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Abstract

Cartan’s methods of exterior differential forms are used to construct the
integrals of Links, Braids, Torsion_Helicity and Spin, and to demonstrate
their topological properties as deformation invariants.

1. Introduction

Closed tensor fields In both hydrodynamics and electromagnetism, there
is interest in the possibility that divergence-free direction field lines (usually frozen
in lines of vorticity or magnetic field) are linked or knotted. The evolution, or
the creation, of such a topological state is an unsolved problem. The concept of
a direction field in the Cartan calculus is represented by a N-1 form on a space
of N dimensions. If the N-1 form is closed (implying that the direction field
is divergence free) then the closed integrals of such N-1 forms are deformation
invariants (hence represent topological properties) of all evolutionary processes
that can be represented by a single parameter semi-group. If the N-1 form is
closed, then either the lines that represent the direction field begin and terminate
on boundary points of the domain, or are cyclic and close upon themselves. A
divergence free direction field never stops or starts in the topological interior.
The lines which stop and start on a boundary are of two types: those that stop
and start on the same boundary component, and those the stop and start on a



different boundary components. The fundamental idea starts with the concept
of divergence free vector fields. However, the arguments of deformation of closed
integrals extends to p-forms which are closed.

Herein, the discussion will be at first restricted to divergence free 3 dimensional
vector fields, and then the concept of closed p-forms in 4 dimensions will be
discussed. In particular a method for constructing certain classes of divergence
free vector fields, and p-forms will be developed. These fields will form the basis
of certain Linking and Braid integrals.

Divergence Free Vector fields in 3 dimensions

Definition 1.1. The 3-volume element on a variety {x,y,z} is given by the n-form,

Q3 =dx"dy"dz (1.1)

Definition 1.2. Any direction field, X, of contravariant components, generates
a 2 form, D :

D =i(X)Qs = {X%dy dz — XYdz"dz + X*dx"dy} (1.2)

The exterior derivative of D produces the N-form p(x,y, z...)Qx with the mea-
sure function p(z,y, z...) equal to the divergence of the direction field,

plx,y,z...) = kil((?Xk/(?xk) (1.3)

Lemma 1.3. Any 2 form, D, is an evolutionary deformation invariant of the
flow, V, iff LigyyD = 0, for arbitrary reparametrization functions, 3(x,y,x...).
See P. Liebermann

Definition 1.4. D, is defined as the set of N-1-forms which are closed. dD. =
0.

Theorem 1.5. As the direction field D, has zero divergence, then the closed
integrals of D, are deformation invariants for any evolutionary process that can
be described by a C2 (flow) vector field, B(x,y, z..)V, on the N dimensional variety



Proof:

L) //closed De = //closedi(/@V)ch + closed di(BV)De)
- //,d 0+ //]d d(i(BV)D.) = 0+0. (1.4)

The first integral vanishes as dD. = 0, (the zero divergence condition). The
second integral vanishes as the integral of an exact form, d(i(6V)D.), over a
closed chain is zero. In other words, D, is a relative integral invariant for any
parametrization (of the arbitrary evolutionary direction field, or flow, generated
by V. The relative condition is that the 2-dimensional integration chain be closed
(like the surface of a torus).

The result for closed integration chains is to be compared with the formulas
for open integration chains (where Stokes’s formula is used to compute the exact
part in terms of a boundary integral):

Lisv) / [ D= //Openi(ﬁV)chJr //Opend(z'(ﬂV)Dc)
- / /opmo+ o {BVID), (1.5)

For integration domains that are open (like a disc) then deformation invariance of
the open integral requires that i(GV)D, = 0 on the one dimensional boundary.
However this is a special (but useful) case that is sensitive to boundary conditions.
(All of the preceeding development is easily extended to N dimensions.

Closed p-forms in N dimensions. The arguements presented above were
built on the concept of a divergence free vector field. However, the concept of
a divergence free vector field is a specialization of a more general concept, the
concept of a closed differential form. What will be shown below is that given a
vector field consisting of p independent functions, it is possible to produce a p-1
form GG on a space of arbitrary dimension M > p, along with integrating divisors
(functions), A, such that d(G/A) = 0. The integrating factors will be defined as
"Holder norms”.

