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Abstract

Cartan’s differential topology is used to construct a method for de-
termining if a process applied to a physical system is thermodynamically
irreversible.

1. Introduction

For physical systems that can be described by a 1-form of Action, A, and pro-
cesses that can be described by a vector field, V, it is possible, using Cartan’s
magic formula [1], to determine if the process is thermodynamically reversible or
irreversible, without resorting to the assumptions of statistical mechanics. In
classical thermodynamics, a process acting on a physical system will produce a
1-form of Heat (). If the Heat 1-form, (), admits an integrating factor, then the
process is thermodynamically reversible [2]. Otherwise the process is irreversible.
The Frobenius theorem implies that an integrating factor exists if and only if
the Heat 1-form satisfies the conditions of integrability, @ "d@ = 0. In such a
situation, () admits a representation of the form @) = T'dS. From the first law it
follows that the Work 1-form, for a reversible process, satisfies the equations,



W =TdS — dU, dW =dT"dS, W dW =dU"dT"dS, dW dW =0. (1.1)
It follows that,

An irreversible process O dW dW # 0. (1.2)

All that is left to do is to find a relationship between thermodynamics and
evolutionary dynamics that will permit the evaluation of Q"d@Q and dW "dW. As
Tisza points out [3], this search for a non-statistical relationship between mechan-
ics and thermodynamics has been an open question. This article demonstrates
how Cartan’s theory of exterior differential systems may be used to solve this
problem, and treat thermodynamic problems of topological evolution whereby
the topology of the initial state and the topology of the final state are not the
same [4]. A major result is that thermodynamic irreversibility is an artifact of
topological dimension > 4, a fact that follows immediately from the requirement
that an irreversible process satisfies the equation, dWW"dW # 0. Hence turbulence
(which is by agreement thermodynamically irreversible) in 2D+1 dimensions is a
myth.

2. Cartan’s Magic Formula
In Cartan’s Calculus, a physical system is represented by a 1-form of Action:

A=Ay da" — ¢dt = p,dg” — hdt. (2.1)

and a process is represented by a vector field:

V = [v,1] relativeto {z,y, z,t} (2.2)

Evolution of the Action, A relative to the process, V, is described by Cartan’s
Magic Formula, using the Lie derivative

Ly A =i(V)dA + d(i(V)A) = Q. (2.3)

By rewriting this equation of topological evolution (called the homotopy formula
by Arnold [5]),



LvA=W +dU) =Q (2.4)

it is apparent that there is a connection between Cartan’s Magic Formula and the
first law of electrodynamics. Assume that the relationship is valid. Then for a
given physical system, A, it is possible to compute both W and Q. If dW "dW # 0,
then that process V acting the system A is thermodynamically irreversible. It is
remarkable that on a symplectic manifold of even dimension 2n+2 it is possible
to find a unique direction field, defined as the Topological Torsion vector, such
that evolution with a component in the direction of the Topological Torsion vector
satisfies the conditions of thermodynamic irreversibility. This direction field is
defined by the equation,

i(T)da dy dz"dt.... = AdA.... (2.5)

Evolution of the Action in the direction of the Torsion vector yields

LtA=TA (2.6)
where I' = div(T). It follows that

QdQ = LA LydA =T% A"dA (2.7)

This expression is not zero if the divergence of the Torsion vector is not zero.
Such a requirement implies that d(A"dA...) does not vanish and insures that the
manifold is symplectic and of even dimension. Evolution in the direction of
T with div(T) # 0 is thermodynamically irreversible. Examples are presented
below.

