
Introduction
Differential Forms

The building blocks of differential forms on a variety of independent variables {xm} are scalar
functions, f(xm), and 1-forms, ω = Ak(xm)dxk. The 1-forms are to be thought of as integrands of a line
integral. Now consider the behavior of these objects under mappings. In particular let the {xm}
represent the independent variables of a range (the final state) which is the result of a map from a
domain {ξn}.(the initial state). Note that the number of independent variables on the domain and range
are not necessarily the same. Assume the map is at least C1 differentiable. The importance of
differential forms is that they are invariants of such C1 functional substitutions. For consider the
maps:

φ : {ξn} ⇒ {xm} = φm(ξn)

dφ : {dξn} ⇒ {dxk} = dφk(ξn) = [∂φk(ξn)/∂ξl]dξl = [J l
k(ξn)]|dξl 〉

The (non-square) matrix [J l
m(ξn)] represents the Jacobian matrix of the mapping. Now by functional

substitution into the forms f(xm) and ω = Ak(xm)dxk ≡ 〈Ak(xm)| ∘ |dxk 〉 on the final state, well defined
pre-images are functionally obtained on the initial state.

f∗(ξn) ⇐ f(φm(ξn)) ⇐ f(xm)

A l
∗(ξn) ∘ |dξl 〉 ⇐ 〈Ak(φm(ξn))| ∘ [J l

k(ξn)] ∘ |dξl 〉 ⇐ Ak(xm)dxk

This operation has been called the ”pullback” in the literature. It is the essence of the invariance
properties of differential forms. Given functional data on the final state, well defined functional data on
the initial state is automatically obtained by the process of functional substitution.

Note that the functional components of the 1-form on the initial state are related to the functional
components of the 1-form on the final state by means of the transpose of the Jacobian matrix.

〈A l
∗ | ⇐ 〈Ak | ∘ [J l

m] ≡ [J l
k(ξ)] transpose ∘ |Ak(x)〉 ⇒ |A l

∗(ξ)〉

This result of objects being functionally well defined is not necessarily obtained for the forward
direction. That is, the ”pushforward” of objects on the initial state does not lead to functionally well
defined objects on the final state unless the map and its Jacobian matrix are invertible. For maps
between spaces of different dimension the ”pushforward” is impossible, but the ”pullback” always
works. It is this feature of differential forms that permits differential forms to transcend ordinary tensor
calculus, and to carry information about topological change. Note that the maps of interest may be
immersions from spaces of lower dimension to spaces of higher dimension, or submersions
(projections) from spaces of higher dimension to spaces of lower dimension.

Contravariant Vectors:
Consider an initial state as a manifold of independent variables {uσ} ≡ {u,v,w}. Consider a final

state as a manifold of independent variables {xk} ≡ {x,y, z}. A point in the initial state can be
considered as a position vector from the origin {0,0,0} to the set {u,v,w}. It is conventional to
consider the position vector, as a column vector. Similarly on the final state the position vector can be
written as



R =
x

y

z

Presume a differentiable map φ exists between the initial and final state.

φ : {uσ} ⇒ {xk} = {fk(uσ)}.

Example:

x = u

y = u + v2

z = v + uw3

The differentiability of the non-linear map leads to a linear relationship between the differentials:

dφ : {duσ} ⇒ {dxk} = {[∂fk(uρ)/∂uσ]duσ}.

Example:

dx = du

dy = du + 2vdv

dz = dv + w3 du + u3w2dw

The matrix

[∂fk(uρ)/∂uσ] =
1 0 0

1 2v 0

w3 1 3uw2

is defined as the Jacobian matrix of the mapping. Except at the origin on the initial state, this Jacobian
map is well defined in the sense that it is invertible at all points of the initial domain except the origin.
From the implicit function theorem there are restricted domains for which an inverse map exists,
defining local diffeomorphisms.

Note that the linear mapping of the differentials can be written in matrix form

dx

dy

dz

=
1 0 0

1 2v 0

w3 1 3uw2

du

dv

dw

,

an equation that takes a row vector on the initial state and creates a row vector on the final state. This
linear mapping (the push forward) is the epitome of a contravariant tensor mapping. That is,



those ordered arrays of functions of arguments on the initial state that are linearly mapped into ordered
arrays of values on the final state by means of the Jacobian matrix are defined as contravariant tensors
of rank 1, or a contravariant vector.

Example: Consider a dynamical system on the initial state as a velocity vector field U of functions
on the initial state.

U =
Uu

Uv

Uw

=
du/dt

dv/dt

dw/dt

≐
1 + uv

v3

uw

This vector on the initial state can be transformed into a vector on the final state by the Jacobian matrix
rule

Vx

Vy

Vz

=
1 0 0

1 2v 0

w3 1 3uw2

Uu

Uv

Uw

=
1 0 0

1 2v 0

w3 1 3uw2

1 + uv

v3

uw

=
1 + uv

1 + uv + 2v4

w3 + w3uv + v3 + 3u2w3

Note that the ordered array of functions on the final state has arguments on the initial state! In order to
obtain an ordered array of functions with arguments on the final state it is necessary to know the
inverse mapping such that the {u,v,w} can be expressed in terms of the{x,y, z}. Given a point on the
initial state, a value of the contra-variant vector on the final state is readily computed. However, the
functional form of the components of the contra-variant vector on the final state with arguments over
the base {x,y, z} is impossible without knowledge of the inverse mapping.

