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Abstract

Cartan's method of exterior di®erential forms is used to generate an
intrinsic transport theorem for continuous media. [with notes updating the
original article as of 11/15/2000]

1. Introduction

In order to demonstrate partially the power of Cartan's ideas, the theory of exte-
rior di®erential forms [1] will be utilized to develop a set of theorems applicable to
continuous media, including an intrinsic transport theorem. As an example, the
methods will be applied to the problems of electrodynamics of continuous media,
for which it will be demonstrated that the intrinsic transport theorem serves as a
¯rst integral for the system of inhomogeneous partial di®erential equations known
as the conservation laws.
Cartan's methods may be used to formulate physical statements in a manner

independent of the representation, dimension, and topological nature of the un-
derlying manifold. Since these notions are the ultimate extension of that basic
notion of general relativity which is independent from a frame of reference, the
application of Cartan's methods demands exposition. Unfortunately the math-
ematical notions of the exterior product ^, and the exterior derivative d, and
the star operator *, which are the basic tools in the theory of di®erential forms,
have not extensively found their way into the English literature of physics. For



purposes of de¯nition, the exterior, or hook, product is an associative, distributive
pairing of p-forms, which combines 1-forms, ® and ¯; according to the rules

® ^ ¯ = ¡¯ ^ ®; ® ^ ® = 0: (1.1)

The exterior derivative d is operation which carries a p-form into a p+1 form in
a unique manner,

d(AHdx
H) = (@AH=@x

¹)dx¹ ^ dxH ; (1.2)

and obeys a modi¯ed Leibniz rule when applied to the exterior product of a p-form
¸ and a q-form ¹:

d(¸ ^ ¹) = d(¸) ^ ¹+ (¡1)p¸ ^ d¹: (1.3)

The star, or Hodge dual, operator ¤ depends upon the metric and is a unique map
of a p-form into an N-p form, such that the hook product of the p-form and its
dual, yields a scalar tensor density. For the p-form, !(p) = AHdx

H ;with H a col-
lective index equal to the set of numbers fi1:::ipg; ¤!(p) is equal to g1=2AHdxN¡H ;
such that

!(p)^ ¤ !(p) = g1=2AHAH(dx1^:::^dxN ): (1.4)

2. Theorems

For purposes of this note it is postulated that the presence of a physical system
is speci¯ed by a set of metric coe±cients g¹º , and a covariant vector ¯eld whose
components are the coe±cients of the fundamental 1-form, A. From the theory
of exterior di®erential forms, and in terms of the basic operations de¯ned above,
it is possible to prove a number of theorems:

Theorem 2.1. In a space of N ¸ 2 dimensions, the Hodge dual form, ¤A,
satis¯es the necessary conditions of integrability; i.e.,(¤A) ^ (d ¤ A_) > 0: Let
¯ be the integrating factor, such that the N-1 form ¯ ¤A , is closed: d(¯ ¤A) = 0:
[Note added 11/15/2000. Every N-1 form admits an integrating factor such that
the associated vector ¯eld W (de¯ned such that i(W )(dx1^:::^dxN) = ¯ ¤A ) has
a zero divergence over a domain that excludes the poles of the integrating factor.
It is now known that the Holder norm can be used to construct such an integrating
factor.]
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Theorem 2.2. From the 1-form A; there may derived by exterior di®erentia-
tion a 2-form of ¯eld intensities, F = dA ; which by Poincare's lemma is closed:
dF = ddA = 0: This statement establishes the equations for the ¯eld intensities
[Note added 11/15/2000. For a electromagnetic representation, the PDE's gener-
ated by Poincare's lemma are known as the Maxwell-Faraday induction equations.
However, the statements are valid for other representations of the 1{form, A, as
well. That is, there is an equivalent Maxwell - Faraday induction law for every
physical system that can be described by a 1-form of Action. An example is a
space time °uid with vorticity or acceleration, for which dA 6= 0 .]