3. Categories of Processes

Processes, V, can be put into equivalence classes determined by the deRham
decomposition theorems and Pfaff dimension of the Action and Work 1-forms.
Consider the sequence {A,dA, A"dA,dA"dA...) This Pfaff sequence will termi-
nate with D terms. The number of elements, D, in the sequence determines the
Pfaff dimension or class [6] of a particular 1-form of Action, and represents the
minimum number of functions required to describe the 1-form, from a topological
point of view. The idea is that there exists a submersive map from the original



domain of definition to the domain of minimal Pfaff dimension, D. The condi-
tion for thermodynamic irreversibility, dW dW # 0,implies that the minimum
dimension for the existence of irreversible work is equal to (Pfaff dimension) 4.

First, consider the more familiar classes of processes that belong to (but do
not exhaust) the reversible category. The work 1-form is then zero, W = 0,
exact, W = —dO, or closed, dW = 0. When the Work 1 form is null, the
1-form of Action of maximal rank must be of odd dimension 2n+1, and defines a
contact manifold. On such manifolds there exists a unique extremal field that is
generated by a Hamiltonian function [7]. The closed integrals of the Action are
then deformation invariants of the extremal process.

3.1. Classes of Reversible Processes

3.1.1. Extremal Hamiltonian

Extremal processes are defined by the constraint that the Virtual Work 1-form
vanishes:

W =i(V)dA =0 (3.1)

There is always a Hamiltonian formulation for the extremal process. In hydrody-
namics extremal processes are to be associated with the Euler equations. There
are various classes of solutions to the Euler equations:

e 1. Potential flows, which have no lift, no drag, no circulation and no
vorticity, and are of Pfaff dimension 1.

A;Ao,dA:o,ij:o. (3.2)

2. Joukowski flows which have lift but no drag, circulation, but no vor-
ticity, and are of Pfaff dimension 1.

S A A0, dA =0, %A;é() (3.3)

The translational flow combined with the circulation produces lift on
an airfoil.



3. Lamb Flows which admit vorticity but are completely integrable, and
are of Pfaff dimension 2.

SA£0, dA#£0, A'dA=0 (3.4)

Such processes are without helicity.

3.1.2. Bernoulli-Casimir-Hamiltonian:

In Bernoulli processes the Work is exact, not zero, and the cyclic work is zero.
Examples are the Eulerian fluid with vorticity, and barotropic flows.

W = i(V)dA = dO, fw 0 (3.5)

The Bernoulli-Casimir function © is a generator of a Hamiltonian process, and
is a flow invariant in the sense that © is constant along a flow line, Lv© = 0.
However, the flow invariant is not necessarily the same from flow line to flow line.

3.1.3. Helmholtz-Symplectic:

The Work 1-form is closed, but the cyclic work need not be zero!

4w =0, fvuo (3.6)

All of the above examples satisfy the Helmholtz theorem on the conservation
of vorticity, for

LydA =dW +ddU = 0+ 0 = dQ. (3.7)
The work 1-form is at most of Pfaff dimension 1. Hence all such classes of
processes satisfy the criteria of thermodynamic irreversibility in that Q" d@Q = 0.
3.1.4. Non-Barotropic Flows.

In non-barotropic process the Work 1-form is of Pfaff dimension 2, hence is inte-
grable and of the form

W =dP/p, dW = —dp dP/p*, W dW =0. (3.8)



Presuming irreversibility, leads to dP/p = T'dS —dU, dW = dT"dS = —dp"dP/p?
and implies the existence of a functional relation between

{P,S, T}, {p,S, T}, {p,P, T}, {p,S, P}, as well as{U,S,T}. (3.9)

However as dW "dW = 0, the process is thermodynamically reversible.