For example, on a space of 4 dimensions, two independent differentiable func-
tions may be used to construct a closed (but not exact) 1-form of 4 components.
Three independent functions may be used to construct a closed but not exact
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2-form of six components. Four independent functions may be used to construct
a closed but not exact 3-form of 4 components. The closed but not exact 1-form
has components that behave as a covariant vector field on 4 dimensions. The
four components of the closed 3-form behave like a contravariant vector field.
Define an ordered independent set of n functions by the vectorial symbol,

Z = [U,V,W.] (1.6)

Each component function of Z is a function of several independent variables, say
{z,y, z,t...}. From the Vector construct the n dimensional form

Z) = dU dV"dW... (1.7)

Next construct the p =n — 1 form, I', defined as

I'=4(Z)dU"dV"dW...=UdV " "dW... = VdU " dW... + WdU"dV.... (1.8)

Consider the function, A,

A= (aU™ +bV™ 4+ cW™ 4 . )W/m (1.9)

with arbitrary constants a, b, c, ..., any integer m, and with the integer n equal to
the number of independent components of Z. Then it is possible to prove that
the rescaled p-form I'/\ is closed:

d(T/)\) = 0. (1.10)

By functional substitution using the differentiable map
¢:=A{z,y,zt.} = [Uxyz2t.),Vz,yzt.), Wy zt.)..] (1.11)

it is possible to pull back each of the closed p-forms so constructed to the domain
of variables z,y, z,t....

The closed integrals of these closed p-forms define the deRham ”period inte-
grals”. If the closed integration domains do not enclosed the zeros of A, then the
value of the integral is zero. Otherwise the values of the integrals have rational
ratios, depending on the domain of integration. For example, consider the closed
1-form constructed from the 2 functions U(zx,y, z) and V(x,y,z). The closed
1-form is



I'={UdV - VdU}/{U?+V?), dI' =0 (1.12)

However, the integral of I', on a closed integration chain that encircles the zero
set of U and V, has a value equal to 2. Consider the map

¢:U(x,y,2z)=x2+y>—1, V(r,y,2) ==z (1.13)

with

do : dU(x,y,z) = {xdx + ydy)/\/J22 +y*> — 1, dV(z,y,z) =dz (1.14)

and

A= (U? + V%2 (1.15)
to yield the pullback 1-form on x,y,z:

¢xT = (2% +9y* — 1)dz — zadr — zydy) /{ /22 + 32 — L(z* + > + 22— 1)}. (1.16)

This 1-form is closed, implying that the vector field on {x,y,z} with components

A =[—zz,—2y, (2® +y* — D]/ {2 + 92— 1(a® + > + 22 — 1)} (1.17)

has zero curl. An integration contour in x,y, z that encloses the origin in U,V
space, links the circle of radius =1 in the z = 0 plane, and the integral has a finite
non-zero circulation for this close path of integration.

The work below will demonstrate how Torsion, Helicity, Links and Braid
integrals all stem from these basic ideas about certain 2-forms and 3-forms on a
4 dimensional variety.

2. The Gauss Integrals (2-forms)

The basic issue is that not all divergence free fields (differential forms) are exact.
It is true that all divergence free fields in a 3 dimensional euclidean topology are
exact, but that is precisely where the topological features enter into the picture.
A euclidean topology is simply connected and without obstructions.
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Even in 3-dimensions (and with euclidean dogma) there are still two species
of 3 component fields. FEvery one learns from Gibbs vector analysis that the
3 vector of angular momentum L =r X p is never to be added to the 3 vector
of momentum, p. The angular momentum and the linear momentum are ”two
different species” of vectors (direction fields). However, with regard to non-
euclidean topological domains there is also another concept, defined as a vector
density. There is a topological difference, even in 3D, between and a covariant
tensor and a contravariant tensor density, but not detectable if volume deforming
processes are excluded (the typical non-dissipative case).

To demonstrate these ideas, first consider ordinary 3 dimensional vector fields
and a C1 map of a 3-space onto a euclidean domain of 3 dimensions:

¢ :{z,y,2} = {UV.W} = ¢/ (). (2.1)
This map defines a vector field

Z=[U(x,y,2),V(z,y,2),W(x,y, 2)]. (2.2)

The (square) Jacobian matrix is defined by the equations,

do : {dz,dy,dz} = {dU,dV,dW} = [J] o |dr) = |0¢/ /0x*] |dz") (2.3)
Next construct the volume element generated by these three functions.

Q, =dUdV"dW = det[J]dx"dy"dz, (2.4)
and the N — 1 =2 form

G = i(Z2)du dv"dWw =UdV"dW — VdU" dW + WdU"dV (2.5)
= D*dy"dz — D¥dx"dz + D*dz"dy. (2.6)

The Vector Z induces a preimage, D, on {x,y, z}. Formally, the vector , D, is
defined in terms of the adjoint mapping, by the matrix equation:

. adjoin
Contra — variant tensor density ‘Dk(xm)> , = [GW/G:C’“} ot
p

o|z(x7)),
(2.7)



The functional substitution and pullback (pb) construction works even though the
Jacobian map does not have an inverse. In this respect the retrodictive process
resembles the pull back of a 1-form, where the covariant tensor field is functionally
well behaved with respect to the transpose mapping:

Co —variant tensor |Ay(z™)),, = [6¢j/3xk

} transpose

o |Z(a")), (2.8)

Now, the extraordinary result is that if Z is rescaled by the divisor

MU, V,W) = {aUP + bV? + cWr}3/» (2.9)

then the 2-form
G = i(Z/NdU"dV"dW (2.10)
i(D/Ndz dy dz,  dG =0 (2.11)

is closed. This result implies that the rescaled vector field, D=D /A, has zero
divergence.

