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Abstract

Recent activity in topological classi¯cations of closed symplectic in-
tegrable Hamiltonian systems focuses attention on those properties of a
Lagrangian formulation for which the fundamental 2-form is exact. The
Lagrangian formulation, based on a Cartan-Hilbert Action which has n
degrees of freedom, leads to an unconstrained symplectic system which is
dissipative and of dimension 2n+2. Canonical momentum constraints lead
to a contact submanifold of dimension 2n+1 with a unique extremal ¯eld. If
the 2n+2 symplectic system is to exist, it is necessary that the momenta are
not de¯ned canonically, @L=@v ¡ p 6= 0; and that there must exist anholo-
nomic di®erential °uctuations ¢v = dv ¡ Adt 6= 0 in the velocity and/or
in position, ¢x = dx ¡ V dt 6= 0. The implication is that (non-extremal)
evolution on the 2n+2 symplectic domain can be dissipative but the pro-
cess is not described kinematically in terms of a single parameter group.
The °uctuations in velocity lead to non-zero temperature gradients and the
°uctuations in position lead to non-zero pressure gradients. Both types of
°uctuations lead to distinct contributions to a zero point energy. These
2n+2 domains can act as a source of magnetic dynamo action in a plasma,
where velocity °uctuations associated with temperature produce a charge
acceleration mechanism in regions where E ² B 6= 0:Anholonomic di®er-



ential °uctuations in position lead to the dissipative terms in the Navier-
Stokes equations. Using the fact that Cartan's Lie derivative of the Action
with respect to a vector ¯eld V is a cohomological equivalent to the First
Law of Thermodynamics, it is possible to decide if a given process V is
irreversible or not. On the 2n+2 symplectic domain, de¯ned as Thermody-
namic Space, two distinct evolutionary processes may be de¯ned in terms
of the Adiabatic Vector and the Torsion Current. The ¯rst process is a
symplectomorphism, and therefore is reversible; the second process is not
a symplectomorphism, and is irreversible in a thermodynamic sense.

1. INTRODUCTION

The objective of this article is to construct a non-statisical theory of irreversibility
and develop methods to describe processes that decay into stationary or equilib-
rium states. In 1974 it was suggested that a certain extension to Hamilton's
principle [1] could be made such that the evolutionary processes considered would
describe dissipative systems. In short, rather than study those extremal vector
¯elds that satisfy the Cartan-Hamilton equation, i(V)dA = 0; it was suggested to
consider those processes that satisfy the extended equation i(V)dA = ¡A + dµ:
Both in this current article and in the older article, it is subsumed that a physical
system may be described adequately by a 1-form of Action, A, and a physical
process may be de¯ned in terms of a dynamical system generated by a vector
¯eld, V:
It was not appreciated in 1974 that the topological domain of the extremal con-

servative systems was a contact manifold of odd dimension, while the topological
domain of the suggested dissipative extension was a symplectic manifold of even
dimension. In an attempt to understand more recent developments in "Hamilto-
nian" symplectic topology, especially the successful classi¯cations of topological
defects, or invariants, on compact domains [2], it was decided to investigate the
modern symplectic developments starting from a Lagrangian (rather than Hamil-
tonian) point of view. The Lagrangian point of view has its advantages, for the
fundamental 2-form is deduced by construction, ! = dA. The disadvantage is
that all symplectic domains so constructed are not compact without boundary.
This apparent °aw becomes an advantage when it is appreciated that such non-
compact domains are precisely that which is needed to describe closed but not
isolated, or open thermodynamic systems.
On a symplectic domain of dimension 2n+2, unique ubiquitous extremal ¯elds
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of classical Hamiltonian mechanics do not exist. There are no solutions to the
extremal equation i(V)dA = 0, on the symplectic domain, but there do ex-
ist non-unique vector ¯elds V that satisfy the Helmholtz constraint equation,
d(i(V)dA) = 0: In the subset of exact cases, where i(V)dA = d£; these vector
¯elds generate "Hamiltonian" dynamical systems. or processes, (on the 2n+1 sub-
manifold transversal to d£), similar to the dynamical systems that are associated
with the 2n+1 contact manifolds of classical State Space. The Action integral
is a relative (stationary) integral invariant with respect to such Hamiltonian dy-
namical processes. The function £ is a Bernoulli-Casimir evolutionary invariant,
but these evolutionary invariants (stationary states) are not unique, not indepen-
dent of gauge conditions, and strongly dependent upon boundary conditions, and
are not constants over the domain. The somewhat larger class of vector ¯elds
that satisfy the Helmholtz condition d(i(V)dA) = 0 are de¯ned as symplectic
vector ¯elds, and as dynamical systems they de¯ne symplectic processes. How-
ever, the results to be described below imply that all such symplectic processes,
exact or not, on symplectic domains of dimension 2n+2, still represent reversible
thermodynamic processes.
Remarkably, on the 2n+2 symplectic domain there exists a unique non Hamil-

