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WARNING: STILL UNDER CONSTRUCTION

At least six definitions of ”torsion” appear in the physics liter-
ature complicating the utilization and understanding of the con-
cept. In this article, the differences and similarities of the var-
ious definitions are compared, and their relationships to spaces
of absolute parallelism with applications to irreversible thermo-
dynamics, coherent structures in plasmas and fluids, and general
relativity are described.

Introduction

In this article the concept of torsion and torsion fields will be investi-
gated. There are at least six different definitions of torsion to be found in

the literature. They include:

The Frenet Torsion of a space curve.
The Frenet Helicity Torsion of a Bernoulli fluid flow.

The Torsion described by the anti-symmetric components of a Cartan right

connection.

The Torsion described by the anti-symmetric components of a Cartan left

connection.

The Cartan Torsion 2-forms.

The Topological Torsion of a 1-form.



Each of these types of torsion will be defined and discussed in that which
follows. All are related in one way or another to the idea of Cartan’s Repere
Mobile, which was developed from the Frenet-Serret theory of singly param-
eterized space curves. At a point p on a space curve C in 3 dimensional
euclidean space, a basis frame of orthonormal vectors (unit tangent, normal
and binormal) can be constructed by metric and differential processes. As
the point p moves along the space curve, the basis vectors so defined are
not constant, but change direction (and magnitude if not normalized) as the
parameter of the curve varies. The functions that define the components of
these unit basis vectors form a matrix of differentiable functions, [F]. This
matrix is defined as the Repere Mobile. The method (in 3 dimensions) gen-
erates 3 intrinsic parameters (arc length, s, Frenet curvature, k, and Frenet
torsion, 7) that characterize the space curve. The Frenet torsion cannot
be zero for space curves that are intrinsically 3 dimensional and can not be
confined to a plane. This is the first clue that torsion has something to
do with topological dimension 3 or greater. The details of the method are
explained below.

From a physical point of view torsion also has numerous manifestations.
First consider a string attached to the middle of a toothpick placed at each
end of the string. Place the string on a overhead projector table to display
the stable image of the string and its endpoint toothpicks. The string lies
flat on the projection surface. Next place a similar string and toothpick
combination on the overhead projector, but this time twist the string through
several turns before placing it flat on the projector surface. The projected
images appear to be congruent. However, carefully pick each string by using
one toothpick as a suspension point. The opposite toothpick on one of the
strings rotates, and the other does not. One of the strings had torsion,
the other did not. For those old enough to have constructed rubber band
powered model airplanes with propellors, another topological effect of torsion
is observed as the propellor rubber band is wound more and more. At a
certain point the rubber band starts to ”knot” or "bead”. As more and more
energy is put into the twisted rubber band, these quantized knots continue
to appear, until the entire length of the rubber band is "knotted”. Then
as the process continues a second layer of knots appears. I know of no
mathematical analysis of this observable effect of torsion.



As a second example, consider a piece of thick-walled rubber tubing, It
has a natural elastic state as a cylinder which will support parallel generators
as long straight lines on the outer surface of the tube. Assume that there
are 4 such generators painted on the tube, 90 degrees apart. Next bend the
elastic tube into a circle and fasten the ends together such that the end of each
generator is matched (A sawed off bolt inserted into each end of the tube will
due nicely as a fastener.) The bending operation has introduced curvature
(stress energy) into the system, but each of the generators (now curved) form
a ring which is parallel to a plane and to the other rings formed by the other
generators. In fact, the bent (internally stressed) ring will lie flat on this
plane. The stressed tube has curvature, but it is torsion free. Next assemble
the tube into a circle, but this time rotate the tube through some multiple of
pi/2 before attaching the ends together. The generators are no longer parallel
to a plane, and moreover, the assembled structure will not lie flat on a plane.
If the twist is 90 degrees the four generators reduce to ond single closed curve.
If the twist is 180 degrees, the generators reduce to 2 linked space curves.
There is more than one stable state for the twisted configuration. In one
state the tube encircles the oblate axis of the assembly, once, and in another
state the tube encircles the oblate axis twice. The twisted assembly has both
curvature and torsion stress-energy. Riemannian spaces with curvature have
been associated with the stress-energy of matter, but Riemannian spaces are
torsion free. As such physical systems have torsion they are not describable
by a classic Riemannain geomtry. An objective of torsion theories is to
include the stress energy due to torsion into the analysis.

Although the Frenet-Serret theory is generated from a single parame-
ter mapping s into a euclidean space of three variables {z,y, z}, the ideas
can be extended to multiple parameter mappings. One and two parameter
mappings into higher dimensional spaces always lead to integrable systems
of ordinary differential equations. The first occurrence of non-integrability
occurs for 3 parameters. The explicit mapping from one set of (coordinate)
variables {y?} to another set of variables {z*} in terms of differentiable func-
tions ¢F

¢yt =t = o (y"), (1)

induces a linear relationship between the coordinate differentials,

de : |dy*) = |da*) = [0¢"(y") /Oy®)] |dy”) (2)



Working backwards, the differential equations (2) are said to be integrable
to exactness. They have a unique solution (1) whose differentials reproduce
the differential equations. For the integrable situations, the Jacobian matrix

of functions

[F(")] = [06°(4") /0y*)] (3)
can play the role of a basis set for a vector space, at least on subspaces of
(y?) where the determinant of the Jacobian matrix does not vanish. In four
dimensions, the elements of the basis frame are vector columns of four compo-
nents where each column vector is presumed to transform as a contravariant
tensor. The set of four columns are often described as tetrads. While the
Frenet theory (using metrical constraints) developed the basis frame in terms
of an orthonormal set, the Jacobian mapping provides neither a normalized
nor an orthogonal basis frame.

Once a basis frame, [F], is established, it is often possible to construct
other objects in the theory, called connections, [C]. The connections are ma-
trices of differential 1-forms, that linearly connect differentials of the basis
vectors to linear combinations of the basis elements. The idea can be inter-
preted as one of closure, where the differential of the set remains within the
set and does not create something that is outside the set. On the domain of
support of the determinant of the basis frame, it is possible to construct the
elements of the connection by one differential process, and other, algebraic,
processes. Recall that the domain of support implies that an inverse matrix
of functions, [G], can be determined algebraically, such that

[Flo[G] = [1]. (4)

Differentiation of this matrix equation leads to a linear relationship between
the differentials of the functions that define the basis frame, and the functions
themselves. As

d[F]o[G] +[F]od|G] = [0], (5)
post multiplication by [F] yields either
d[F] = [F]o[C]=0 or d[F]+[A]o[F]=0. (6)
where [C] = —d[G] o [F] and [A] = [F] o d[G].

