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New time dependent wave solutions to the classical homogeneous Maxwell equations in the
vacuum have been found. These waves are not transverse; they exhibit both torsion and spin;
they have ¯nite magnetic helicity, A ± B 6= 0, a non-zero Poynting vector, E £H 6= 0;and a non
zero second Poincare invariant, E ± B 6= 0: Two four component rank 3 tensors, constructed on
topological grounds in terms of the Fields and Potentials, are used to de¯ne the concepts of torsion
and Spin, even in domains with plasma currents. The divergence of the spin pseudo vector generates
the Poincare invariant equivalent to the Lagrangian of the ¯eld, (B ±H¡D ±E)¡ (A ± J ¡ ½Á) .
The divergence of the Torsion pseudo vector generates the second Poincare invariant, 2E ±B: The
Poincare invariants have closed integrals which are deformation invariants, and therefore can be
used to de¯ne deformable coherent structures in a plasma. When the second Poincare invariant is
non-zero, there can exist solutions that are not time-reversal invariant.

I. THE DOMAIN OF CLASSICAL ELECTROMAGNETISM

In terms of the notation and the language of Sommerfeld and Stratton [1], the classic de¯nition of an electromag-
netic system is a domain of space-time independent variables, fx; y; z; tg; which supports both the Maxwell-Faraday
equations,

curl E + @B=@t = 0; div B = 0; (1)

and the Maxwell-Ampere equations,

curl H ¡ @D=@t = J; div D = ½: (2)

For the Lorentz vacuum state, the charge-current densities are subsumed to be zero [J, ½] = 0 and the ¯eld
excitations, D and H, are linearly connected to the ¯eld intensities, E and B, by means of the homogeneous and
isotropic constitutive relations D = "E ; B = ¹H: It is further subsumed that the classic Maxwell electromagnetic
system is constrained by the statement that the ¯eld intensities are deducible from a system of twice di®erentiable
potentials, [A; Á]:

B = curl A; E = ¡grad Á ¡ @A=@t: (3)

This statement is a topological constraint which in e®ect states that the domain of support for the E and B ¯elds
cannot be compact without boundary, except for the (twisted or °at) torus or Klein bottle.

II. THE FIELDS OF TORSION AND SPIN

Besides the charge current 4-vector density, [J; ½]; whose integral over any closed 3 dimensional manifold is a
deformation invariant of the Maxwell system, there exist two other algebraic combinations of the ¯elds and potentials
that can lead to similar topological quantities. These objects are the rank 3 Spin (pseudo) vector, or current [2],
de¯ned in component form as

Spin : S4 = [A £ H + DÁ;A ± D] ´ [S;¾]; (4)

and the rank 3 Torsion (pseudo) vector [3] de¯ned in component form as

Torsion : T4 = [E £ A + BÁ;A ± B] ´ [T;h]: (5)

These topologically important ¯elds, which are intimately connected with the potentials and their physical signi¯cance,
have been little studied (if at all) in classical electromagnetic theory. Solutions to the classical Maxwell's equations
are given below that demonstrate existence of such ¯elds of spin and torsion, without recourse to any modi¯cation of
the classical theory [4].
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The 4-divergence of these 4-component rank 3 tensor ¯elds leads to the Poincare projective invariants of the Maxwell
system:

Poincare Invariant 1 = div3(A £ H + DÁ) + @(A ± D)=@t (6)

= (B ± H ¡ D ± E) ¡ (A ± J ¡ ½Á)

Poincare Invariant 2 = div3(E £ A + BÁ) + @(A ± B)=@t (7)

= ¡2E ± B

These Poincare invariants, like the ¯eld intensities, are invariant in the vacuum state to any choice of gauge. When
the Spin vector is non-zero, and its 4-divergence (the ¯rst Poincare invariant) vanishes, integrals over closed three
manifolds of the Spin 4 vector lead a topological property equivalent to a deRham period integral [5]:

Spin =
R R R

closedfSxdy^dz^dt ¡ Sydx^dz^dt + Szdx^dy^dt ¡ ¾dx^dy^dzg: (8)

This result is valid in the plasma state as well as the vacuum state.
This closed integral is a deformation invariant of any evolutionary process that can be described by a singly

parameterized vector ¯eld,¯V; independent of the choice of parameterization, ¯(x; y; z; t), for the Lie derivative of
the Spin integral vanishes:

L(¯V) Spin = 0: (9)

When the associated Poincare invariant vanishes, the values of the Spin integral form rational ratios, and as topological
quantities, they can be used to de¯ne deformable topological coherent structures in a plasma.

Similar statements hold for the closed integrals of the Torsion vector. However, non-zero values of the second
Poincare invariant are important to the generation of thermodynamic irreversible evolutionary processes. These
concepts will be exhibited with more detail elsewhere. [6]

III. EARLIER WORK

In earlier articles, Chu and Ohkawa [7] developed a standing wave example that led Khare and Pradhan [8] to
construct a free space electromagnetic wave which had non-zero Poincare Invariants. Braunstein [9] mentioned that
these developments were technically °awed and further argued that the existence of a bona¯de (spatially bounded)
electromagnetic wave in free space with non-zero Poincare invariants was impossible.

The solution counter examples to Braunstein's claim, as given below, were inspired by the work of Ranada
[10] who investigated the applications of the Hopf map [11] to the problem of ¯nding knotted solutions to the Maxwell
equations.