tonian vector ¯eld which leaves the Action integral a conformal, not stationary,
invariant. This unique vector ¯eld, de¯ned as the Torsion Vector, or Topological
Torsion Current, does not satisfy the symplectic condition, but instead satis¯es
the equation, i(V)dA = ¡A as suggested in the 1974 article. Moreover, it now
can be demonstrated that this unique vector ¯eld generates dynamical systems
that represent irreversible processes in a thermodynamic sense. This unique vec-
tor ¯eld (to within a factor) is generated by the Top Pfa±an of the Pfa® sequence
associated with the Action 1-form, A. The symplectic space of dimension 2n+2
on which the Torsion vector exists is de¯ned as Thermodynamic Space, in order
to distinguish it from the classic State Space of dimension 2n+1. The divergence
of this Torsion vector ¯eld de¯nes a density function on the 2n+2 space. The
zero sets of this density function de¯ne smooth attractors (inertial maniufolds) of
dimension 2n+1 on the 2n+2 dimensional domain. The irreverisible dynamical
system generated by the Torsion vector irreversibly decays to these sets of mea-
sure zero which form the "stationary" states of a 2n+1 contact manifold. Once
in the stationary state, the evolution can take place by a reversible Hamiltonian
process.
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1.1. Extremal Systems

Cartan's analysis of Hamiltonian extremal systems starts from the concept of an
Action 1-form on a 2n+1 dimensional state space:

A = pkdq
k ¡H(p; q; t)dt: (1.1)

Cartan demonstrates that any vector ¯eld, E, that leaves the Action a relative
integral invariant is a "Hamiltonian" vector ¯eld, and statis¯es the extremal equa-
tions i(E)dA = 0: The components of E relative to the coordinates fp; q; tg are
given by the equations, f¡@H=@q; @H=@p; 1g: The dynamical system is de¯ned
by the equations

dp

¡@H=@q =
dq

@H=@p
=
dt

1
(1.2)

By direct computation the Pfa® dimension of the Cartan Action 1-form is 2n+1
and the contact manifold volume element is given by the expression

A^(dA)n = fp@H=@p¡H(p; q; t)gdq1^:::dqn^dp1^:::dpn^dt (1.3)

The function ½L(q; p; t) = fp@H=@p ¡ H(p; q; t)g de¯nes a Lagrange density on
the 2n+1 state space. Its zero set reduces the Pfa® dimension to a 2n dimensional
manifold of Phase Space.
If the function L is de¯ned by a Legendre transformation as

L(v; q; t) = pkv
k ¡H = p@H=@p¡H(p; q; t) ´ ½L(q; p(q; v; t); t) (1.4)

then substitution into the Action 1-form leads to the expression,

A = Ldt+ pk(dq
k ¡ f@H(p; q; t)=@pkgdt) = L(v; q; t)dt+ pk(dqk ¡ vkdt): (1.5)

The substitutions require that the Hamiltonian is NOT homogeneous of degree 1
in the p.
At ¯rst glance it would appear that the Cartan 1-form of Action is equal

to the primitive Lagrange function integrand of the Calculus of variations, Ldt;
constrained by the anoholonomic constraints, (dqk ¡ vkdt); with Lagrange mul-
tipliers, pk. It is precisely this point of view that will be investigated below as
the Lagrange formalism. The remarkable result is that the Pfa® dimension of the
Lagrange formalism with anholonomic constraints and Lagrange multipliers, pk,
is 2n+2, and not 2n+1.
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1.2. Extensions of the Cartan-Hilbert Action 1-form

This article considers those physical systems that can be described by a Lagrange
function L(q;v;t) and a 1-form of Action given by the expression:

A = L(q;v;t)dt+ p¢(dq¡ vdt); (1.6)

At ¯rst glance it appears that the domain of de¯nition is a 3n+1 dimensional
variety of independent variables, fq;v;p; tg: Do not assume that p is constrained
to be a jet; e.g., p 6= @L=@v: Instead, consider p to be a (set of) Lagrange multi-
plier(s) to be determined later. Note that the Action 1-form has the format used
in the Cartan-Hilbert invariant integral [3], except that p 6= @L=@v necessarily.
Also, do not assume at this stage that v is a kinematic velocity function, such
that (dq¡ vdt)) 0:
For the given Action, construct the Pfa® sequence fA; dA;A^dA; dA^dA:::g

in order to determine the Pfa® dimension or class of the 1-form [4]. The top
(non-zero) Pfa±an of this sequence is given by the formula,

(dA)n+1 = (n+ 1)!f§nk=1(@L=@vk ¡ pk) ² dvkg^dp1^:::dpn^dq1^::dqn^dt; (1.7)

which indicates that the Pfa® topological dimension is 2n+2 and not the geomet-
rical dimension 3n+1, which might be expected as the 1-form was de¯ned initially
on a space of 3n+1 "independent" variables. The implication is that there exists
an irreducible number of independent variables equal to 2n+2 which completely
characterize the di®erential topology of the system. It follows that the exact two
form dA satis¯es the equations

(dA)n+1 6= 0; but A^(dA)n+1 = 0: (1.8)

