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Abstract

Class Notes 1993, et. seq., on Tensors and Di®eomoprhic maps

1. Some elementary features

Tensor analysis is concerned with the behavior of ordered sets of functions under
special classes of di®erentiable mappings, Á; from an initial state of independent
(base) variables to a ¯nal state of independent (base) variables.
Everything starts from the idea of a C1 mapÁ from an initial state f»kg to a

¯nal state fx¹g ; and its di®erential, dÁ:

Á : »k ) x¹ = Á¹(»k) and (1.1)

dÁ : d»k ) dx¹ =
£
@Á¹(»n)=@»k

¤
d»k: (1.2)

The last expression de¯nes the Jacobian mapping linearly connecting the di®er-
entials d»k and dx¹; of the initial and ¯nal state:

J =
£
@Á¹(»n)=@»k

¤
: (1.3)

If the rank of the Jacobian is globally constant and equal to the dimension of the
¯nal state, the map is said to be onto (a submersion). If the rank of the Jacobian
is constant and equal to the dimension of the initial state, the map is said to
be 1-1 (a parametrization). Special situations occur when the map is both 1-1
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and onto. These special maps are called di®eomorphisms, and they preserve the
topology of the initial and ¯nal state.
Next consider ordered sets of di®erentiable functions with arguments in terms

of the base variables. A single function will be de¯ned as a tensor of rank 0. Over
a base of N independent variables, an ordered set of N functions (components)
will be de¯ned as a tensor of rank 1, if the components of the ordered set on the
¯nal state can be linearly connected to the components of the ordered set on the
initial state. What is remarkable is that there are two independent species of
ordered sets of functions of the same rank: these species of tensors are epitomized
by the contravariant vectors, V k(»j); with upper indices (by convention) and the
covariant vectors A¹(x

º), with lower indices by convention). These two species
of tensors of the same rank behave di®erently under the same mapping! The
covariant tensors are more like "waves" and the contravariant tensors are more like
"particles". Of course, the mapping can be considered a model of an evolutionary
process.

The ¯gure generalizes the situation for di®erentiable maps:

So, lets summarize. The map, Á; between initial f»kg and ¯nal states fx¹g
of base variables can be highly non-linear, but tensors are the restricted class
of ordered sets of functions built over the base variables where the admissable
arrays over the initial state must be linearly connected with the ¯nal state. The
simplest ordered array is called a tensor of rank 1, or a vector. A tensor of rank

2



0 is a single scalar function. Tensors of higher rank will be described below).
The linear mappings in the ¯gure are often called collineations and correlations
(in projective geometry). The key features of the linearity are governed by the
components of the Jacobian matrix, its transpose, its adjoint, and if it exists, its
inverse.

1.1. Contravariant Vectors

Physically, the covariant tensors are more like "waves" and the contravariant
tensors are more like "particles". In many treatments of classical tensor analysis it
is assumed that the Jacobian matrix has an inverse, and in addition, the Jacobian
matrix is an element of the orthogonal group. Hence the inverse of the Jacobian
is its transpose. For such a restriction, the equation for the linear behavior of
the contravariant vector under the mapping is given by the matrix equation,

Contravariant :
¯̄
V k(»n)

®
) jV ¹(»n)i = [J¹k(»n)] ±

¯̄
V k(»n)

®
(1.4)

which maps the components of the contravariant vector on the initial state to the
components of the contravariant vector on the ¯nal state. Note that the compo-
nents V ¹(»n) induced on the ¯nal state are functions whose arguments are on the
initial state! Only if an inverse mapping function exists does the contravariant
transformation rule produce an ordered array of functions on the ¯nal state whose
arguments are the base variables of the initial state. Classical tensor analysis is
restricted to such a constraint; the maps must be di®eomorphisms.
The transformation rule is modeled after the linear rule given for dÁ: The

word contravariant is historical.