The matrix [C] is defined as the right Cartan matrix of connection 1-
forms. The matrix [A] is defined as the left Cartan matrix of connection
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I-forms. The matrix elements of the right Cartan connection matrix, [C],
are differential 1-forms, Ci.dy®. For a holonomic mapping of an integrable
differential system, the coefficients of Cj. are symmetric: Cj, — Cg = 0.
In a more general case, the anti-symmetric components are not zero and
permit the definition of the (right Cartan affine) torsion coefficients, T} =
2 — C% # 0. The integrable holonomic system is said to be free of affine
torsion, T = 0.
However, note that although the concepts developed above started from
a set of differentials that were uniquely integrable, the method of deriving a
connection depends only on the fact that there is at each parametric point of a
domain a matrix of functions [F] with a non-zero determinant. The last three
equations above are applicable even though the differential equations defined
by the basis frame are not integrable. For such non-integrable basis frames,
the matrix elements of the right Cartan matrix have a certain asymmetry
such that the affine Torsion components do not vanish.

Tye = Cpe — Cg # 0. (7)
The details of this method with examples are described below. The key
idea is that affine torsion is associated with situations where the differential
equations are not integrable to exactness.

The anti-symmetric parts of the right Cartan connection [C] are pos-
sibly the most common of the definitions of torsion used in current field
theories. Although Eddington, in 1921, used the idea of anti-symmetric con-
nection coefficients in attempts to unify gravity and electromagnetism, and
Cartan about the same time developed the theory of spaces with torsion,
and communicated these ideas with Einstein over the next 10 or more years,
not much was accomplished with the concept of torsion. Schroedinger in the
30’s thought that the inclusion of torsion would infuse new blood into general

relativity, but his work stimulated very little response, relatively speaking.
Just before WWII, L. Brillouin wrote (1938):

”If one does not admit the symmetry of the (connection) co-
efficients, C7. (in the notation above) , one obtains the twisted
spaces of Cartan, spaces which scarcely have been used in physics

to the present, but which seem to be called to an important role.”

During and just after WWII Kondo in Japan and Bilby in the UK devel-
oped an application of the concept of torsion to the analysis of dislocations



in solids. However, it took the hype of elementary particles, quantum gravity
and string theory to rejuvenate interest in torsion. On the other hand, in
1997, Chandia and Zanelli (hep-th/97081380) wrote (apparently disregarding
the dislocation theories)

”Despite many years of research and a host of scattered and sug-
gestive results, torsion has remained a curiosity in differential ge-
ometry which seems to have no consequences for the real world.”

The attempts of the last twenty five years have led to many statements
which do not apply outside of the now forgotten constraints that were used to
generate them. They are statements which now have become propaganda.
Examples are ”"the source of torsion is spin” and ”the torsion field does not
propagate” are not universally true, and are valid only relative to rather
severe constraints made by their originators. On the otherhand, researchers
”measuring anomalies” have grasped for the straws of ”torsion” to explain
their results, giving, in many cases, the concept of torsion somewhat of a
"bad name”.

Throughout the many attempts to incorporate torsion into physical the-
ories, it is almost universally true that a certain fundamental concept is
ignored or forgotten: that fact is that the torsion of an uniquely integrable
system is zero; hence torsion is something that should be associated with
lack of unique integrability. Besides the notion of ”affine” torsion, there
are field theories that use alternate definitions of torsion (such the Cartan
Torsion 2-forms, and topological torsion) to be described below.

Successive exterior differentiation of the equations defining parallel trans-
port (6) lead to what are called Cartan’s first equations of structure, and
Cartan’s matrix of Curvature 2-forms, [©].

d[F] o [C] + [F] 0 d[C] = [F{[C]"[C] + d[C]} = [F] 0 [©] (8)

Factoring out the basis frame leads to

Cartan’'s 1* equations of structure : {[C]"[C] +d[C]} = [0]  (9)

Further exterior differentiations of the equations of structure lead to what
are called the Bianchi identities, but that is not of immediate utility to the
purpose of this article.



Cartan’s 15 equations of structure were available to differential geome-
ters through the metric theories of tensor calculus that were developed after
Riemann’s disclosures. The metric tensor itself is a suitable Frame Field [F]
and can be utilized to generate a Cartan Matrix of Connection Coefficients.
In this case, the Cartan connection is identical to the Christoffel connection
which is torsion free. All Riemannian spaces (which support a symmetric
Frame field defined as the metric tensor) have a metric induced connection
that is (affine) torsion free.

However there are frame fields that are not symmetric, and yet support
connections. It is these anti-symmetric Frame Fields that may support
non-zero ”affine” torsion. Suppose that a Frame Field exists, or can be
constructed by some reasonable argument, and leads to a system of differen-
tial equations. It is not known that the system can be generated from an
integral map. It is not obvious that the map of perfect differentials on the
initial domain 3* map uniquely into perfect differentials on the domain x*.
For example, given [F]], it is not obvious that the Frame matrix maps perfect
differentials dy® into perfect exact differentials, dz*. Let’s study those cases
where

[Fa] o ldy®) = |o*) (10)

such that the components of the vector {ak> are formally linear combinations
of the dy®. It is not obvious (nor true) that each component of the RHS can
be represented by a perfect differential.  If the RHS objects are perfect
differentials, then d(|o*)) =0 and it follows that

d[F]" |dy*) = [Fy] o [Coldy® dy® = d|o*) = 0. (11)
Such constraints require that

Cl?c - gb =0 (12)

Hence the Cartan matrix is free from affine torsion, when each component
of ‘ak > is an exact single differential of a function.

The statement is also true if the vector of 1-forms, {ak> , is closed, but
not exact, as would be the case if the domain was not simply connected.
As an example of such a closed but not exact situation, suppose the frame
matrix was such that



o* = dy* +yily'dy’ — ' dy) H{(y')? + (v)*} (13)
Then the harmonic terms with constant coefficients ’yfj have zero exterior
derivative, and are therefor non exact but closed. In fluid dynamics lan-
guage, each harmonic term can be associated with a circulation integral re-
lated to rotation, but the vorticity generated by each harmonic term is zero.
An example of such a situation occurs in the map to spherical coordinates
(see below). The bottom line is that such complications still yield a right
Cartan matrix that is torsion free, but introduce ”internal” degrees of free-
dom associated with each coordinate pairing. In 3 dimensions, the number
of rotation degrees of freedom is 3; in 4 dimensions the number of rotation
degrees of freedom is 6; in general, n(n — 1)/2. (The comparison of these
terms to linking integrals, angular momentum and spin orbit coupling will
be deferred.)
If the vector of 1-forms, |o*), is not closed, d |o*) # 0, then there exist
anti-symmetric components to the Cartan matrix in the sense that Cj, —
@ # 0. That is, if the Frame matrix maps perfect differentials into linear
combinations of differentials which are not closed, the Frame matrix will
generate ”affine” torsion coefficients. (Recall that the anti-symmetry being
discussed is nmot the matrix anti-symmetry, which is defined as CZ — C%..).
The difficulty is that there are certain classes of problems where the form
o” is not closed, but admits an integrating factor, such that the product is
closed, and there are cases where an integrating factor does not exist. The
integrating factor does not exist if the topological torsion of the form o is
not zero. The topological torsion of each o is defined as

Topological Torsion of each o® : ¢ do® # 0 (14)

When the topological torsion 3-form vanishes, the Frobenius integrability
theorem is satisfied and an integrating factor exists. When the topological
torsion is not zero, there is no integrating factor, and the criteria for a sym-
metric torsion free connection is not satisfied. Examples of frame fields for
which the topological torsion of one or more of the o are given below for
the Hopf map and the Instanton map.