The result is also true for any closed addition ° added to A; e.g., the result is
"gauge invariant". Addition of a closed 1-form does not change the Pfa® dimen-
sion from even to odd. On the otherhand the result is not renormalizeable, for
multiplication of the Action 1-form by a function can change the algebraic Pfa®
dimension from even to odd.
On the 2n+2 domain, the components of 2n+1 form T = A^(dA)n generate

what is herein de¯ned as the Torsion Current, a contravariant vector density,
Tm, whose line of action is the same as that of the Torsion vector mentioned
above. The components of the "Torsion current" are orthogonal (transversal) to
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the 2n+2 components of the covector, Am; that make up the coe±cients of the
Action 1-form. In other words,

A^T = A^(A^(dA)n) = 0 ) i(T)(A) = TmAm = 0: (1.9)

This topological result does not depend upon geometric ideas such as metric. The
Torsion Current will reappear below when it is demonstrated that evolution along
the direction of the Torsion current is irreversible in a thermodynamic sense.
The 2n+2 symplectic domain so constructed can not be compact without

boundary for it has a volume element which is exact. For the 2n+2 domain to
be symplectic, the top Pfa±an (7) can never vanish. The domain is therefore ori-
entable. Examination of the constraint that the symplectic space be of dimension
2n+2 implies that the Lagrange multipliers, p, cannot be used to de¯ne momenta
in the classical "conjugate or canonical" manner; e.g.,

! = (@L=@vk ¡ pk) ² dvk 6= 0 (1.10)

However , the form ! must be closed; d! = 0:

d! = f@(dL)=@vkg^dvk ¡ dpk^dvk (1.11)

= f@2L=@qj@vkgdqj^dvk + f@2L=@t@vkgdt^dvk ¡ dpk^dvkg
= [f@2L=@qj@vkgdqj + f@2L=@t@vkgdt¡ dpk]^dvk = 0:

If, however, the constraints of canonical momenta are subsumed, such that
@L=@vk ¡ pk = 0; then the 2-form dA is not symplectic on its maximal dimension
2n+2, but instead the top Pfa±an de¯nes a contact manifold on a state space of
topological dimension 2n+1 with the formula

A^(dA)n = (n)!f§nk=1(pk ¡ @L=@vk) ² dvkg^fi(pm)dp1^:::dpng^dq1^::dqn^dt+(1.12)

n!fL(t; q; vgdp1^:::dpn^dq1^::dqn^dt (1.13)

The Torsion current reduces to a single component on the contact manifold, when
the momenta are de¯ned canonically. It is this 2n+1 dimensional contact manifold
that serves as the arena for most of classical mechanics prior to 1965, especially for
those theories which were built from the calculus of variations. The 2n+1 dimen-
sional contact manifold, or state space, admits a unique "extremal" evolutionary
¯eld, that satis¯es "Hamilton's equations" i(V)dA = 0. [5]. The coe±cient of the
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state space volume is to be recognized as the Legendre transform of the physicist's
Hamiltonian energy function.

L(t; q; v) = pkv
k ¡H(t; q; v; p) (1.14)

When the constraints of canonical momenta are valid, it follows that @H(t; q; v; p)=@v =
0; This result is interpreted by the statement that the "Hamiltonian" is to be ex-
pressed in terms of the variables ft; q; pg only. The 2n+1 space maintains its
contact structure as long as the "total Hamiltonian energy" is never zero, and
the momenta are canonically de¯ned. However, if the Lagrangian is homogeneous
of degree 1 in the velocities, v, and if the momenta are canonically de¯ned such
that @L=@vk = pk, then the top Pfa±an of the sequence, now doubly constrained,
de¯nes yet another non-compact symplectic manifold of Pfa® dimension 2n (a dis-
tinguished form of Phase Space). These aforementioned constraints are precisely
Chern's constraints used to de¯ne a Finsler space which admits non-Riemannian
geometries (when the Lagrange function contains more than quadratic powers of
v ) and spaces with torsion.[3] Note that the processes of topological reduction
described above are not equivalent to forming an arbitrary section(s) in the form
of holonomic constraints.
For the maximal non-canonical symplectic physical system of Pfa® dimension

2n+2, consider evolutionary processes to be representable by vector ¯elds of the
form °W = °fV;A;F; 1g; relative to the independent variables fq;v;p; tg: De-
¯ne the "virtual work" 1-form, W , as W = i(W)dA, a 1-form which must vanish
for the extremal case, and be non-zero for the symplectic case. For any n, it may
be shown by direct computation that the virtual work 1-form consists of three
distinct terms,

W = fp¡ @L=@vg ¢¢v + fF¡ @L=@qg ¢¢q+ fv ¡Vg¢¢p (1.15)

where

¢v = dv ¡Adt 6= 0; (1.16)