Theorem 2.3. The Hodge dual of F satis¯es the necessary conditions for inte-
grability in a space of N � 4 dimensions. The existence of the integrating actor
as the product of two factors yf is assumed. It follows that the N-2 form of ¯eld
excitations may be de¯ned by the equation H = y¤F; which e®ectively establishes
a constitutive link between the ¯eld intensities and the ¯eld excitations, with the
constitutive coe±cients determined to within a factor by the metric coe±cients,
g¹º : [Note added 11/15/2000. The factor f which was recognized in 1968, in
more recent terms has been called the axion ¯eld. This idea was used to obtain
a possible representation for the two form of excitations, H; in terms of a metric
based constitutive relation. Such a metric based constgraint is not necessary, but
was used to investigate a possible interaction between the polarization of the EM
¯eld and the gravitational ¯eld.]

As (yf ¤ F) is closed, it follows that dH = J; which are the fundamental
equations of ¯eld excitation The current , J , is an N ¡ 1 form derived from
the distribution, f : J = H ^d(lnf): [Note added 11/15/2000, the PDE's de¯ned
by the equations dH = J are known as the Maxwell-Ampere equations in the
electromagnetic representation. The format of the current 3-form is due to the
assumption of Hodge duality, and the existence of an integrating factor for H.
In engineering format, the charge density is ½ = D ¢ grad(lnf) and the current
density is j = grad(lnf)£H+D @(lnf)=@t]

Theorem 2.4. : From Poincare's lemma, J is closed leading to the fundamental
equation of continuity, dJ = 0:
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Theorem 2.5. From the forms A and H construct the N ¡ 1 form, A^H, which
satis¯es the identity:

ª = ÃdxN = d(A^H)¡ (F^H) +A^J = 0 (2.1)

This statement leads to the di®erential form of the intrinsic transport theorem.
[Note added 11/15/2000, the 3-form (A^H) is now de¯ned as the "topological "
Spin 3-form, and the notation has been changed such that the symbol G is used
instead of H for the ¯eld excitations. Note that ª is an N form, and Ã is a 0
form.]
For arbitrary p-forms, !(p), Stokes theorem,

R
(pdim ensional boundary of M) !

(p) =R
(p+1 dim ensional M) d(!

(p)); forms a basis of global conservation theorems. Con-
sider the N ¡ 1 form, A^H, which by Stokes theorem leads to the integral form
of the transport theorem,

Z

@M
(A^H)=

Z

M
d(A^H) =

Z

M
(F^H)¡

Z

M
(A^J): (2.2)

Theorem 6: The N-form, ª, is co-closed, ±ª = 0; the explicit expression
for this statement leads to the well known power theorems, fully equivalent to
relations involving the divergence of the classical stress-energy tensor in linear
systems with constant metric coe±cients. In essence, the functionª is a ¯rst in-
tegral to the inhomogeneous conservation laws. It should be emphasized that the
theorems stated above are independent of representation and choice of coordinate
system. [Note added 11/15/2000. ±ª = ¤d ¤ª = 0 = Ã to within a factor. ]
For purposes of rapid comprehension of the above theory, the representation

chosen will be classical electrodynamics [2], for which the abstract results may be
veri¯ed for a given set of coordinates. Using mks units, an arbitrary xyzt reference
frame, and Sommerfeld's notation, [3], the ¯eld intensity statement, dF = 0, is
equivalent to the ¯rst, or homogeneous Maxwell pair of vector equations, based
upon the fundamental 1-form, A = A¹dx

¹: The ¯eld excitation statement, dH =
J , leads to the second, or inhomogeneous, Maxwell pair, with the constitutive
tensor explicitly determined in terms of the metric coe±cients as:

Â¹º®¯ = 1=2 y g1=2(g¹®gº¯ ¡ g¹¯gº®): (2.3)