The components of the vector of 1-forms constructed from a frame matrix
acting on a set of perfect differentials forms a set of n-biens (vierbeins in 4D).
The original concept of "n-beins” was defined in terms of a local coordinate
system of geodesics, where, as in the Frenet analysis, the "n-beins” or base
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vectors were metrically defined as unit orthonormal vectors. Herein, the
term anholonomic vierbein is used to describe anholonomic representations
(linear differential forms) of coordinate differentials. No metric is required
at this stage. The anholonomic vierbeins need not be normalized nor do they
need to be orthogonal. They can be used in projective spaces where a metric
does not exist.

A complication arises from the fact that there are many ways to construct
vierbeins from the matrix [F}], its inverse, [GY], or the induced symmetric
metric frame [g] = [F]"*P°s¢ [p] [F] . For example, if the position vector r on
y® is mapped via frame matrix to a vector on X* on x*, then X* = [F]|o|y?) .
Differentiation on both sides leads to

dX* = d[F]oly") +[Flodly") = [FI{[C]o|y*) +d|y")}  (15)

If the frame matrix [F] is constructed as an element of the orthonormal group,
then the Cartan matrix is an antisymmetric matrix of differential forms. In
3D, the anti-symmetric components of the Cartan connection for a vector
Qds such that [C'/ds] o |[y*) = Q x r. Division by ds leads to the classic
"relative” velocity formula,

V=[F]{Q xr+v} (16)

A second differentiation leads to the Acceleration formula.

dV* = [F]{[C] " [C/ds]o|y*) +2[C/ds] o |v*) +d[C/ds]" |v*) +d |v*)} (17)

Symbolic substitution leads to the expression

A=[F{Qx (2 x1)+2(2xV)+dQ/dsxv + a} (18)

For the orthonormal frame, it is apparent that the formula involves the cen-
tripetal acceleration, the Coriolis acceleration, terms due to rotational accel-
eration, and finally the local acceleration. The point to be made is that a
similar 4 part decomposition occurs for Frame fields that are NOT orthonor-
mal.

In addition to the basis frame at the point p, it is sometimes necessary
to define a position vector from an origin, or from a perspective point in
projective geometry, to the point p. The basis frame may be used to define



the position vector |y*) (or the definition of the ”origin” from a point p) and
the differential position vector, |dy®), in terms of possibly non-exact differ-
ential 1-forms called anholonomic vierbeins, |0%),(in 4 dimensions). The
key ingredient of the vierbein concept is that of the action of the reciprocal
matrix [G] on the coordinate differentials. (It is also possible to describe a
(different) metric set of anholonomic vierbeins - see below).

The identity,

|dy®) = [F] o [G] o [dy®) = [F] o]0?) (19)

defines a set of anholonomic vierbein(s) as

|0%) =[G o |dy*) (20)

In a general setting it is not at all clear that the exterior differential of
the anholonomic vierbeins is zero, as it would be if they were integrable
to exactness. Exterior differentiation of the definition (20) leads to the
equation,

d[F]olo®) + [F]od[o®) = [FI{[C] o |o%) +d|o")} = [F]o[E%) . (21)

Factoring out the basis frame leads to the format,

Cartan’'s 2" equations of structure : {{C] o |0%) +d|o®)} = |£%) (22)

which is known as ”Cartan’s Second Structural Equation”. The vector of
two forms |X¢) are defined as Cartan’s Torsion 2-forms. The relationship of
this definition of torsion and the previous definitions of torsion is presented
in detail below.

The first equations of structure depend upon the basis system, and the
second equations of structure relate to the definition of a origin, or a (non
transitive) point of "rotation” or "focus”. Interweaved with these ideas is the
concept of topological torsion, which is related to the concept of non-existence
of a unique integral equivalent to a system of differential equations.

The Frenet theory is constrained by both a metric (euclidean) idea and an
orthogonality idea. The two concepts are separate and can be individually
relaxed. In the more general situation, the question arises as to how the
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basis frame, [F], is to be selected or constructed, and how various basis
frames can be classified. The most important feature of the Cartan right
connection is that it defines the differential of any basis vector in terms
of linear combinations of the original basis vectors. The concept is one
of closure. The basis frames so generated can be classified by their group
structure, forming equivalence classes often called gauge groups by physicists.
However, the choice of a gauge group is arbitrary, and to insist that the gauge
group is preserved under evolution is a constraint that may be interesting,
but is a constraint that is not necessary.

Methods of constructing the Frame Field, the connection, and the vierbi-
ens will be explained below. The bottom line is that care must be taken to
define what type of torsion is being employed in physical applications. Each
of the six definitions of torsion given above will be examined in detail, in

hopes of clarifying intuitive and perhaps prejudice positions about torsion
fields.

II. Frenet Torsion of a Space Curve

The classical Frenet analysis of a space curve is based on a map (a con-
travariant position vector, R(t)) from a single parameter, ¢, (in physics called
time) to a point, p, on the curve, C, in a space of N=3 dimensions. The
method assumes the topology of kinematic perfection, in that the differen-
tial or Pfaffian expression, dR.(t) — V(t)dt is constrained to be zero, without
fluctuations, on the domain of interest. In addition, the classical method
presumes a geometrical constraint of isometry, where by it is possible, by
reparameterization, ¢ = s, to define a unit tangent vector t(s) everywhere
along the curve. This (Lagrangian) technique will be developed below, and
compared to a different (Eulerian) method which does not depend upon the
concept of kinematic perfection, or normalization. This latter (more hy-
drodynamic) method presumes that a vector field, V(z,y, z) is specified on
the domain, but does not claim a priori that the three Pfaffian constraints,
dR(t) — V(t)dt = AX, are without fluctuations (AX # 0). The method
appears to be applicable to problems which involve deformation and dissipa-
tive phenomena, and can be extended to include the topological evolution of
fields. Although the topology of the field is not subsumed to be constrained
by either a set of kinematic or a dynamic neighborhood conditions free from
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fluctuations, the topological constraint of continuous ( but perhaps dissipa-
tive and hence irreversible) evolution relative to a single parameter of time
does impose an integrability condition, which, surprisingly, constrains the
fluctuation domain of the dynamics, but does not constrain the fluctuation
domain of the kinematics.