¢q = dq¡Vdt 6= 0; (1.17)

and

¢p = (dp¡ Fdt): (1.18)
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The ¯rst term involves di®erential (possibly anholonomic) °uctuations ¢v and
the second term involves di®erential °uctuations, ¢q: The concept of di®erential
°uctuations represents the error in the assumption that the vector ¯eld describes
an evolution of a singly parametrized group. The third term contains the factor
¢p which when zero de¯nes Newton's laws if p is interpreted as the "momentum".
When the evolutionary "velocity" V is assumed to be equal to the Lagrangian
velocity, v, then the third term (with possible di®erential °uctuations in momen-
tum) can be ignored. Without constraints of zero di®erential °uctuations, the
virtual work one form is zero when the three bracket factors vanish, independent
of any di®erential °uctuations. This special case is the basic assumption of clas-
sical mechanics. However, note that the ¯rst bracket cannot vanish if the domain
is symplectic of dimension 2n+2.
Moreover, in the non-canonical symplectic 2n+2 domain, the work 1-form

can never vanish, for there do not exist null eigen vectors of the anti-symmetric
matrix of functions that make up the components of the exact non-degenerate
2-form dA . In the contact 2n+1 domain, however, there exists a unique vector
¯eld with a null eigen value, such that the virtual work 1-form indeed vanishes:
W = i(W)dA = 0. This result serves as the basis of the d'Alembert principle. It
is of some interest to consider those points upon which the symplectic 2-form has
a null eigen value(s) as topological defects in the symplectic domain of dimension
2n+2. As the eigen values of an anti-symmetric matrix come in pairs, "extremal"
vectors representing topological defects of the symplectic domain are not unique,
a well known result of the calculus of variations having envelope solutions. Note
that the 1-form of virtual work depends on both the system (the Action) and the
process (the vector ¯eld).
When the symplectic work one form is closed but not zero, such that (locally)

W = i(W)dA = d£ 6= 0, the process represented by W is de¯ned to be a
symplectic process. Such processes preserve the symplectic structure for

L(W)dA = 0: (1.19)

This requirement for a process to be symplectic is to be recognized as the gen-
eralization of the Helmholtz conservation of vorticity law in hydrodynamics. For
a symplectic process the functions £ are never constant and never without a
gradient over the symplectic domain. Vector ¯elds that satisfy this closure con-
dition are elements of Lie groups, and in the technical mathematics literature,
the functions £ are often are called "Casimirs" -or somewhat inappropriately,
"Hamiltonians". Although not constants over the domain, these "potential" or
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"energy" functions £ are evolutionary invariants of a symplectic process.Most en-
gineers and applied scientists have a greater appreciation for these functions when
it is pointed out that they are equivalent to the Bernoulli invariants in hydrody-
namics. The engineer would call £ a Bernoulli "constant", a function invariant
along a streamline, but of di®erent values for di®erent neighboring streamlines:
£ = (P + ½gh+ ½v2=2)V ol:
To prove that the Bernoulli-Casimirs are always evolutionary invariants with

respect to symplectic vector ¯elds, construct the Lie derivative of £ with respect
toW:

L(W)£ = i(W)d£+ d(i(W)£) = i(W)i(W)dA+ d(i(W)£) = 0 + 0: (1.20)

Both the ¯rst and second terms vanish algebraically. However, for the classic
"Hamiltonian" de¯ned above in terms of the Legendre transformation,H(t; q; v; p) =
fpkvk ¡ L(t; q; vg; a direct computation indicates that the Hamiltonian need not
be an invariant of a symplectic process - even if the Hamiltonian is explicitly time
independent. For consider the evolutionary equation,

L(W)H = i(W)dH = f(@H=@q)¢V+(@H=@p)¢F+(@H=@v)¢A+(@H=@t)g (1.21)
or equivalently

L(W)H = f(¡@L=@q+ F)¢V + (p¡ @L=@v) ¢A¡ (@L=@t)g: (1.22)

For the domain to remain symplectic and of dimension 2n+2, the ¯rst factor of
the second term cannot vanish. The ¯rst factor of the ¯rst term, when set to zero,
is equivalent to the classical Lagrange-Euler equations. Hence, even in this case,
if the accelerations A are such that (p¡ @L=@v) ¢A 6= 0; then the "Hamiltonian
energy" H; is not an evolutionary invariant, even though the Bernoulli-Casimir
energies are evolutionary invariants of a symplectic process. A simple example of
this situation is where the mechanical (Hamiltonian) energy of a system decays
to perhaps some non-zero value at a singular point of the symplectic domain, but
the angular momentum stays constant during the process. Numerical simulations
of such evolutionary possibilities in °uids have been studied by Carnevale [6].
Even more interesting correspondences can be made to thermodynamics, for

then the ¯rst term in the expression for W; which depends on di®erential °uctu-
ations, ¢v; suggests a relationship to the thermodynamic Helmholtz free energy
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(functions of the type TS that involve temperature) and the second term , which
depends on di®erential °uctuations, ¢q; to the thermodynamic Enthalpy (func-
tions of the type PV that involve pressure). The combination of the two types
de¯nes the Gibbs free energy (functions of the type TS ¡ PV ) of closed thermo-
dynamic systems and reversible processes. Hence, these empirical thermodynamic
potentials, some 100 years old in concept, are to be recognized as the Bernoulli-
Casimirs of the symplectic vector ¯elds on spaces of dimension 2n+2. The thermo-
dynamic potentials are symplectic evolutionary invariants, but the Hamiltonian
energy is not. The need for recognizing the di®erences between mechanical energy
and the thermodynamic energies was discussed by Stuke [7], where, without men-
tion of symplectic evolution, he deduces the need for "acceleration " potentials in
certain dissipative systems. These acceleration potentials, which can be shown to
be the equivalent of Bernoulli-Casimir functions, were used by Stuke to construct
the Enthalpy and Gibbs free energy in certain hydrodynamic examples.
The thermodynamic concepts of pressure and temperature are explicitly absent