1.2. Covariant Vectors

Now consider another classic rule representing the total di®erential of a function
on the ¯nal state,

d£(x¹) = (@£(x¹)=@xº)dxº = Aº(x
¹)dxº = hAº(x¹)j ± jdxºi : (1.5)

Substitute the expression for dx¹ = [J¹k(»
n)] ±

¯̄
d»k

®
; to obtain

hAº(x¹)j ± jdxºi = hAº(x¹)j ± [Jºk(»n)] ±
¯̄
d»k

®
: (1.6)

This leads to a linearly equivalent expression for the total di®erential on the initial
state.
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hAk(x¹(»n)j ±
¯̄
d»k

®
= hAº(x¹)j ± [Jºk(»n)] ±

¯̄
d»k

®
= hAº(x¹)j ± jdxºi (1.7)

The covariant vector on the ¯nal state Aº(x
¹) is related to the covariant rule on

the ¯nal state by means of the transpose of the Jacobian matrix.

hAk(x¹(»n)j ( hAº(x¹)j ± [Jºk(»n)] (1.8)

This operation is de¯ned as a "pull-back" (from ¯nal to initial state), where the
contravariant rule is de¯ned as a "push-forward". Note the initial pull back
is related to the Jacobian matrix transpose. For Jacobian matrices which are
orthogonal, post multiplication by the inverse Jacobian matrix gives a "push for-
ward" format for the behavior of covariant tensors. The maps considered by
classical tensor analysis must be di®eomorphisms for the rules to have well de-
¯ned meanings.

1.3. Di®erential forms

The concept of a di®erential form is epitomized by the expression for the total
di®erential given on the ¯nal state,

A = Aº(x
¹)dxº: (1.9)

It has a functionally well de¯ned pre-image on the initial state via the pull-back
mechanism. The pull back exists if the map Á is di®erentiable, but not necessarily
invertible. Hence a unique inverse map need not exist, and yet all di®erential
forms on the ¯nal state are retrodictable to the initial state ( but not predictable).
Hence, the di®erential forms are well behaved even when the map from initial to
¯nal state does not preserve topology. In other words, di®erential forms can be
used to study topological evolution, while ordinary tensor ¯elds cannot. Tensor
analysis is restricted to those maps where the dimension of the ¯nal state is the
same as the dimension of the initial state (otherwise the Jacobian inverse does
not exist). Di®erential forms can be used to study maps where the dimension of
the initial state and the dimension of the ¯nal state are di®erent.

2. Spaces that admit a Riemannian metric

Now consider the ¯nal state to be constrained such that the space has euclidean
Cartesian properties. Then use the Pythagorean idea of length as a quadratic
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form, `2 = x2 + y2 + z2; to produce the quadratic di®erential form,

(±s)2 = (dx)2 + (dy)2 + (dz)2 (2.1)

Use functional substitution given by (1) to induce or pullback a value for (ds)2 on
the initial state:

(±s)2 = hdx¹j

2
4
1 0 0
0 1 0
0 0 1

3
5 jdxºi = hd»mj Jtrans±J jd»ni = hd»mj gmn jd»ni (2.2)

The quadratic di®erential form has the same value on initial and ¯nal state, but
exists with di®erent functional formats. However, the induced format on the ¯nal
state is a well de¯ned function on the ¯nal state. In particular the induced
term, gmn = Jtrans±J; is a functionally well de¯ned second rank tensor ¯eld de¯ned
on the initial state. It is the metric induced on the initial state by the mapping
to a euclidean domain.
Note that the quadratic di®erential form is invariant by its very de¯nition.