A. Isometry vs. Deformation

Latent in the development of the classic Frenet theory is the concept of
isometry, in which a neighborhood constraint is assumed over the domain
of interest. That is, isometries define that subset of all possible transforma-
tions which preserve "size”. Recall that isometries include rigid body mo-
tions which preserve both size and shape, but isometries permit changes of
shape induced by bending without deformations associated with the concepts
of stretching, compression or torsion twisting. An isometric transformation
preserves the inner or DOT product of vectors, and, more generally, the dis-
tance between any pair of points. The DOT or scalar product permits the
geometric definition of the two distinct ideas: orthogonality and normaliza-
tion. ”Size” is usually defined in terms of the distance concept. Recall that
such constraints on evolutionary processes lead to the notion of the covariant
derivative of tensor calculus, which is defined to preserve the line element.

However, physical systems admit a wider class of evolutionary process.
Of special interest to this article are those evolutionary processes in which
deformations are permitted. Such processes are impossible to describe by
covariant transplantation processes. However, Cartan invented the concept
of the Lie derivative which can be applied to non-isometric processes of de-
formation, and in particular to topologically changing processes which admit
irreversible dissipation. An objective of this article is to extend the Frenet
Cartan theory of curves (based on intrinsic geometrical properties which are
invariants of isometries) to a Cartan-Frenet theory of fields (in which the
invariants are topological properties, or invariants of deformations). The
transplantation law to be utilized is the Lie derivative, a process that ad-
mits domain deformation. In addition, the Grassmann product is used to
define the notion of orthogonality. Normality invariance of a scalar product
is replaced by the measure invariance of a pseudo-scalar or density invariant.
The fundamental invariant is presumed to be a measure, not a metric.
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B. Fluctuations

To preview what is to be discussed, realize that the concept of an isome-
try is an equivalent class of mappings that preserve length. (Recall that the
definition of a covariant derivative was based on preserving the infinitesimal
distance between a pair of points). Once the constraint of isometry is relaxed,
then the notion of ”invariant” distance can be extended to include variations
or fluctuations in the distance between pairs of points. Herein, these fluc-
tuations will be treated in terms of deformation processes. In particular,
the limiting processes that are often used to define the kinematic concept of
velocity and the dynamic concept of force will not be assumed to constrain
the system topology, a priori. Instead, the kinematic concept of velocity will
be viewed as a constraint on the neighborhoods, and the constraints are not
presumed to be exact in an isometric sense. That is,

dR — Vdt = AX, with AX # 0identically ,and (23)

dp — fdt = Ap, with Ap # 0 identically. (24)

The fluctuations, Ap, AX , are vectors of 1-forms whose arguments are
not necessarily closed nor integrable. The now classic Langevin method pre-
sumes that the fluctuation 1-forms are functions of time alone. Such an
assumption is not employed herein, and is a point of departure from the
Langevin developments.

C. A classical Frenet immersion. The motion of a
particle

The usual derivation of the Frenet equations for the moving trihedron
(Mobile Repere) subsumes an immersion from a 1 dimensional manifold of
time, ¢, into the space {x,y, 2z} over which is created a vector field, V().
The methods implicitly depend upon the existence of an invariant inner or
DOT product to build a basis frame, which starts from the concept of a
unit tangent vector, T . The idea of a 1-dimensional immersion effectively
constrains the space kinematically such that

dR(t) — V(t)dt = 0 (25)
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without fluctuations, where R(t) is the classic position vector from the origin.
In terms of a Euclidean inner product or norm on {z,y, 2z}, the unit tangent
field can be defined as T(t) = V(t)/(V o V)/2such that,

T = [Ta(t), To(t), To(t)]. (26)

The usual assumption is that there exists a parameter, s, defined to be
the arclength, such that

dR(s) — T(s)ds = 0 without fluctuation. (27)

This result follows directly from the assumed mapping. Multiply the equa-
tion above by T(s) to yield the differential 1-form (in the euclidean space

T(s) = t(s)

ds = tydx + t,dy + t.dz. (28)

Substitution of the definition of t(t) = V(¢)/(V o V)'/2 and the expressions
for dR(t) without fluctuations, yields the formula:

ds — (V o V)Y2dt = 0 without fluctuation. (29)

This viewpoint is that of a classic ”particle”, where V(¢) defines the kine-
matic trajectory of some infinitesimal "point” particle. Successive deriva-
tives of the position vector with respect to the parameter of time can be
converted by the Gramm-Schmidt process into a set of orthonormal base
vectors, T(s), N(s), B(s). The derivatives of these base vectors with respect
to arclength generate the classic Frenet equations:

dT(s) = N(s)-kds (30)
dN(s) = —=T(s)-kds + B(s)-Tds (31)
dB(s) = —N(s)-7ds (32)

where k(s) is the Frenet curvature, 7(s) is the Frenet torsion, and s is the
arclength of the space curve.

Recall that Cartan was the champion of the Repere Mobile, of which the
Frenet basis frame, [F| = [ T(s),N(s),B(s)] is the classic example. The
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derivatives of the basis vectors are presumed to be closed globally, which
implies that the basis frame is an element of some group constraint placed
upon the base space. (This group is often called the gauge group, but it
should be considered as a topological constraint on the domain.). For the
Frenet system, the group is the SO3, the normalized orthogonal group in
three dimensions. As will be described later, the group constraint permits
the exterior derivatives of the basis frame to be linearly connected to the
elements of the basis frame itself. Symbolically,

d[F] = [F] o [C] (33)

where [C] is the Cartan matrix of connection 1-forms. For the Frenet system,

0 kds 0
[Cl=| —kds 0 7ds (34)
0 —7ds 0

The entire Frenet construction is based on a ”scalar” product concept pre-
serving the unit norm of each basis vector. This assumption constrains the
Frenet development such that the basis frame [F] must be an element of the
orthonormal group. The assumption that [F] is orthonormal forces the Car-
tan matrix to be anti-symmetric. The classical Frenet analysis of the space
curve is restricted therefor to isometric transformations! Later on, the devel-
opment will be in terms of a projective basis, where by going to 1 dimension
higher, the concept of an invariant inner product on N space is not needed.

It is a classic problem of vector analysis in euclidean 3 space to presume
that the position vector is a given function of time, ¢, and then to compute
the three parameters of the Frenet theory [Brand].