from that classical mechanics which has focused attention on the extremal contact
manifolds of dimension 2n+1, and which has ignored the concept of di®erential
°uctuations on symplectic spaces of dimension 2n+2. It is suggested that the
occurrence of a pressure gradient, or a temperature gradient should be taken as
the signature of a symplectic process.
When the virtual work 1-form is not closed, (dW 6= 0 such that the evolu-

tionary processes are not symplectic processes by de¯nition) then the process can
become thermodynamically irreversible. These ideas stem from Cartan's de¯ni-
tion of an evolutionary process in terms of the equation,

L(W)A = i(W)dA+ d(i(W)A) = W + dU = Q; (1.23)

and the equation of closure,

L(W)dA = di(W)dA = dW = dQ: (1.24)

As mentioned above, when dQ is zero, physicists call this last equation the
Helmholtz conservation of vorticity equation, but it is essentially the requirement
that the vector ¯eldW be a symplectic vector ¯eld. Note that Cartan's equation
(of topological evolution) in the form, W +dU = Q; is precisely the cohomological
equivalent of the ¯rst law of thermodynamics. This correspondence admits of a
useful criteria for connecting dynamical systems and thermodynamics in a non-
statistical manner. Note that the dynamical correspondence permits a precise
statement to made about the di®erences between work and heat: the 1-form of
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heat is not transversal to the evolutionary process, but the 1-form of virtual work
is always transversal to the process:

i(W)W = i(W)i(W)dA = 0 but i(W)Q = i(W)dU 6= 0: (1.25)

This idea of transversality is never made clear in most thermodynamic treatments.
The thermodynamic criteria for irreversibility is that the heat 1-form, Q, does

not admit an integrating factor [8]. By the Frobenius Theorem, the Pfa® dimen-
sion of Q must be greater than 2; e.g. Q^dQ 6= 0: To test for irreversibility of
the process W, construct the exterior product Q^dQ using the above formulas.
By the Frobenius theorem, a given process, W; acting on a physical system, A,
is irreversible when

Q^dQ = L(W)A^L(W)dA 6= 0: (1.26)

Before proving the existence of such irreversible processes, note that when the
evolutionary vector ¯elds are symplectic (or extremal), such that dW = dQ = 0;
then such closed processes are reversible in a thermodynamic sense. The Cartan
equation for symplectic evolution becomes (for V = v)

L(W)A = W + dU = fp¡ @L=@vg ¢¢v + fF¡ @L=@xg ¢¢q+ dU(1.27)
= d(TS ¡ PV + U) = Q; (1.28)

which de¯nes the heat 1-form Q as the "gradient" of the Gibbs free energy, G =
TS¡PV +U . Compare to Stuke [7]. For symplectic vector ¯elds, the Mechanical
Energy of the system need not be an evolutionary invariant, but the "angular
momentum" (Casimir) is an evolutionary invariant. By means of a symplectic
process the Hamiltonian energy can decay to a singular state where the symplectic
condition fails (where the momentum become "canonical") , and then stay in
that "equilibrium" state of non-zero energy forever. A special case of symplectic
evolution is given by the Adiabatic constraint,

L(W)A = i(W)dA+ d(i(W)A) (1.29)

= i(W)dA+ d(p ² (V(q; v; p; t)¡ v) + L(q; v; t)) = 0 (1.30)

For simplicity, ¯rst assume that p ² (V(q; v; p; t)¡ v) = E(q; v; p; t) ) 0; then
this special vectorW is uniquely de¯ned in an algebraic manner as the Adiabatic
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vector, Z: If [Fuv] is the matrix of coe±cients of the 2-form, dA, then the unique
adiabatic process is given by the vector ¯eld,

Z = [Fuv]
¡1 ± grad(L): (1.31)

The adiabatic process de¯ned by Z is symplectic and reversible. The function
E(q; v; p; t) plays a role similar to the Wieirstrass excess function in the calculus
of variations.
To prove the existence of an irreversible process, note that there always exists

a 2n+1 form T =(A^(dA)n), whose 2n+2 coe±cients de¯ne the Torsion cur-
rent,Tm, on the 2n+2 symplectic space. In 4D, the three form A^(dA) has been
de¯ned as the Topological Torsion 3-form. The Torsion current depends only on
the system (the Action) and not upon a process. The divergence of this Tor-
sion current is proportional to the measure of the 2n+2 volume, that de¯nes
the symplectic space, and cannot be zero on the symplectic domain. The 2n+2
components of the 2n+1 form T generate what is called the "subsidiary Pfa±an
system" by Forsythe [9].
If the Torsion current, to within a factor, is used as a candidate for an evolu-

tionary process, then the Lie derivative of the Action with respect to the Torsion
current satis¯es the "conformal" or similarity equation