The induced metric is a symmetric matrix by its very construction, which means
it has a complete set of eigenvectors and can be diagonalized. However, the
induced metric is diagonal only when the columns of the Jacobian matrix form
an orthogonal set. Such is the case in many textbook applications. The diagonal
elements are not constants, however, and their square roots are often called scale
factors. (See Morse and Feshbach).
When the Jacobian matrix is such that gmn = Jtrans±J = ¸(»k)I then the

metric is said to be conformal (all directions have the same scale factors). If
¸(»k) is C1 then locally the domain is homogeneous and isotropic. If the ¸(»k) is
constant then the domain is globally homogeneous and isotropic. Note that the
Lorentz metric gmn = f1,-1,-1,-1g is not strictly isotropic over space time, but it
is spatially isotropic.
It is now possible to ask for further transformations of the coordinates such

that the metric coe±cients remain invariant. The foundations of special relativity
are embedded in a search for all transformations that leave the Lorentz metric
invariant. V. Fock has proved that there are two possibilities: The only linear
set of maps are the Lorentz transformations. However, there is another NON-
LINEAR map, the fractional Moebius (Projective) mappings that also preserve
the quadratic form given by the Lorentz metric. These non-linear features of
Relativity and Electromagnetism have been little explored, but they admit the
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concept of electromagnetic signal propagation occurring faster than the speed of
light.
Having the knowledge that an induced metric is computable, it is possible to

start from another tack, and subsume the existence of some form of metric on
the initial state, and then ask how does this metric evolve as the point of interest
changes. It is also possible to ask questions about metrics induced on subspaces
and determine how such subspace metrics are deformed due to some evolution
of the embedding space. Evolutionary processes that preserve the line element
are called isometries. Certainly the simple concepts of rotation and translation
are isometries, for distances along paths between connectable points (perhaps in
subspaces) are preserved. Bending of a thin °at piece of soft copper is approx-
imately an isometry that is also a deformation, and not a rotation or transla-
tion. A distance between a pair of points on a connected path is preserved under
the deformation. Note that the distance between a pair of points along a non-
connectable path is not preserved. Only the simplest of evolutionary processes
conserve distance, yet physics is inundated with the constraints of the Lorentz
transformations. Pity.

Problem 1.
Consider the map x = r sin(') cos(µ); y = r sin(') sin(µ); z = r cos('):
Compute the Jacobian of the map and the induced metric.

From the idea that a tensor invariant is a product of a contravariant and a
covariant tensor, and from the concept that d»m is the role model for contravariant
vectors, the length of a vector can be de¯ned in terms of its measure coe±cients,
gmn; or the metric of the domain.

v2 = V mgmnV
n (2.3)

From this formula, the implication is that Am = gmnV
n is a covariant vector

deduced from the contravariant vector, V n: The metric tensor acts as a lowering
operator converting a Contravariant-vector into a Covariant-vector by "lowering"
the index. The reciprocal metric can be considered as a dual operator, or raising
(the indices) tensor. Suppose that d»m ¡ V mdt = 0. Then

v2(dt)2 = (V mdt)gmn(V
ndt) = hd»mj gmn jd»ni = (±s)2; (2.4)
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an expression relating distance to speed and time interval. The important thing
to remember is that:

dt is a perfect di®erential; but ±s is not: (2.5)

(±s)2 is an invariant; but (dt)2 is not: (2.6)

3. Basis Frames and Connections

For tensors of Rank 1 and above, the idea is to ¯nd a method of di®erentiation
that will yield the same values on either the initial or ¯nal state. The ideas stem
from the desire to formulate a di®erential form on both the initial and the ¯nal
state of a map which is well de¯ned functionally. Consider the scalar di®erential
expression on the ¯nal state A¹(x)dx

¹: Next substitute from the map for the
di®erentials dx¹ = J¹md»

m; and then use the map itself to convert functions of
x into functions of »: These are the procedures of functional substitution, or the
"Pullback". The end result is to convert a covariant vector A¹(x) on the ¯nal state
into a covariant vector A

0
m(») on the initial state. The covariant transformation

law is via the transpose of the Jacobian matrix.