A most illustrative example is given by the twisted cubic,

R(t) = {2t,1* t3/3}, (35)

for which

dR(t) = V(t)dt = {2, 2t,t*}dt, (36)
such that

(V(t)oV(t)/2 = VA + 42 14 =2+ 2 (37)
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It follows that

s(t) = 2t +*/3 + constant, (38)

k(t) = [V () x A@)] /(V()oV (5)*2 = 2/(2+ 1) (39)

and

T(t) = dA(t)/dt o V(£) x At)/{*(V o V)*} =2/(2+ %)% (40)

Note that if the functions that define the position vector are less that cubic
in time, the Frenet torsion coefficient vanishes. The twisted cubic permits
the differential arc-length, ds, to be integrated in terms of the parameter, ¢.
Note that if the velocity field is linear in t, then the Frenet torsion vanishes.
If the motion is torsion free then the space curve resides in a plane.

TO BE ADDED 1. Darboux vector and the left Cartan matrix for a
Frenet system

D. Intrinsic Space Curves

An interesting result of the Frenet analysis is that when the three pa-
rameters s, k, and T have been computed, these functions are independent
from the particular coordinates used to describe the space curve. These pa-
rameters are intrinsic to the space curve. Space curves that admit the same
single values of Frenet curvature, k and Frenet torsion, 7, as functions of s,
are congruent. The idea is that the variables of arc length, Frenet curvature
and Frenet torsion may be used as "intrinsic” coordinates to describe a space
curve, very much like the Cayley-Hamilton invariants of matrix theory.

Planar Examples: Coordinates in the plane are curvature k£ and
arclength s

1. The Space Curve is a Euclidean Straight line:

The equivalent in the k,s plane is a straight line along the s axis,
k=0

2. The Space Curve is a Euclidean circle:

The equivalent in the k,s plane is a straight line parallel to the s
axis. k=s"=1
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3. The Space Curve is a Logarithmic spiral:
The equivalent in the k, s plane is a hyperbola: &k = s~!

4. The Space Curve is a Spiral:
The equivalent in the k, s plane is a straight line. k = s.
5. The Space Curve is a Cornu spiral:

The equivalent in the k, s plane is a quadratic k = s?
6. The Space Curve is a Mushroom spiral:
The equivalent in the k, s plane is a cubic k = s*
7. The Space Curve emulates a Rayliegh-Taylor instability:
The equivalent in the k, s plane is a harmonic k = cos?(s)
8.  The Space Curve emulates a Kelvin-Helmholtz instability:
The equivalent in the k, s plane is a harmonic k = cos?(s)/ sin(s)

III. The Frenet Helicity Torsion of a Bernoulli flow.

The Frenet theory of a space curve is useful for describing the ”La-
grangian” evolution of a point particle, but for a fluid a bit more must be
involved. The ”particle” evolves along a curve, where in a fluid one is in-
terested in evolution and variation in three spatial directions, not just one.
In particular, for an Eulerian view of a fluid, the constraint of kinematic
perfection without fluctuations must be abandoned, appearing as a useful
result only in special cases (streamline flows). The fluid is also a compress-
ible, deformable media, so the metric constraint of isometry in the Frenet
theory of a particle also must be relaxed. A three dimensional variety will
be subsumed at first.

In particular, the differential arc length (ds in the Frenet analysis) is
no longer an exact differential. To prevent misinterpretation, the inexact
differential of arc length will be defined by the symbol ¢ for the 1-form with

coefficients from a covariant vector field, t(x,y, 2) :
o= tydr +t,dy + t.dz. (41)

The fluid system is presumed to support a volume element, €2, with density
p such that

Q = pdz"dy dz (42)
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Note that this volume element is zero if the constraints of kinematic perfec-
tion are presumed to be valid. Substitution of dx = V*dt, dy = V¥dt, dz =
VZ#dt into the formula for €2 yields zero.

Next consider a vector field T(z,y, z) such that the 2-form density 7'
exists as

T =i(T)Q = pT*dy"dz — pT?dx"dz + pT*dx"dy. (43)

Constrain this vector field such that 3-form "7 is the unit volume element:

o T = {t,T* + t,T + .T°} - Q=1-0Q (44)

This constraint is similar (but not exactly equal) to the normalization con-
straint of the classical Frenet method.

If T and t are defined as before, t = T = V/(V,V® + V, V¥ + V,V*)1/2,
the construction for the arclength 1-form, o, is almost identical to that used
for the Frenet analysis of a point particle. However, there is one major
difference. The Eulerian viewpoint specifies the components of velocity as
functions of three parameters, {z,y,z}, and not of the single parameter,
t. (Time dependent flows will be discussed later by using a 4 dimensional
variety). The arclength is no longer, necessarily, a perfect differential, nor
is it necessarily closed, do # 0. In fact for a given velocity field, V, it
is necessary to compute the class, or Pfaff dimension, of the differential of
arclength, 0. There are three classes in three dimensions (herein vorticity is
defined as the curl of the unit tangent field, t) :

Pfaff Dimension 1 oc#0,do=0 Potential flow, vorticity =0

Pfaff Dimension 2 do # 0,0 do = 0 vorticity L velocity, helicity =0

Pfaff Dimension 3 o"do #0 Beltrami component, helicity # 0
(45)

In principle, the Pfaff dimension defines the minimum number of functions
required to describe the differential form in the sense of a submersion (recall
that the Frenet particle approach was based upon an immersion.) The key
point is that in the Frenet theory, Frenet torsion implied that the space
curve was immersed in three dimensions and could not be mapped to a two
dimensional set. In the fluid, when o"do # 0 then the minimum domain for
the tangent field is three dimensional.
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Frenet theory torsion, 7 # 0 D three dimensions
Topological Torsion, o"do # 0, D three dimensions.

For the Frenet case, the vanishing of the Frenet torsion implies that the
tangent to the curve resides in a plane surface. When the topological tor-
sion for the cotangent field vanishes, the cotangent vector is orthogonal to a
surface (not necessarily a plane).

It will be demonstrated below that the 3-form of topological torsion (in
three dimensions) is given by the expression

o'do=t-curl(t) Q={V - curl(V)/(V-V)}Q (46)

When the 1-form o of arc length is integrable, the topological torsion van-
ishes. The function {V - curl(V)/(V - V)} is defined as the Helicity density
in hydrodynamics. The Helicity function (equivalent to the topological tor-
sion function in 3 D) is closely related to the Frenet Torsion function of the
previous section, but it is not precisely the same as Frenet Torsion without
further constraints.

From the field (fluid) point of view, it is possible to define a covariant
field in terms of the functions that makeup a given contravariant Vector field,
V(z,y,2).

6,9, 2) = {tu, ty, £} = {V7, V2, V0, (47)

where wn/ P(z,y, z) is a scaling function yet to be specified, but will be one
of the possible Holder norms,

W,y 2) = {ao(VEP + ay (VV)P + a (V)P}P. (48)

If the domain is isotropic, a special choice for the Holder norm is the quadratic
form, p=2,n=1

WP,y 2) = {(VF)?2 + (VY)? + (V)12 = {g} /2. (49)

This classic choice will be presumed for this article. The features of other
norms will be described elsewhere.