Co-variant Vectors:
Next consider a function defined on the final state, Θ(x,y, z). Compute the differential of this

function using the chain rule:

dΘ(x,y, z) = {∂Θ(x,y, z)/∂x}dx + {∂Θ(x,y, z)/∂y}dy + {∂Θ(x,y, z)/∂z}dz.

Note that this construction can be written as the linear-row column product:

dΘ(x,y, z) = ∂Θ(x,y, z)/∂x ∂Θ(x,y, z)/∂y ∂Θ(x,y, z)/∂z

dx

dy

dz

.

Now use the mapping to rewrite the expression on terms of the variables of the initial state,
{u,v,w}.



dΘ(x,y, z)

= ∂Θ(x,y, z)/∂x ∂Θ(x,y, z)/∂y ∂Θ(x,y, z)/∂z

∂x/∂u ∂x/∂v ∂x/∂w

∂y/∂u ∂y/∂v ∂y/∂w

∂z/∂u ∂z/∂v ∂z/∂w

du

dv

dw

= Ax(x,y, z) Ay(x,y, z) Az(x,y, z)

1 0 0

1 2v 0

w3 1 3uw2

du

dv

dw

= Au(x,y, z) Av(x,y, z) Aw(x,y, z)

du

dv

dw

=
∗
Au (u,v,w)

∗
Av (u,v,w)

∗
Aw (u,v,w)

du

dv

dw

= d
∗
Θ (u,v,w).

An ordered array of functions on the final state that behaves like the components of the gradient of
a function ( a row vector) producing an ordered array of functions as a row vector on the initial state is
the epitome of what is defined classically as a co-variant vector. In the usual realm of tensor analysis,
the gradient is defined on the initial state, and the Jacobian maps are presumed to be invertible. Then
the covariant tensor field is defined as the ”pushforward” with respect to the inverse Jacobian matrix
transposed. It is quite common in engineering applications to restrict the mappings such that the
Jacobians are elements of the orthogonal group. In such restricted cases the inverse and the transpose
are identical. It is much more illuminating to consider the covariants as defined on the final state and
consider the functional substitution and the pullback as the proper definitions of covariant tensor fields.
The reason is that the co-tensors then are well defined with respect to pullbacks whether or not the
Jacobian is invertible.

Further note that the process is deduced by the behavior of the gradient, but the mapping and
pullback concepts can start with the set

Ax(x,y, z) Ay(x,y, z) Az(x,y, z)

whether or not it can be constructed from a gradient operation. In other words the differential form

A =
3

∑
k=1

Ak(x,y, z)dxk

need not be exact. Objects that behave as under the pullback transform as the Jacobian transpose are
defined as covariant tensor fields.

Example:
Define

Θ(x,y, z) = 1 + x2 + yxz

Then



∂Θ(x,y, z)/∂x ∂Θ(x,y, z)/∂y ∂Θ(x,y, z)/∂z

= Ax(x,y, z) Ay(x,y, z) Az(x,y, z)

= 2x + yz xz yx

and

∗
Au (u,v,w)

∗
Av (u,v,w)

∗
Aw (u,v,w)

= Ax(x,y, z) Ay(x,y, z) Az(x,y, z)

1 0 0

1 2v 0

w3 1 3uw2

= 2x + yz + xz + yxw3 xz2v + yx yx3uw3

Finally the components of the co-vector field on the initial state can be expressed as three functions
with arguments on the initial state, as the pull-back:

∗
Au (u,v,w) = 2u + (u + v2)(v + uw3) + uu(v + uw3) + (u + v2)uw3

∗
Av (u,v,w) = u(v + uw3)2v + (u + v2)u
∗
Aw (u,v,w) = (u + v2)u3uw3

Everything with respect to the pullback is well defined without need for a inverse mapping or for a
inverse Jacobian mapping.

Contra-tensor densities
In addition to the pullback of 1-forms there is another construction that can pullback properly and

yields contravariant tensor densities (not tensors). Consider the volume element on the final state, with
perhaps some measure function, ρ(x,y, z).

Ω = ρ(x,y, z)dx^dy^dz

Contract the volume element with a contravariant vector on the final state to form the N-1 form
density:

J = i(Vk(x,y, z))Ω = ρ(x,y, z){Vx(x,y, z)dy^dz − Vy(x,y, z)dx^dz + Vz(x,y, z)dx^dy}

Now substitute for each differential is expression in terms of differentials of the variables of the initial
state, and collect terms. The ordered array is equivalent to multiplying the contravariant vector by the
adjoint matrix (matrix of cofactors transposed) of the original Jacobian matrix. This adjoint matrix is
well defined and exists even though the determinant of the Jacobian vanishes. Finally, substitute in the



pulled back ordered array of functions the values of x,y,z in terms of u,v,w to create a contravariant
tensor density field on the initial state.

In other words, there are two species of differential forms that have functionally well defined
formats on the initial state given functional data on the final state, and without knowledge of an inverse
mapping or and inverse Jacobian mapping. One species defines covariant tensors (Field intensities)
and the other defines contravariant tensor densities (Field excitations) Not only can values of such
objects be retrodicted to the initial state from the final data, but also the functional forms on the initial
state are well define in terms of the functional data on the final state.

The duals of these concepts, contravariant tensors and co-variant capacities, are not well behaved
with respect to non-invertible mappings. That is values may be predicted, but functional formats
cannot.