Ranada suggested the 4-potential (based on the Hopf map)

A = [y;¡x;¡1](2=¼)=¸4 ; Á = 0=¸4; where ¸2 = 1 + x2 + y2 + z2; (10)

which will generate the ¯elds

E = [0; 0; 0] B = [¡2(y + zx);+2(x ¡ yz);+(¡1 + x2 + y2 ¡ z2)](4=¼)=¸6: (11)

Unfortunately, the Ranada 4-potential does not satisfy the Maxwell-Ampere equation for the vacuum with a zero
charge current 4-vector, and therefore is not a suitable vacuum solution.

IV. EXAMPLE VACUUM SOLUTIONS WITH TORSION AND SPIN

Modi¯cations of the Hopf map suggest consideration of the system of potentials given by the equations

A = [+y;¡x;+ct]=¸4 ; Á = cz=¸4; where ¸2 = ¡c2t2 + x2 + y2 + z2: (12)

which yield the real ¯eld intensities,
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E = [¡2(cty ¡ xz);+2(ctx + yz);¡(c2t2 + x2 + y2 ¡ z2)]2c=¸6 (13)

and

B = [¡2(cty + xz);+2(ctx ¡ yz);+(c2t2 + x2 + y2 ¡ z2)]2=¸6: (14)

Subject to the dispersion relation, "¹c2 = 1 and the Lorentz constitutive conditions, these time dependent wave
functions satisfy the homogeneous Maxwell equations without charge currents, and are therefore acceptable vacuum
solutions. The extensive algebra involved in these and other computations in this article were checked with a Maple
symbolic mathematics program [12]. It is to be noted that when the substitution t ) ¡t is made in the functional
forms for the potentials, the modi¯ed potentials fail to satisfy the vacuum Lorentz conditions for zero charge-currents.
It appears that the valid vacuum solution presented above is not time-reversal invariant.

The Spin current density for this ¯rst non-transverse wave example is evaluated as:

Spin : S4 = [x(3¸2 ¡ 4y2 ¡ 4x2); y(3¸2 ¡ 4y2 ¡ 4x2); z(¸2 ¡ 4y2 ¡ 4x2);

t(¸2 ¡ 4y2 ¡ 4x2)](2=¹)=¸10; (15)

and has zero divergence. The Torsion current may be evaluated as

Torsion : T4 = ¡[x; y; z; t]2c=¸8: (16)

and has a non-zero divergence equal to the second Poincare invariant

Poincare 2 = ¡2E ± B = +8c=¸8: (17)

The solution has magnetic helicity as A ± B 6=0 and is radiative in the sense that the Poynting vector, E £ H 6=0:
It is to be noted that the example solution given above is but one of a class of vacuum wave solutions that

have similar non transverse properties. As a second example, consider the ¯elds that can be constructed from the
potentials,

A = [+ct;¡z;+y]=¸4 ; Á = cx=¸4; where ¸2 = ¡c2t2 + x2 + y2 + z2: (18)

These potentials will generate the ¯eld intensities

E = [+(¡c2t2 + x2 ¡ y2 ¡ z2);+2(ctz + yx);¡2(cty ¡ zx)]2c=¸6 (19)

and

B = [+(¡c2t2 + x2 ¡ y2 ¡ z2);+2(¡ctz + yx);+2(cty + zx)]2=¸6: (20)

As before, these ¯elds satisfy the Maxwell-Faraday equations, and the associated excitations satisfy the Maxwell-
Ampere equations without producing a charge current 4-vector. However, it follows by direct computation that the
second Poincare invariant, and the Torsion 4-vector are of opposite signs to the values computed for the ¯rst example:

Torsion : T4 = +[x; y; z; t]2c=¸8 ; ¡2E ± B = ¡8c=¸8 : (21)

When the two examples are combined by addition (or subtraction), the resulting wave is transverse magnetic (in
the topological sense that A ± B = 0). Not only does the second Poincare invariant vanish under superposition, but
so also does the Torsion 4 vector. Conversely, the examples above show that there can exist transverse magnetic
waves which can be decomposed into two non-transverse waves. A notable feature of the superposed solutions
is that the Spin 4 vector current does not vanish, hence the example superposition is a wave that is not transverse
electric (in the topological sense that A ± D 6= 0). For the examples presented above and their superposition, the
¯rst Poincare invariant vanishes, which implies that the Spin integral remains a conserved topological quantity for
the superposition, with values proportional to the integers. The Spin current density for the combined examples is
given by the formula:

Spin : S4 = [¡2x(y + ct)2; (y + ct)(x2 ¡ y2 + z2 ¡ 2cty ¡ c2t2);¡2z(y + ct)2;

¡(y + ct)(x2 + y2 + z2 + 2cty + c2t2)](4=¹)=¸10; (22)

while the Torsion current is a zero vector
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Torsion : T4 = [0; 0; 0; 0]: (23)

In addition, for the superposed example, the spatial components of the Poynting vector are equal to the Spin current
density vector multiplied by °, such that

E £ H = ° S; with ° = ¡(x2 + y2 + z2 + 2cty + c2t2)=2c(y + ct)¸2: (24)

These results seem to give classical credence to the Planck assumption that vacuum state of Maxwell's electrodynamics
supports quantized angular momentum, and that the energy °ux must come in multiples of the spin quanta. In other
words, these combined solutions to classical electrodynamics have some of the qualities of the photon.
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