Use the scaled covariant field t(z,y, 2)to create a differential 1-form of
arclength o (o is not exact, nor even integrable in the sense of Frobenius):

o = tydr + t,dy + t.dz. (50)
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The domain of interest is presumed to support a measure N-form, 2 =
pdz"dy”dz in 3 dimensions. Use the velocity direction field, V = [V* V¥ V#],
to construct a rescaled tangent vector, T = V/{¢}'/? and then use this
rescaled vector to construct the adjoint N-1 form (density), T', such that

T =1i(T)Q = p{T"dy dz — T"dx"dz + T*dx"dy}. (51)

(In the more general case, the two scaling functions of the cotangent and
tangent vectors need not be the same.) It follows, however, that the 3-form
s"T creates the N=3 measure, or Grassmann norm,

o T = p{(V")* + (V¥)* + (V*)*}/(¢) da"dy " dz = Q. (52)
In other words, choose the exponents such that the zero form i(T)o = 1.

If the measure € is an invariant with respect to V, then the Lie derivative
of € with respect to V must vanish.

L)@ = d(i(V)$) = {div(pV)}02 (53)

In other words for an invariant measure relative to the direction field V,
the divergence of pV must vanish. recall that given V,there is a unique
direction field, W, with an infinite number ”integrating” factors, p, such that
the current, J = pW is divergence free.

The contravariant scaled field T plays the role of a reciprocal vector to the
covariant, t, but the ” Grassmann norm”, ¢"T', as a pseudoscalar density, is
independent from metric, and does not transform as a scalar under functional
substitution. The transformational properties of all p-forms are well defined
in terms of the Jacobian pull-back, and therefor this concept of a ” Grassman
norm” is an idea free from metric or connection constraints.

The Lie derivative of the action, o, with respect to the reparameterized
Velocity field, T, (the convective derivative of o along T ) becomes:

Liryo =i(T)do + d(i(T)o) = i(T)do + 0 = k(z,y, z) n, (54)

and is transverse (orthogonal) to the direction field. That is, the Lie deriva-
tive creates a new l-form, n, which satisfies the equation, i(T)n = 0. It
follows that the Grassman product also vanishes:

n'T = (T"ng +T"ny +T%n,) pdz"dy"dz = {i(T)n} Q=0- Q=0 (55)
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The Lie derivative process is the analog of the Frenet procedure where dif-
ferentiation of the unit tangent vector creates the normal vector. The result
permits the creation of the N-1 form N = ¢(N)Q,and the normal vector from
the normalization constraint: n" N = 1.

In three dimensions there exist 3 functionally independent 1-forms, which
are named {o,n,b}. In three dimensions, b may be constructed from the
components of the N-1 = 3 form created from the product ¢"n = i(B)Q.
This construction is analog to the Gibbs cross product construction in Frenet
theory. The scaling components of b are deduced from the equation, b" 0" n =
1€2. Tt is also possible in 3 dimensions to decompose every 2-form, such as
do into three parts:

do = A,(0"n) + By(n"b) + C,(b"0) (56)

The coefficients are evaluate from the 3-forms

o0"do = By(c"n"b) = B,Q (57)
n"do = Cy(c"n"b) = C,Q (58)
b do = Ay(c"n"b) = A Q (59)

The Lie derivative of the arclength with respect to the direction fields
{T,N, B} become

L(T)O' = i(T)dO’ = Agn — Cgb (60)
Lo = i(N)do = —As0 + Bb (61)
Lo =i(B)do = —Bsn + C,0 (62)

Note that the Lie derivatives are with respect to 3 different direction fields,
where in the Frenet analysis, the differentiations were performed relative to
the same direction (second and third order differentiations.)

The components of the 1-form n have an interesting interpretation in
3 dimensions, because the components of the 2-form, do, can be put into
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correspondence with the Gibbs curl of the covariant field, t . In fact, the
curl of t generates the ” Darboux vector” of the field:

Darbouz vector field : curl t = {—1/2 V¢ x V+é curl V}/¢*?  (63)

In classic Frenet theory, the dot product of the Darboux vector and the unit
tangent field defines the torsion coefficient, 7 = tocurl t = Vocurl V/¢ =
Vocurl V/(V o V), and is equivalent to the three form density coefficient of
the topological torsion created from the 1-form of arc length:

o do =7 pdx"dy dz = (tocurl t) pdz"dy"dz (64)

The topological torsion can always be evaluated for any 1-form on any do-
main, and is equal to the Frenet torsion of a fiber for the special constraints
of normalization that correspond to the orthonormal group.

The N-1 form density, N, adjoint to the 1 form n is defined by the Grass-
man equation,

n "N = pdx"dy dx = €, (65)

and has a representation as the contravariant vector N, such that N = ¢(IN){2.
The direction field of N is presumed to be proportional to the components
of n but scaled by the factor, vy, such that yn{{n2 +n +n2} =1

A third contravariant vector is produced in 3D by the Gibbs product of
V and N , and more generally in terms of the exterior product:

B =i(V x N)pdz"dy"dz = 0" n. (66)

The "hydrodynamic Frenet equations are deduced by forming the con-
vective Lie derivative of 1-form of action arclength, o, with respect to the
three ”orthogonal directional fields T,IN, B .

L(V)G = kn. (67)
Lo =—ko+wb. (68)
L(B)O' = —Twn. (69)
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w is defined as the abnormality of the field,

w=VocurlV/(VoV)=tocurlt. (70)

Note that the abnormality, w, may differ from the Frenet torsion, 7, for the
vectors

These results are to be compared with the usual Frenet analysis in which
successive derivatives in the same direction of the Tangent field, T , are use
to generate the classical Frenet structure. Successive Lie derivatives of the
action, a, in the same direction of the tangent field , T , field do not yield
the Frenet results.

The three 1-forms, o,n,b, form a natural volume element and a basis of
1-forms on the space {x,y,z}.

o'n"b=pdx"dy dz =S (71)

The fundamental Grassman relations are:

o’ T=Q c"N=00c"B=0 (72)
nT=0n"N=Q n"B=0 (73)
bT=0b0N=0bB=0 (74)

where ) = pdz"dy dz.

The concept of orthogonality becomes the idea of measure zero! By form-
ing the Lie derivative of the Grassman relations, a set of necessary conditions
can be derived that preserve the Grassman norm relative to the Lie deriva-
tive. These equations are written below in 3-vector form, but it should be
remembered that these equations are all pseudo scalars in which the density
factor, p, has been suppressed.