L(T)A = ¡A (1.32)

The existence of the Torsion vector implies

L(T)dA = d¡^A+¡dA (1.33)

such that the Pfa® dimension of the heat 1-form is greater than 2:

Q^dQ = L(T)A^L(T)dA = ¡2A^dA 6= 0: (1.34)

Hence the existence of an irreversible process on the symplectic space has been
demonstrated, by construction, in the form of the Torsion current. With respect
to evolution in the direction of the torsion current, the symplectic volume is
contracting or expanding exponentially unless ¡ = 0; and therefore such vector
¯elds cannot represent a symplectic process (which preserves the volume element).
The factor, ¡; is a Liapunov function and de¯nes the stability of the process
(depending on the sign of ¡):When ¡ = 1, the Torsion vector has been called the
"Liouville vector" [10]. Note that herein a constructive process has been displayed
for the Torsion current for any given Lagrangian.
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Further note that the evolution of the 3-form A^dA is given by the expression,

L(T)A^dA = (L(T)A)dA+A^L(T)dA = 2¡A^dA (1.35)

2. An Electromagnetic Example

The best way to exemplify the techniques described above is apply them to an
electromagnetic situation. Most everyone has had some experience with electro-
dynamics on a four dimensional space-time. On the four dimensional space-time
of independent variables, (x; y; z; t) the 1-form of Action can be written in the
form

A =§3k=1Ak(x; y; z; t)dx
k ¡ Á(x; y; z; t)dt: (2.1)

A ¯rst step is to construct the Pfa® Sequence, fA; dA;A^dA; dA^dAg. Following
the usual constructions, the components of the 2-form dA become

dA = f@Ak=@xj ¡ @Aj=@xkgdxj^dxk = Fjkdxj^dxk = Bzdx^dy:::Exdx^dt:::
(2.2)

where in usual notation,

E = ¡@A=@t¡ gradÁ; B =curl A: (2.3)

The topological torsion 3-form, A^dA, induces the torsion current

T = f(E£A+BÁ);A ²Bg ´ fS; hg; (2.4)

such that

A^dA = i(T)dx^dy^dz^dt = Sxdy^dz^dt:::::¡ hdx^dy^dz (2.5)

The 4-form of topological parity becomes

dA^dA = ¡2(E ²B)dx^dy^dz^dt = (div S+ @h=@t)dx^dy^dz^dt (2.6)

It is apparent that a 4D system cannot be symplectic unless (E ²B) never van-
ishes. Moreover, in the symplectic case the torsion current does not satisfy a
conservation law (or the "equation" of continuity")
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Note that the Poincare lemma always leads to the ¯rst Maxwell pair of (Fara-
day Induction) equations:

ddA = fcurl E+ @B=@tgxdy^dz^dt¡ ::+ ::¡ divBdx^dy^dzg ) 0; (2.7)

or

fcurl E+ @B=@t = 0; divB = 0g: (2.8)

The result is actually true for a variety of any dimension º 4 and for any set of
covariant symbols: The concept of Faraday induction is universal.
Consider an arbitrary process de¯ned by the 4 vector ¯eldW = ½fV;1g: Then

the Work 1-form becomes the Lorentz force law:

W = (i(W)dA) = (½fE+V £Bgkdxk ¡ f½V ²Egdt): (2.9)

With these constructions now apply the constraints that produce the Hamiltonian
extremal and the Helmholtz symplectic equivalence classes.

2.1. The Hamiltonian Extremal Class

In the extremal Hamiltonian case, dA^dA= 0 ) E ²B = 0; and the work 1-form
must vanish: W = i(W)dA = 0: Therefore the extremal ¯eld constraint requires
that

fE+V£Bgkdxk ¡ fV ²Egdt = 0; (2.10)

an equation that is to be satis¯ed for any value of the "normalization" factor
½: It is apparent that the extremal constraint forces the Lorentz force to vanish,
E + V£B ) 0; and the dissipative power to vanish, V ² E ) 0: The ¯rst
condition is the classic constraint for a charge particle moving in crossed magnetic
and electric ¯elds.

2.2. The Helmholtz Symplectic Class

The Helmholtz (symplectic) closure requirement, d(i(W)dA) ) 0; implies that
the Lorentz force need not be zero, but it should have zero curl: d(½fE + V £
Bgkdxk¡f½V²Egdt) = 0: First consider that case where ½ is a constant. Then, the
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necessary condition to satisfy the closure condition, for arbitrary displacements
of the independent variables, is that

curl fE+V£Bg = 0 (2.11)

and similarly
@fE+V £Bg=@t+ gradfV ¢ Eg = 0: (2.12)

Substituting the Maxwell result, curlE = ¡@B=@t; leads to the Master equation
of the Imperfect Plasma:

¡@B=@t+ curlfV£Bg = 0: (2.13)

In the symplectic case which is equivalent to a Fomenko system the Lorentz
Force cannot vanish, and the symplectic evolutionary process satis¯es the equation

½(E+V£B) = grad(£): (2.14)

The Master equation is modi¯ed slightly to account for a non-constant form of
the "scaling" function, ½ :