A
0
m(»)d»

m ( A¹(x(»))J
¹
m(»)d»

m ( A¹(x)dx
¹ (3.1)

A
0
m(») = A¹(x(»))J

¹
m(») (3.2)

As a scalar invariant in tensor analysis is a inner product of a contravariant and a
covariant, and as d»m is a set of contravariants on the initial state, it follows that
A
0
m(») is a covariant vector on the initial state. This transposition-pullback rule
is the proper de¯nition of a covariant transformation, and is based on the concept
of a scalar invariant as an inner product, or contraction, between a covariant and
a contravariant.
On the right hand side, the product, A¹(x(»))J

¹
m(»); looks like a product of

a set of expansion coe±cients on the ¯nal state (the A¹(x)) and a set of m
basis vectors (with arguments on the initial state). These basis vectors have ¹
components which is the proper dimension of the ¯nal state (the Jacobian matrix
[J¹m(»)]). The di®erential on the left should be the same as the di®erential on the
right. Using the chain rule, the total di®erential of the term on the RHS becomes:

dfA¹(x(»)) J¹m(»)g = [@A¹(x(»)=@x¾)(J¾n (»)) J¹m(») +A¹(x(»)) @J¹m(»)=@»n]d»n
(3.3)
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By the Leibniz rule the di®erential on the right consists of two parts: ¯rst,
the di®erential of the expansion factors multiplying a matrix of basis vectors, and
second, the di®erential of the basis vectors multiplied by the expansion factors.
In the Cartesian space of engineering, the basis set consists of constant vectors;
hence their di®erentials are zero. In general spaces, this is not true, and it is a
topological problem to develop expressions for the di®erentials of the basis vectors.
If the Jacobian matrix is 1-1 and onto, then the Jacobian itself can be used as

a global basis set for all vector spaces on the domain. Such a global basis set has
a non-zero determinant everywhere. It follows that

d(J¡1±J) = dJ¡1±J+ J¡1±dJ = dI = 0: (3.4)

Hence, the derivatives of the basis vectors are linear combinations of the original
basis vectors. The coe±cients of these linear connections are called the (Cartan)
connection coe±cients:

dJ = J ± (¡dJ¡1 ± J) = J ± C (3.5)

In index notation the idea is that the partial derivatives of the Jacobian can be
written as linear combinations of the elements of the Jacobian itself:

@J¹m(»)=@»
n = J¹k (»)C

k
mn (3.6)

The topological idea is that the di®erentials of the basis vectors are closed in a
linear sense; i.e., they can be linearly constructed from the original basis. The
dimensionality of the vector space does not change in nearby di®erential neigh-
borhoods.
It may not be possible to use the Jacobian matrix as a basis set on the ¯nal

state, but suppose that such a global basis set, B, can be found by other means.
Then the Cartan connection formula becomes

dB = B ± (¡dB¡1 ± B) = B ± C: (3.7)

4. The Repere Mobile

Cartan constructed such a basis B by considering a position vector,R(s) =[x(s); y(s); z(s)],
to an arbitrary space curve in some euclidean space. The curve may be considered
as a map from an initial state fsg to a ¯nal state fx; y; zg: In practice, the pro-
cess usually involves a two stage map from fsg ) f»g ) fx; y; zg, as the position
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vector R(») is usually given as a function of some other parameter (called time in
many physical systems). A constraint is placed on the map fsg ) f»g such that
s is the parameter of "arc" length along the curve:
Di®erentiating this position vector with respect to s leads to the "unit tan-

gent" vector, t =dR=ds = (dR(»)=d»)(d»=ds), tangent to the curve. Actually,
the di®erential process, and the "normalization or inner product", t ± t = 1; de-
¯nes what is meant by arc length, s. Note that this is a metric concept, for
t =dR=ds = (@R=@»)d»=ds and

t ± t = hd»=dsj [(@R=@»)]trans [(@R=@»)] jd»=dsi = hd»=dsj [g] jd»=dsi = g(d»=ds)2
(4.1)

It is apparent that [g] is the induced metric on the space fsg with the single entry
or scale factor of value equal to (ds=d»)2 (in order to make t ± t =1 ).
Next, di®erentiate the unit tangent vector t with respect to the arc length s,

de¯ning the unit normal vector, n

�n = dt=ds (4.2)

