if the anomaly,  - 2( a ••  ωω ), on
the RHS vanishes.  It is to be observed that when K = 0, the Euler index is zero, and the
integral of H over a boundary of support vanishes by Stokes theorem.  This idea is the
generalization of the conservation of the integral of helicity density in an Eulerian flow.
Note the result is true for a viscous fluid, subject to the constraint of zero Euler index.
However, if the topological parity 4-form, K, does not vanish, then the lines of the torsion
current, T, do not satisfy a conservation law and can start or stop within the fluid interior.
The parity 4-form, K, is the source for the production or destruction of topological defects
in the evolutionary process. 
    By a similar substitution of (26) into (28), the topological parity pseudo-scalar becomes
expressible in terms of engineering quantities as,

                 K =  - 2 υ { curl v ••(curl curl v)}=   - 2 υ { ωω  •• curl ωω}.                        (30)

The integral of K over {x,y,z,t} gives the Euler index of the flow.  It is to be observed that
the Topological Parity pseudo-scalar, K, is always zero for non-viscous Eulerian flows,
and can be zero for viscous Navier-Stokes flows if the vorticity vector, ωω, satisfies the
Frobenius integrability condition, { ωω  •• curl ωω} =  0.  From the result given by (30), it is
apparent that K, and therefore, the Euler index of the domain of support, is not necessarily
zero, unless the vorticity field, curl v, admits a foliation of codimension 1.  See Arnold
[1981].   If the flow is to be irreversible, the flowlines must have at least one point of
intersection in space-time, and therefore the Euler index of the domain of support cannot
be zero.  It follows that K for the domain of support cannot be zero, and therefore the
Pfaff dimension of the turbulent state must be 4.  The production of defects is to be
associated with the turbulent state.
    If the RHS of (16) goes to zero, then the constraint becomes equivalent to the Euler
equations of motion of a non-viscous fluid.  The criteria that i(V)dA = 0 has been shown
by Cartan [Cartan 1958] to be necessary and sufficient for the solution vector to have a
Hamiltonian representation relative to the Action, A.  This result corresponds to the well
known Clebsch potential representation for an Euler flow [Lamb 1945].   Note that even
in a viscous flow, if  F = υ curl curl v = 0,  the system has a Hamiltonian representation!
If the kinematics are without fluctuations, then the conclusion is again reached that the
system is Hamiltonian.

Analytically, if the RHS of (16) vanishes or is closed, then the solution vector
fields are uniformly continuous, for the even dimensional elements of the Pfaff sequence,
(the limit sets, F=dA and K = dH = F^F ) are invariants of the flow.  However, the odd
dimensional intersections of the Pfaff sequence need not be invariant, implying the
possibility of a continuous but changing topology.  If topology changes, such flows can
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not be homeomorphisms, but are uniformly continuous;  therefore, they must be
irreversible, in the sense that a continuous inverse does not exist.  Time reversal symmetry
is broken.

The constraint of uniform continuity may be relaxed, for a flow is continuous if the
limit points of the flow permute into the closure of the evolving topology [Hocking,
1984].  Such a flow is said to be continuous, but not necessarily uniformly continuous.   It
is possible to show that relative to the Cartan topology, all evolutionary processes
generated by the Lie derivative with respect to C2 vector fields are continuous.  The
equations of continuous, but not uniformly continuous, evolution must satisfy transversal
constraints of the form [Kiehn 1974],

                i(V)dA =  ΓA + {closed 1-forms to fit boundary conditions}

                   = Γ{L(x,t; v)dt + p  ••  (dx - vdt)}  + {closed 1-forms}  .                        (31)

This result implies that the viscous forces, F, in (16) must be proportional to the canonical
momentum, p, a result typical of empirical viscous friction assumptions.  In other words,
solutions to the Navier-Stokes equations (21), which are of the form (31), may be
continuous but irreversible relative to the Cartan fluctuation topology.
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