¡@B=@t+ curlfV£Bg = grad ln ½£ (E+V £B): (2.15)

In elementary physics the scaling function ½ is to recognized as the charge distri-
bution. In elementary mathematics, the scaling function ½ is to be recognized as
the integrating factor.
The symplectic manifold condition of maximal rank over the 4 dimensional

domain requires that the second Poincare invariant is not zero:

dA^dA = 2(E ²B)dx^dy^dz^dt 6= 0: (2.16)

The symplectic evolutionary process condition requires that

½(E ²B) = B ² grad£ 6= 0 (2.17)

There must exist a gradient (of pressure or temperature) in the direction of the
B ¯eld lines. Similarly, there is a dissipation if the motion is in the direction of
the gradient, for then

½(E ²V) = V ² grad£: (2.18)
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Note here is no "ohmic" dissipation for evolution V in the direction orthogonal
to grad £ .
Physically, then, in a symplectic system there must exist a component of elec-

tric force that accelerates charged particles along the magnetic ¯eld lines, and
that component of force, as an artifact of the symplectic constraints, is the ulti-
mate source of the magnetic dynamo. A similar situation holds in hydrodynamics
where °uid mass can be accelerated along the lines of vorticity. For the extremal,
non-symplectic case, the Lorentz force must vanish, and there is no magnetic
dynamo action.
From the argument developed above for symplectic systems, the Bernoulli-

Casimir energy function £ is either of the type TS and/or of the type PV. For
a solid, assume the former representation dominates. Then the "Lorentz force"
must have the form of a spatial gradient of the temperature, ½(E + V £B) =
grad(kT ): For motion that is along the magnetic ¯eld lines, the term V£B ) 0:
Then, incorporating the empirical Ohmic relation, j = ¾E; it is apparent that the
symplectic case leads to a derivation of °ux equations in the Thompson format
for thermal power.

j = (1=½¾)grad(kT ) (2.19)

The suggestion is that the source of magnetic dynamo forces is to be associated
with a temperature gradient and the existence of di®erential velocity °uctuations
in a symplectic system. The theory predicts that not only should there exist a
Bernoulli-Casimir Pressure gradient, but also there should also exist a Bernoulli-
Casimir Temperature gradient that will be exacerbated by domains where E ²B 6=
0:
The Bernoulli-Casimir Pressure gradient is associated with those velocity func-

tions which induce di®erential °uctuations in position, ¢q. The (novel and di®er-
ent) Bernoulli-Casimir Temperature gradient is associated with those acceleration
functions which induce di®erential °uctuations in velocity, ¢v. These ideas are
to be compared with the Davies-Unruh concept that uniform acceleration in the
vacuum ¯eld induces a temperature. [14].

2.3. The Torsion Current and Irreversible Processes (Pfa® dimension
4)

Assume that the Pfa® dimension of the domain of interest is 4, hence the space
is symplectic. However, consider evolutionary ¯elds that are not constrained to
be symplectic such that dW 6= 0. Direct evaluation of the virtual work 1-form,
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W = i(W)dA yields (the Lorentz force)

W = i(W)dA =(f½E+ J£Bgkdxk ¡ fJ ²Egdt) (2.20)

The obvious ¯rst choice for the evolutionary vector ¯eld has been based on the
classic assumption that W =fJ;½g ) ½fV; 1g The expression for virtual work
becomes

W = ½(fE+V£Bgkdxk ¡ fV ²Egdt): (2.21)

However, another perhaps not so obvious a candidate for a solution vector ¯eld
is the expression for the Torsion current. That is, examine the evolution along
the four dimensional vector ¯eld,

T = f(E£A+BÁ);A ²Bg: (2.22)

The expression for virtual work becomes

W = i(T)dA =(f(A ²B)E+ (E£A)£Bgkdxk ¡ fE ²BÁgdt) = (E ²B)A:
(2.23)

The torsion current is an associated ¯eld relative to the 1-form of Action, in the
sense that

i(T)A ) 0: (2.24)

It follows that the Lie derivative of the Action along the direction of the Torsion
current is a conformal process in the sense that

L(T)A = ¡A = (E ²B)A = Q: (2.25)

By direct computation,

L(T)dA = d¡^A+ ¡dA = dQ (2.26)

from which it follows that
Q^dQ = ¡2A^dA: (2.27)

If the topological parity ¡ = (E ²B) does not vanish, then the Torsion current T
represents an irreversible non-conservative process, as for such cases the heat 1-
form, Q, does not admit an integrating factor. When ¡ = (E ²B) ¹ 0; the
process is stable in a Liapunov sense.
The formula L(w)A= ¡A was the fundamental principle used by the present

author in 1974 to describe "An Extension of Hamilton's Principle to Include
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Dissipative Systems". It was not known at that time the such processes implied
the existence of a symplectic structure, nor the fact that the irreversible processes
were not symplecto-morphisms.