Liry{oc"N} =0=divN + T o curlB+ No (curlT x T) (75)

Lery{oc"B} =0=divB — T o curlN + B o (curlT x T) (76)
Lo{n"B} = 0= divB 4+ N o curlT + B o (curlN x N) (77)
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Liy{n T} =0 = divT — N o curlB 4+ T o (curIN x N) (78)
Ligy{b"T} =0=divT + B o curlN + T o (curiB x B) (79)
Ley{b"N} =0=divN —Bo curlT + N o (cur!B x B) (80)

The equations above are similar to the integrability conditions that lead
to the Codazzi equations in the isometric setting. However, the set of trans-
formations (Vector fields V) that satisfy the above constraints admit defor-
mations and topological change.

In Frenet theory, when the Frenet torsion, 7, vanishes, the Tangent vec-
tor and the Normal vector reside in a plane. Hence the Binormal vector
is representable by a gradient field and is integrable. The analog for the
Eulerian fluid would be the requirement that

b db = 70 (81)

IV. The Torsion described by the anti-symmetric com-
ponents of a right Cartan Connection.

In this section the focus is on the equation

d[F] = [F] o [C] (82)

where given a frame field of functions, [F] and an inverse |G| the right Cartan
connection can be constructed in two ways:

[C] = =d[G] o [F] = [G] o d[F] (83)

The Cartan (right matrix) of connection 1-forms implies that the differential
of any column basis vector is a linear combination of all column basis vectors
of the set.

1 1 1 1 1
Bg 65 G% eg B%
(& (& (& (& (&)
a _ 1 1 c 2 2 c 3 3 c 4 4 c
d 3 - 3 Cacdy + 3 Cac dy + 3 Cacdy + 3 Cac dy
€q €1 €3 €3 €4
4 4 4 4 4
€a 1 2 €3 €4

(84)
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This is a concept of closure, a concept which is inherent in much of Cartan’s
work. The formulation is related to a ”passive” interpretation of the action
of the total differential on any basis column vector. The ”affine” torsion of
the Frame field is defined as the anti-symmetric combination

Tbac = gc - gb 7& 0. (85)

The Frame matrix can be associated with a map into a euclidean space or
a map from a euclidean space. If the differentials of the domain are presumed
to be exact and differentials of the range are presumed to be closed (exterior
differential is zero) then the right Cartan matrix relative to the frame is
torsion free. If the range space differentials are exact then the right Cartan
matrix is the same as the Christoffel connection for the induced metric on
the domain space. If the map is to a euclidean space, then the right Cartan
matrix is symmetric in the lower two indices. In the other hand if the map
is from a euclidean space, the connection on the range space is not equal to
the Christoffel connection, for the metric is constant on the range, and the
Christoffel symbols are zero.

To cement the ideas it useful to give several examples. The first example
will be for a map from spherical coordinates to euclidean coordinates in
3 space. The Frame matrix will be constructed from the Jacobian of the
mapping. The second example will consider the map from a euclidean 3 space
to spherical coordinates. Again the Frame matrix can be deduced easily. The
third example will construct the frame matrix from a given 1-form of Action
on a 4 dimensional variety. The fourth example will be based on the Hopf
map where one of the vierbeins is not integrable but the other 3 vierbeins
are integrable. The fifth example will correspond to the instanton system,
where 3 of the vierbeins are not integrable, but one is integrable. Maple
programs are available to do the computations.

1. Spherical Coordinates to Euclidean 3 Space.

An example is given by the map ¢ from £* = {r,0, 0} to z* = {x,vy, 2}
given in terms of spherical coordinates :

¢ A{r, 0,0} ={z,y,z} = {rsin(p)cos(0), rsin(p)sin(f),rcos(p)}  (86)

The induced differential map is given by the expression
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dp i |dg") = |da*) = [06"(€")/0€"] o |de") (87)
dx sin(p)cos(0) —rsin(p)sin(f) rcos(p) cos(h) dr
dy > = sin(p)sin(f) rsin(p )co (0) rcos(p)sin(f) o| db >8 )
dz cos(y) —rsin(p) dp

The matrix of partial differentials is the Jacobian matrix of functions with
arguments on the initial state with independent variables, {r,0,0}. No
metric and no domain of support has been specified. In that which follows
the domain of support is defined as that set of values £” on the initial state,
where the Jacobian determinant does not vanish (r?sin(6) # 0). The Jaco-
bian matrix can be viewed as a matrix of contravariant vectors (on the final
state, ¥ ) in columns, and can be used as a basis frame (with arguments on
the initial state £”) on the domain of support (where det [8¢k(§b) /OE*] #0).
That is, assume the basis frame is given by a set of contravariant columns
with row index k and column index a and with arguments on £ :

sin(p)cos(0) —rsin(p)sin(f) rcos(p) cos()
[F¥] = [8¢k(£b)/8§“} = sin(p)sin(f) rsin(p)cos(d) rcos(p)sin(6)
—rsin(y)

(89)
As yet there has been no metric imposed upon the space, but even without
specification of a metric it is possible to use the general formulas given above
to define a Cartan connection

Q
QS
0
—
S
~—
=)

d[F] = [F]o[C] = [F]o[-d[G] o [F]] = [F]e [[G] o d[F]] ~ (90)
The right Cartan matrix becomes:
0 —rd(9)(sin p)? —rd(p)
[C]= d(0)/r d(r)/r+cospd(p)/sinp cosed(d)/sinp (91)
d(p)/r — cos p sin @d(0) d(r)/r

The individual components to the connection C%, can be read off from the
matrix above to yield

0 Ci, = —r(sin p)? Ciy=—
Cih=1/r C3 =1/r, C3 =cosp/sing (3, = cos <p/ sin ¢ (92)
Clh=1/r CS’QZ—COSQO/SIHQO C3 =1/r
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It is apparent that

The = Cpe = Gy # 0, (93)

hence the Frame is torsion free (as expected for an integrable map).

In classical tensor analysis, the concept of an affine connection is associ-
ated with the (right) Cartan matrix (ref. L. Brand) as follows: (Remember,
all the functions have arguments £° of the initial domain of definition.)

a[FY] = [Fo [Chae) = [F] o[ ed[F)]  (0)
= [F] o [[Gh] o [{0%¢/ (¢™)/0¢°0¢ }dee] | - (95)

As the system is integrable and (assumed) twice differentiable, it follows that
the coefficient functions of the connection are symmetric

Coe = Coy = [G}] o [{07¢7 (™) 0 0E" 1 dE"] . (96)
The assumption that the order of partial derivatives is not important elimi-
nates any lower index antisymmetry in the Cartan connection coefficients.