The inner product of the euclidean space can be used to demonstrate that n and
t are orthogonal, n ± t = 2dt=ds ± t = 0 when �; the curvature is not zero. From
the completeness of euclidean space, use either the cross product, or the Gram
Schmidt process, to construct the unit bi-normal, b = n£ t: The basis frame is
then constructed as

B =
£
t n b

¤
(4.3)

which Cartan called the Repere Mobile, or "Moving Frame".
This process of basis set construction is of course the well known Frenet-Serret

process, but Cartan extended the idea (later) to projective, not euclidean, spaces
where the concept of length and inner product are not needed. The Frenet-Serret-
Cartan basis is an element of the orthogonal group, for Btrans ± B = I. It follows
that the Cartan connection, C, is anti-symmetric for the Frenet Basis Frame.

dB = B ± C; with ¡ Ctrans = C =

2
4
0 � 0

¡� 0 ¿
0 ¡¿ 0

3
5 ds: (4.4)

The connection coe±cients, � and ¿ are de¯ned as the Frenet curvature and the
Frenet torsion of the space curve.
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Problem 2
Prove that Ctrans = ¡C for any basis frame which is orthogonal, Btrans±B = I.

As an example consider the map

Á : s ) » ) fx; y; zg = R(») =
£
»; »2; »3

¤
(4.5)

Then
dR=ds = t = (@R=@»)d»=ds = f1; 2»; 3»2g(1=¸) (4.6)

with

1=¸ = (d»=ds) = §=
q
1 + 4»2 + 9»4: (4.7)

The unit normal ¯eld becomes

�n = dt=ds = f0; 2; 6»g=¸+ f1; 2»; 3»2gd(1=¸)=ds (4.8)

But d(1=¸)=ds = ¡(1=¸2)(d¸=d»)(d»=ds) = ¡(1=¸3)(d¸=d») such that

�n = dt=ds = [¡f0; 2; 6»g(1 + 4»2 + 9»4) + f1; 2»; 3»2g]d(¸)=d» (4.9)

Problem 3
Use Maple to construct the Frenet Frame for an arbitrary space curve.
Plot for arbitrary space curve.

If and when the basis set is constructed from the induced metric, gmn =
J¹mJ

¹
n = gnm, the connection coe±cients enjoy certain symmetries and are called

Christo®el symbols, ¡kmn = ¡
k
nm.

There are three important cases to consider: the case when the di®erential
map is 1-1, onto, or 1-1 and onto. First consider the 1-1 and onto case in which
the dimension of the initial state is the same as the dimension of the ¯nal state.
The the Jacobian matrix is square, and with zero determinant everywhere. The
basis set on the ¯nal state can be considered to be complete in the sense that
there are enough Jacobian columns to equal the dimension of the space.
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5. Classical Field Theory of a Single Parameter { LaGrange
Euler Equations

Consider a map from the 1 dimensional domain, t, to the 2N+1 dimensional
domain of fq;v; tg Assume the existence of a function L(q;v; t) on the target
space that somehow describes a physical system. If the map is di®erentiable, then

dqk = (@Ák=@t) dt and dvk = (@ÁN+k=@t) dt: (5.1)

Further assume that the 2N+1 space is locally constrained such that

dqk ¡ vkdt = ekdt ) 0: (5.2)

The ek can be interpreted as error, or °uctuation, components that tend to zero
under the assumption of kinematic perfection. By functional substitution, pull
back the function L(q;v; t) such that it becomes a function of L

0
(t) alone.