4. Irreversible Processes and Anholonomic Fluctuations

Anholonomic fluctuations are used to define the deviations from kinematic per-
fection for a vector field. They carry topological content in the sense that

A* = (dg" — V' dt) # 0. (4.1)

Cartan’s Magic formula of topological evolution can handle anholonomic fluctua-
tions: Consider a physical system represented by a Lagrange 1-form of Action:

A= L(g", V* t)dt + p, o (dg* — V*dt) (4.2)

For now, treat the p, as Lagrange multipliers What is the Pfaff topological di-

mension D (the minimum number of independent functions) of this action 1-form,
A? At first glance A has 3N+1 independent variables, but by direct computation

the Pfaff dimension = 2n+2. The Top Pfaffian is

(dA)™ = (n+ D){Er_ (OL/v" — py) @ dv*} dp,"...dp, dg""..dg™ dt, (4.3)

If, however, the constraints of canonical momenta are subsumed, such that 0L /9v*—
pr = 0, then the 2-form dA is not symplectic on its maximal dimension 2n+2, but
instead the top Pfaffian defines a contact manifold on a state space of topological
dimension 2n+1 with the formula

A(dA)"™ = n{ppo® — L(t,q,v}dp,"...dp, " dq" " ..dg""dt (4.4)

On the even dimensional symplectic manifold, the Topological Torsion, T,
vector is defined by the equation

i(T)da dy dz"dt.... = AdA.... (4.5)



It is possible to show that i(T)A = 0 and Lt(A) = I'A with lequal to the di-
vergence of the Torsion vector. As shown above, this leads to thermodynamic
irreversibility as Q"d@Q # 0. In this sense, anholonomic fluctuations from kine-
matic perfection could be considered as a source of thermodynamic irreversibility.

5. Examples of T,

5.1. ELECTROMAGNETISM

The Action 1-form of potentials:
A= Aodr — ¢dt
with
B=curlA and E=—-0A/0t— V¢ (5.1)
forming the components of dA. By direct computation,

T,= [E x A + B¢, A oB] (5.2)

Note 1: The Helicity density A o B is the 4th component of the Topological
Torsion Vector, T}.

Note 2: T is the second Poincare Invariant for an electromagnetic system.

5.2. HYDRODYNAMICS

Consider an Action 1-form of potentials:
A=vodr— Hdt (5.4)
with H defined as H = (vov/2—\divv+ [dP/p) = v ov—L and Vorticity de-

fined as
w =curlv. (5.5)



The equivalence class of solutions that satisfy the topological constraint on the
virtual work W,

W =i(V)dA = v{curlcurl v o (dr — vdt)}, (5.6)

are solutions to the Navier Stokes equations of motion.
By direct computation, the topological torsion vector is:

Ty= [hv—Lw—v curl w, h] (5.7)

where h = helicity = v ow and

I' = divy Ty = 2v {wocurlw} # 0. (5.8)

Hence, for a Navier Stokes fluid, domains where the vorticity field does not satisfy
the Frobenius integrability condition

wo curl w # 0 (5.9)

are domains of thermodynamic irreversibility, and are therefore are regions of
turbulent flow.

6. REFERENCES

More detail and examples can be found at CARTAN’s CORNER

http://www22.pair.com/csdc/car /carhomep.htm

[1] J. E. Marsden and T. S. Ratiu, ”Introduction to Mechanics and Symmetry”
Springer - Verlag (1994) p.122.

[2] P. Morse, " Thermal Physics” (Benjamin, N.Y.) (1964) p 60

I. I. Gol’'denblat ”Some Problems of the Mechanics of Deformable Media”
Norrdhoff-Holland 1962 (p.193)

[3] L.Tisza,” Generalized Thermodynamics” (MIT Press, Cambridge, MA, 1966)
pl25

[4]R. M. Kiehn, Int. J.of Eng. Sci.13, 41, (1975)

[5] V. I. Arnold and Boris A Khesin, ”Topological Methods in Hydrodynamics
” Springer (1998) p.33

[6] J. A. Schouten and W. Van der Kulk ”Pfaffs Problem” , Oxford University
Press, (1949)



[7] Cartan, E. (1958) Lecons sur les invariants integrauxs (Hermann, Paris
1958).

[8] P. Libermann and C-M Marle, ” Symplectic Geometry and Analytical Me-
chanics” (Riedel) 1978 p 65.