2.4. The Torsion Current and Reversible Processes (Pfa® dimension 3)

If the non-zero Torsion current has a zero divergence everywhere, then the function
¡ = 0 de¯nes a holonomic constraint of projection on the 4D space, upon which
the Pfa® domain generated by the Action 1-form is no longer of dimension 4. The
space does not support a symplectic structure of Pfa® dimension 4. Instead the
2-form de¯nes a contact manifold of Pfa® dimension 3. On the 4 dimensional
domain of initial independent variables, the contact 2-form is of rank 2, not 4,
which implies that on the 4D space there exist TWO extremal ¯elds with null
eigenvalues. From the analysis above, the Torsion current is one of these two
extremal vector ¯elds. Evolution along the divergence free paths of the torsion
current is reversible. It is of particular interest when this hypersurface is minimal.
If the divergence free condition is not global, then evolution along the diver-

gence free paths of the torsion current preserves the contact structure, or singu-
larity in the symplectic domain, for when ¡ ) 0;

L(T)(A^dA) = (L(T)(A))^dA+A^L(T)(dA) = 0 + 0: (2.28)

This divergence free process path is reversible, and stable if ¡ < 0: Such closed
process paths form limit cycles.
Any other extremal ¯eld of the formatW = fJ;½g must satisfy the equations

J²E = 0;and ½E+JxB = 0: Assuming that fJ;½g = ½fV; 1g;this second extremal
evolutionary process implies that the motion of charges is orthogonal to both the
E and B ¯elds (the Hall e®ect).
If it is assumed that the second extremal ¯eld is orthogonal to the Torsion

vector, then it must be true that

fJ;½g = ¸fA; Ág; (2.29)

which is in the format of the London current.:
When ¡ 6= 0; any evolutionary ¯eld that is to be reversible must be orthogonal

to the Torsion vector current. Conversely, in the symplectic case such that E²B 6=
0, any evolutionary vector ¯eld that has a component in the direction of the
Torsion vector must be irreversible. Note that the sign of ¡ = E ²B determines
the "stability" of the process de¯ned by the Torsion vector.

18



2.5. Submanifolds of the Symplectic Case

The criteria that the Torsion current produce a symplectic manifold implies that
the Torsion current does not satisfy an "equation of continuity"; that is, the Tor-
sion current is "not conserved". On the other hand, if the Torsion current satis¯es
an equation of continuity (has zero divergence), the domain is NOT symplectic.
In this case, the exterior derivative of the 3-form vanishes over the 4D domain
which implies that there exists a N-2 = 2 form, G, such that dG = J . The
electromagnetic system is now complete, for both the Fields, F = dA, and the
excitations, G, have been de¯ned without a metric. The sources of the electro-
magnetic ¯eld are topological defects in the symplectic structure of space-time.
The Poincare lemma ddA = dF = 0 establishes the ¯rst Maxwell pair, and the
equations dG = J form the second Maxwell pair. No metric constraints, nor con-
nections have been subsumed. This result leads to the concept of quantized °ux as
the 1-D period integrals of the harmonic components of the Action,

H
A, quantized

charge as the 2-D period integrals of
RR
closedG, and quantized spin as 3-D period

integrals of the form,
RRR

closedA^G . [11] Now it is apparent that the existence of
such results and the entire Maxwell theory follows from the topological concept
that certain physical systems can be described by 1-form of Action which is of
Pfa® dimension 3; that is, from the study of non-symplectic systems for which
A^F 6= 0; but for which d(A^dF ) = dA^dA = F^F = 2(E ²B)dx^dy^dz^dt = 0:
It has been demonstrated that ratio of the 3-D period integrals of spin and torsion
form a set of rational fractions de¯ning the topological fractional Hall Impedance.
[12]
As G is a non-exact 2-form, it could also de¯ne a symplectic structure on the

4-D domain, when dG = 0: In such a case G^G = 2(D ²H)dx^dy^dz^dt 6= 0: The
ratio of the integrals of the two symplectic structures then gives the impedance
of free space:

Z0 =

sZZZZ
F^F =

ZZZZ
G^G =

q
"=¹ = the impedance of freespace: (2.30)

The ratio of the period integrals gives the Hall impedance

ZHall =
ZZZ

closed

A^F =
ZZZ

closed

A^G » h=e2 (2.31)

such that
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2ZHall
Z0

= ® = 137:063041 (2.32)

It is not uncommon for a variety to support many topologies. For the sym-
plectic topology generated by the exact 2-form, F = dA; the topological domain
is not compact, while the symplectic topology induced by G can be compact.
As the 2-form G is associated with the ¯elds D and H and sources (charge and
currents) it appears that such "quantized" features are to be associated with com-
pact manifolds. However, as the two form F is exact its symplectic topology is
non-compact. The associated E andB ¯elds are empirically related to forces, and
therefore to mass. The argument seems to justify the Mach idea that mass is an
artifact of a non-compact topology, while the fundamentally di®erent concept of
charge is a compact artifact.
Similar examples as applied to hydrodynamic systems will be reported else-

where. In particular, solutions to the Navier-Stokes equations that satisfy the con-
dition that curlv ²curl(curlv) 6= 0 imply that Action 1-form de¯nes a symplectic
domain of Pfa® dimension 4. The condition is therefore a necessary condition for
the existence of thermodynamically irreversible turbulent evolution.[13]
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