The fundamental assumption is the curvature di®erentials should agree on
both domains:

dL
0
= dL(q;v; t) (5.3)

Apply the chain rule on the RHS:

dL = (@L=@t)dt+ (@L=@qk)dqk + (@L=@vk)dvk: (5.4)

From the Leibniz rule:

(@L=@vk)dvk = d(@L=@vkvk)¡ fd(@L=@vk)gvk (5.5)

This trick is equivalent to the "integration by parts" in the calculus of variations.
Substitution of this result into the expression for the di®erentials on the two
domains 5.3 yields

d(@L=@vkvk¡L0
) = fd(@L=@vk)=dt¡@L=@qkgvkdt+f@L=@qkek¡@L=@tgdt (5.6)

It is conventional to de¯ne

pk=@L=@v
k and f consk = @L=@qk (5.7)

which are the covariant momentum and force. Substitution yields

d(pkv
k ¡ L) = (dpk=dt¡ f consk )vkdt¡ (f consk ek ¡ @L=@t)dt (5.8)
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The term (pkv
k ¡ L) is de¯ned classically as the Hamiltonian, H: The term

(dpk=dt ¡ f consk ) = fdissk is classically the Lagrangian dissipative force. The term
f@L=@qkek¡@L=@tg is a combination of the °uctuation and time dependent losses.
Suppose the system is without °uctuation losses such that dqk ¡ vkdt = 0:

Then the di®erential equivalence constraint is recognized as a Power Theorem:

dH=dt = fdissk vk; (5.9)

or the time rate of change of the energy, H, is the product of the dissipative force
times the velocity.
If the energy (or Hamiltonian) is a constant of the "motion" then for arbitrary

displacements, dqk; it follows that

fd(@L=@vk)=dt¡ @L=@qkg = 0 (5.10)

which are the LaGrange Euler equations of motion. A constrained possibility for
zero energy change is given by motions on an "equipotential" surface. This surface
is de¯ned as the zero set of the function, '(q;v; t) = 0:
So classical mechanics is replicated above without any assumption of metric,

or a speci¯ed set of coordinates, or a connection, and without the explicit use
of a variational principle!!! the technique demonstrates when a °ow vk and a
kinematic particle velocity, dqk=dt are the same, and when they di®er due to
possible °uctuations.(Recall that Newton started his calculus with the term of
°uxions. Are the °uctuations expressed above what he had in mind??)
Consider once again the term involving the °uctuations, ekdt. In what sense

can these °uctuations be ignored? The simplest case is when the ek are zero, the
case of kinematic perfection. On the otherhand it may be true that a su±cient
"null" situation would be that the integral of the °uctuations over a closed curve
vanishes. In that case - by Stokes theorem - the ek must have zero "curl". As
the curl operation is a coordinate independent di®erential process (the exterior
derivative), the idea of null °uctuations in the large is related not to the fact
that the °uctuations vanish identically, but instead is related to the idea that the
°uctuations "average" to zero in some cyclic sense. More on this point later.

5.1. Multiple parameter ¯elds

Consider a map from the n dimensional domain, fx; y; z; t; :::g to the 2N+n di-
mensional domain of fª¹,ª¹

kg. Assume the existence of a function Lfª¹,ª¹
kg
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on the target space that somehow describes a physical system. If the map is dif-
ferentiable, then not only is it possible to pull back L but also it is possible to
pull back dL. The objective as before is to rewrite dL0 = dL.
Further, constrain the di®erentials of the ¯eld amplitudes such that

dª¹ ¡ª¹
kdx

k = !¹ ) 0; in some sense. (5.11)

In the single parameter mapping, the map itself insures that there could be unique
solutions to the equation, !¹ = 0. In the multiple parameter case, the existence of
unique solutions to the equations, !¹ = 0 is generally not possible. This problem
is the problem of Pfa® and a solution set is called a foliation. In that which
follows it will be assumed that the °uctuation forms are not zero, but they are
closed. That is, the fundamental assumption (or constraint) in that which follows
is that d!¹ = 0. This constraint implies that the integral of the °uctuations over
a boundary of the domain vanishes. Fluctuations can take place in the interior,
but are not detected outside the boundary. The closure constraint implies that

@ª¹
k=@x

j ¡ @ª¹
j =@x

k = 0: (5.12)