The intrinsic transport theorem becomes

Ã ´ (divM+ @l=@t)¡ (B ¢H¡D ¢ E) + (A ¢ J¡ ½Á) = 0; (2.4)
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which is tentatively interpreted as a statement relating the °ux of intrinsic angu-
lar momentum, M = A£H + DÁ; and the time rate of change of the intrinsic
angular-momentum density, l = A ¢D [which has the units of joule-sec/(meter)3]
to the Lagrangian properties of the ¯eld. In Minkowski notation, the contravari-
ant 4-vector density of intrinsic angular momentum °ux, M¹ = (M; icl); has a
nonzero 4-divergence which couples the transport of intrinsic angular momentum
to twice the di®erence between the kinetic and elastic energy density (the reactive
energy density), less the interaction energy density of the ¯eld. The intrinsic
angular momentum is not equivalent to a mechanical angular momentum, as it is
independent from the choice of an origin.
The energy-momentum theorems are obtained by setting the components of

the N-dimensional gradient of Ã equal to zero. For example, the time component
of the gradient of (3) leads to the well known Poynting theorem,

div(E£H) +H@B=@t+E@D=@t+ J ¢ E = 0: (2.5)

The new transport theorem (3) as well as the formulation of the Poynting the-
orem given in (4), has intrinsic signi¯cance since it was derived from the theory
of forms. (The intrinsic signi¯cance cannot be realized if one simply derives the
theorem from manipulation of Maxwell's equations.) Equation (3), as well as
equation (4), is both gauge invariant and covariant with respect to all smooth
coordinate transformations. [Note added 11/15/2000, the claim of gauge invari-
ance is misleading, but true relative to all smooth coordinate transformations].
The conventional treatment of the Poynting theorem attempts to cast (4) into
the form of an equation of continuity with source:

div(S)+@W=@t+ J ¢ E = 0: (2.6)

where the term W = 1=2(B ¢H+D ¢ E) is interpreted as the ¯eld energy density.
Such a formulation does not have intrinsic properties for it is restricted to systems
where the constitutive properties are linear and static. However, it is possible
to construct the complete momentum-energy °ux theorems from (3) in a format
related to (5); the gradient of the fundamental scalar, Ã; in tensor notation,

0 ´ @Ã=@x¾ = @(@H¹ºAº)=@x
¹ ¡ 1=2H¹ºF¹º + J

¹A¹)=@x
¾ (2.7)

can be rearranged to yield
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@(F¾¸H
¸¹ + 1=4 ±¹¾F¸ºH

¸º)=@x¹ = F¾¸J
¸ + 1=4 (F¸º@H

¸º=@x¾ ¡H¸º@F¸º=@x
¾);

(2.8)
explicitly demonstrating the fact that Ã is a ¯rst integral of the inhomogeneous
conservation laws. The ¯rst term in (7) is the divergence of the Maxwell stress
energy tensor; the second term is the Lorentz force density; and the third term
is the correction to the force density for non-linear, non-constant constitutive
relations [4] often associated with non-inertial frames of reference. By means of
the metrical constitutive linkage, Borocho® [5] has demonstrated that the ¯rst
and third terms combine to form the covariant derivative of the Maxwell stress
energy tensor.
Although the application developed above has been in the area of electro-

dynamics, it should be emphasized that Cartan's methods are independent of
representation, suggesting that the application to other problems of continuous
media will follow by an appropriate choice of representation. An attempt is being
made to exploit this principle in the study of °uids, guided by the recognition
that the study fundamental 1-form, A , is related to the di®erential action per
unit source. For °uid systems, the unit source is mass, and the fundamental
1-form becomes related to the velocity ¯eld of the °uid. The results of this in-
vestigation will appear later. [Note added 11/15/2000, this was ¯rst done for
a Navier-Stokes °uid in Kiehn, R. M. , (1975b), "Intrinsic hydrodynamics with
applications to space-time °uids", Int. J. of Eng. Sci. 13, p. 941. Several other
applications were developed over the years and many of the publications can be
downloaded from my website.].
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