If one computes the pullback metric g, on the initial domain {£°} induced
by the quadratic form on the final state, njkdxj da®

[9a6(£°)] = [Fﬂ © [njk} © [Fbk] ) (97)
and then uses the classic Christoffel formulas for deriving a connection from
a metric,

Christof fel : {Zc} = gbe{agce/aga + 0Gea /08" — 0ac/ 0"} (98)

it follows that, for a Jacobian basis frame, the Cartan connection is the same
as the Christoffel connection, and the connection is (affine) torsion free:

If [F;] = [0¢"(£")/0¢"] , then Cq. = {5} (99)
For later comparison to Shipov’s ideas note that in this integrable case,
chw - {Zc} =Y (]‘OO)
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2. Euclidean 3 space to Spherical Coordinates.

The map from a Euclidean space to the space of spherical coordinates
yields much different results. As the metric on the domain of definition
is a set of constants, the Christoffel symbols must vanish. It is possible to
generate a Frame matrix from the differentials of the coordinate mappings.
It is to be expected that the Affine torsion of the right Cartan matrix is
zero. Howeve, the components of the right Cartan connection are not zero.
Hence, on the intitial domain, the difference between the Cartan connection
and the Christoffel connection is equal to the Cartan connection, and is not
equal to zero as in the previous example.

3. The Frame matrix generated from a 1-form of Action

later

4. The Frame matrix associated with the Hopf map.

later

5. The Frame matrix associated with the Instanton map.

later

A. The Cartan Torsion 2-forms.

later

B. The Frame field and Topological Torsion of a 1-
form.

On a n+1 dimensional variety that supports a differential 1-form A it is
possible to construct algebraically a Frame field that consists of n vectors
orthogonal to the components of A. If the 1-form was a perfect differential,
its components represent the "normal” field, n, to a surface, and the n or-
thogonal vectors are called ”tangent” vectors e to the surface. Keep this
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concept (of implicit surfaces) in mind, but now expand the idea to situations
where the 1-form is not a perfect differential.

The objective is to construct the projective frame field from a given 1-
form, and call attention to the fact that two types of torsion defects (both
rotational and translational) can be generated on a projective manifold. Al-
though the affine translational torsion has a growing literature, the projective
rotational torsion has been ignored. Yet, the suggestion of this article is that
rotational torsion, intuitively, seems to be of more importance for hydrody-
namic situations.

Consider a 1-form of Action on a 4 dimensional domain of definition given
by the expression,

A = {up(z,y, 2, t)da* — cdt} ) d(z,y, 2, 1)

At any point p of the domain, there exists 3 vectors e,, of four com-
ponents that are orthogonally transversal to the form in the sense that
i(em)A = 0. These vectors (to within an arbitrary factor) may be used as
column vectors of a basis frame at the point p. The coefficient functions of
the one form itself (to within an arbitrary factor) form the 4 elements of a
basis frame at the point p. Following the work of H. Flanders, a useful but
not unique choice for a basis set at the point p is given by the expression,

1 0 0 —vu,/¢
0 1 0 —u,/¢
0 0 c  —v /¢
v/ vy/c Ve, +c/o

The determinant of this matrix is equal detF = (¢* + A2 + A2 + A?)/co,
which is never zero for bounded coefficients. Hence this basis frame has an
inverse almost everywhere.

F =[eg,n| =F =

The existence of the inverse matrix, of course, guarantees that the differ-
ential of every basis vector is decomposable into a linear combination of the
original elements of the basis set, independent of the partition. The matrix
of coeflicients of this linear expansion defines the (right) Cartan matrix of
connection 1-forms, C,,

dF =Fo{dFoF '} =Fo{—dF 'oF} =FoC,

over the domain of support for the basis frame (where F~! exists).
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It is convenient to partition the (arbitrary) basis frame [ in terms of the
associated (horizontal, interior, coordinate or transversal) vectors, e, and
the adjoint (normal, exterior, parametric or vertical) field, n,,

F — [ekyn] - [elyeQae?)an]'

The corresponding Cartan matrix has the partition,

el el ... nt rt i ..ot
2 2 2 2 2 2
Fedl @ €2 ~ " | _poCc—Fo vy 5 oo«
ey ey .. n" hi hy ... Q

The Cartan matrix, C, is a matrix of differential 1-forms which can be
evaluated explicitly from the functions that make up the basis frame if they
admit first partial derivatives. Moreover, the differential of the position vec-
tor can be expanded in terms of the same basis frame and a set of Pfaffian

1-forms:
dx dx o
dR=To| .. > =FoF'o| ... > =Fol .. >,
dt dt w
o
where the vector | ... > is a (4 component) vector of 1-forms that can be
w

computed explicitly.
By the Poincare lemma, it follows that

ddF = dF"C+F"dC =F o {C"C+dC} =0,

o do .| o do
w>—|—IFo‘dw>—Fo{C w>—|—‘dw>}—0.
These equations indicate that the Cartan curvature 2-forms and the Cartan
torsion 2-forms vanish for the specified Frame.

and

ddR = dIF"

As the Frame matrix and the Cartan matrix are partitioned relative to
the tangent (or interior) vectors e and the normal (or exterior) vectors, n, the

30



Poincare lemma breaks up into linearly independent factors, each of which
must vanish. The results are:

ddR =e{d|o)+[I']"|o) —w" |¥)} + n{dw + Q' w+ (h| " |o)} =0
dde = e{d[T'] + [T]"[[] + [v) ~ (b} + n{d (h| + Q" (h| + (h| "[T]} = 0
ddn = e{dly) + [T by) — 9" )} + n{dQ + 90+ (h] ")} =0

By reasons of linear independence, each of the curly bracket factors must
vanish, leading to the results on the interior domain (coefficients of e):

w
dlo) +[I]"o) = w' |y)=T)=| vy’ >
w ™y
|X) = the interior torsion vector of dislocation 2-forms.

Y he 4 he A hs

d]+ [0 = —|v) " (b =[O] =| v*"hy ¥*"hy ¥ "hs
Y he P he 7 hs
[®] = the matrix of interior curvature 2-forms

Q!
dly)+ [T 1) = Qv =¥ = | Q" >
03
|¥) = the exterior torsion vector of disclination 2-forms.

The first two equations are precisely Cartan’s equations of structure (on
an affine domain). It is the last equation of exterior disclination 2-forms,
d|vy) + [T]" |v) = |®), that appears to be a new equation of structure valid
on a projective domain, when €2 # 0. Further exterior differentiations lead
to the Bianchi identities.

(later)
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It is important to note that the method of construction leads to a Frame
field such that the Cartan curvature 2-forms and the Cartan Torsion 2-forms
both vanish. Such spaces are defined as spaces of absolute parallelism. The
example demonstrates that an arbitrary 1-form of class 4, will generate an
A4 space of the type studied by Shipov. The curvature of the subspaces and
the torsion of the subspaces is not (necessarily) zero.

(Maple programs for computing these things will be attached later.)
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