Following the procedures of the previous section for a single parameterized
mapping, construct the di®erentials dL and dL', with

dL = (@L=@ª¹)dª¹ + (@L=@ª¹
k)dª

¹
k : (5.13)

Expand the factor

dª¹
k = (@ª

¹
k=@x

j)dxj = (@ª¹
j =@x

k)dxj (5.14)

using the closure constraint.
Then recognize that the Leibniz rule permits the substitution

(@L=@ª¹
k)@ª

¹
j =@x

k = @f@L=@ª¹
k)ª

¹
j g=@xk ¡ f@(@L=@ª¹

k)=@x
kgª¹

j : (5.15)

Substituting the last 5 expressions into the desired equation dL0 = dL leads to a
power theorem for ¯elds:

[@f(@L=@ª¹
k)ª

¹
j ¡ (L0)±kjg=@xk]dxj =

[f@(@L=@ª¹
k)=@x

k ¡ @L=@ª¹gª¹
j ]dx

j ¡ (@L=@ª¹)!¹ (5.16)

13



The term (@L=@ª¹)!¹ represents the "°uctuations" in the ¯elds.
Now de¯ne the Stress Energy Tensor W j

k ( a mixed second rank non-
symmetric tensor) as

W k
j = [(@L=@ª

¹
k)ª

¹
j ¡ L0±kj ]: (5.17)

The Eulerian (covariant) dissipative force ¯eld fdiss¹ on the target domain

fdiss¹ = f@(@L=@ª¹
k)=@x

k ¡ @L=@ª¹g (5.18)

has a covariant pre-image as a Lagrangian force F dissj on the initial space of
parameters as

F dissj = fdiss¹ ª¹
j (5.19)

The ¯eld momentum tensor is given by the expression

¦k¹ = (@L=@ª
¹
k): (5.20)

The fundamental identity (without the °uctuation term) becomes the Power
Theorem,

f@[W k
j ]=@x

kgdxj ¡ F dissj dxj + (@L=@ª¹)!¹ = 0: (5.21)

This expression is actually a di®erential 1-form related to the ¯rst law of thermo-
dynamics (see below). When the di®erentials dxj are presumed to be arbitrary,
and when the °uctuation term is ignored, then the Power Theorem becomes the
classical stress-energy theorem,

@[W k
j ]=@x

k = F dissj = fdiss¹ ª¹
j ; (5.22)

which reads "The divergence of the Stress Energy Tensor = the Lagrangian
Force". This fundamental formalism was obtained with out metric, without a
connection and is in accurate tensor format. The stress energy tensor is a mixed
2nd rank tensor ¯eld, and the Lagrangian force is a covariant vector. Note that
F dissj dxj is a 1-form whose closed loop integral represents the dissipative work of
thermodynamics. On the other hand, the curl of F dissj is zero, then the system is
not irreversible.
In the conservative case, where the dissipative force vanishes, the "equations

of motion" or "Field Equations" are the LaGrange-Euler equations,

f@(@L=@ª¹
k)=@x

k ¡ @L=@ª¹g = 0: (5.23)
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5.2. Applications of the Field Theory Result.

5.2.1. The single parameter case, or "particle theory"

Before giving a multiple parameter example, it is useful to show that the multiple
parameter arguments lead to the same results as in the single parameter case. Let
the map Á be de¯ned as:

Á : ftg ) fx;vg with ª¹ , x and ª¹
k ' ª¹

t , v: (5.24)

Note that !¹ , dx ¡ vdt and d!¹ = 0 implies that dv^dt = 0, or v = v(t):
The constraint is satis¯ed automatically by the original single parameter mapping
assumption. The constraint !¹ = 0 implies that v = @x=@t, which is equivalent
to the kinematic topology hypothesis of elementary texts.
Suppose that

L(x;v) = mv2=2¡ U(x) = KE ¡ PE (5.25)

such that the momentum tensor is a single covector

¦k¹ ) p¹ = @L=@v
¹ = mv; (5.26)

and the dissipative force

fdiss¹ = dp¹=dt¡ @L=@x¹ = dp=dt¡ gradU(x) (5.27)

in agreement with Hamilton's principle. The conservative "equations of motion"
are

dp=dt¡ gradU(x) = 0: (5.28)

The stress energy tensor has a single component

W k
j = [@L=@ª

¹
k)ª

¹
j g ¡ L0±kj ] = p¹v¹ ¡ L = p ± v ¡ fmv2=2¡ U(x)g =

mv2=2 + U(x) = KE + PE = Total Energy = the Hamiltonian: (5.29)

When L and therefor H are not explicit functions of time, then the "divergence"
of the stress-energy tensor vanishes ( the divergence is equal to @W=@t = 0 for
a 1 parameter system) yielding the classic result which is called the conservation
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of energy. In this case the LaGrange-Newtonian dissipative force vanishes, such
that dp=dt¡ gradU(x) = 0:
When kinematic perfection is not assumed, then the °uctuation terms are of

the form

(@L=@ª¹)!¹ = (@L=@x¹)(dx¹ ¡ v¹dt) = f cons¹ (dx¹ ¡ v¹dt) (5.30)

Note that this °uctuation term in power can vanish when the °uctuations - if
they exist - are orthogonal to the gradient of the potential: In other words, if
the °uctuations are tangential to the equipotential surfaces there is no dissipative
power loss (or gain). Only °uctuations transverse to the equipotential surfaces
will contribute to the power theorem. This idea would imply that the transverse
component of the °uctuations must vanish on the boundary of a conservative
system, and as in electrostatics, the boundary (of a conductor) is an equipotential
surface

5.2.2. The two parameter case, or "string theory"

Let the map Á be de¯ned as:

Á : fs; ctg ) fª¹;ª¹
s ;ª

¹
ctg = fª;ªs;ªctg : (5.31)

The target space consists of a single ¯eld amplitude (or wave function, ª) that
corresponds to a "coordinate", but has several (two) components that correspond
to a "velocity".
Note that !¹ , dª ¡ ªctd(ct) ¡ ªsds. Now suppose that the LaGrange

function for this system is given in the form

L(ª;ªs;ªct) = fª2
s ¡ª2

ctg=2 (5.32)

Then the ¯eld momentum is the two component contravector

¦k¹ = @L=@ª
¹
k ) ¼k =

�
ªs

¡ªct

¸
: (5.33)

The stress energy tensor becomes a two by two matrix

W k
j = [@L=@ª

¹
k)ª

¹
j g ¡ L0±kj ] =

�
fª2

s +ª
2
ctg=2 fªsªctg

¡fªsªctg fª2
s +ª

2
ctg=2

¸
(5.34)
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Note that the stress energy tensor is NOT symmetric (therefore the system will
have a spin component of angular momentum as well as a classical component of
angular momentum { see below).
The LaGrange force becomes a "scalar" 1 component object

fdiss¹ = f@(@L=@ª¹
k)=@x

k ¡ @L=@ª¹g = @(ªs)=@s¡ @(ªct)=@(ct)¡ 0 (5.35)

Suppose that the °uctuations are zero, and that ªs ) @ª=@s and ªct )
@ª=@(ct): Then if this "dissipative" force is to vanish, the amplitude function,
ª; satis¯es the wave equation in the two variables, s and ct. That is, the Field
Equations are:

@2ª=@s2 ¡ @2ª=@(ct)2 = 0: (5.36)

Problem 4.
Work out the divergence of the stress energy tensor for the string above. Also

do the same problem over except assume that the initial parameters are the com-
plex pair, fs; ictg: Show that the "equation of motion" is Laplace's equation. Is
the stress-energy tensor symmetric?
Problem 5.
Set up the basic formulas in Maple, such that for a given L you can get Maple

to deduce the Stress-Energy Tensor and the Field Equations.
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