The notation above is deliberate, for in 4 dimensions it distinguishes the elec-
tromagnetic Intensities, E, B, (as components of a covariant tensor deduced from
A}) from the electromagnetic Quantities (or excitations) D, H (as components of
a contravariant tensor density).

The assumption of a euclidean domain masks these topological features. The
topological closure of |D) is the concept of zero divergence; the topological closure
of |A) is a zero curl concept. In 3D, for c2 differentiable fields where |B) =
curl |A), it follows that the closure of the 2-form generated from the components
of |B) is always empty, in a global manner! However, the closure of |D) need not
be globally empty!

The fundamental result can be generalized to N — 1 forms in any dimension.

Theorem 2.1. If for N functions, such that

G = iU, V,W.])dU dV"dW..
and X = {aU? + bV? + cWr..}N/P
then div(G/)\) = 0 for any p and any {a,b,c...}



Proof: Consider the map {z,y, z...} = {U,V,W...} the volume element
Qn = dUdV"dW, and the vector field Z to construct the N-1=2-form, G, on
{U,V,W} space:

G =i(Z/NQy = {UdV " dW — VAU dW + WdU dV}/AU,V,W)  (2.12)

on N. Define the divisor, A(U,V,W) = {aU? + bV? + cWP}™P. By direct com-
putation, the ”divergence” of G with respect to the coordinates {U,V, W} on N
1s

dG = {(N — n)/\}Qy (2.13)

Hence, dG = 0 for n = N, any p, and any signature for the anisotropic constants
{a,b,c...}. In other words, the Holder type divisor, A, acts as an integrating factor
for the vector field, when n=3, any p, any a,b,c. The ”excluded” points are the
zero sets of \.

On a space of three dimensions there are 2-forms of three components that
are exact, and there are 2-forms of three components that are not exact. Although
the 2-form with covariant components |B) constructed from the curl of a vector
potential A is closed and exact, the 2-form with tensor density components |D/\)
is closed, BUT NOT NECESSARILY EXACT. The fundamental idea is that for
a non-bounding closed cycle (nbce) (such as formed by a closed twisted ribbon),

/ Bod(Area) =0,  but // Dod(Area) # 0 (2.14)

nbcc nbcc

where for a boundary (such as toroidal surface)

// Bod(Area) =0, and // Dod(Area) = 0. (2.15)

boundary boundary

If the integration chain is a closed in the sense of cycle, and is not a boundary,
then there must exist points of the integration domain which must be excluded.
These points form the topological defects (the point charges in EM theory or
"topological holes”) or the topological obstructions that are of interest to the
theory of Links and Braids. In particular, the theory of links depends upon such
obstructions and is represented by integrals of the form:

Lk = [[(D*dy’dz — DVdx"dz + D*dx"dy) /A= [f G#0, dG=0. (2.16)

nbce nbee



and should have nothing to do with magnetic flux,

O, = [[ (Bydy dz — Bydx"dz + B,dz"dy) = [[ F =0, dF =0, (2.17)
nbce nbce

which has no obstructions, as the integrand is globally exact. If F' was to have
obstructions, the pre-images global postulate of potentials F' — dA = 0 must fail,
and the conservation of flux would not be true. Such a failure implies the existence
of magnetic monopoles (the obstructions to F' being globally exact). The authors
personal view (along with E.J.Post and many others) subsumes that the failure
to detect magnetic monopoles is proof that classical electromagnetism is defined
by the postulate of potentials; i.e., FF—dA = 0, globally. On the other hand, the
2-form of field excitations, (G, is not exact.

Example 1. The Gauss Link Integral The first application is to the di-
vergence free vector field on 3 dimensions which is not exact, but is closed, and
requires three functions for its description. The generic form for the integral of
interest is given by the expression

Lk = //i(Z)Qz - //(UdVAdW — VAU dW + WdU"dV) /A (2.18)

closed

As an example of the Gauss integral, Lk, consider the case where the displace-

ment vector is the difference of two position vectors to two separate space curves.
Define

Z = (Rz - Rl) Ry = [9027?42,22] R, = [90172/1,21] (2'19)
A = (a(wg— 1) +blyo — n1)* — +c(z2 — 21)P)7 (2.20)

where R defines the position vector to one field of space curves, and Ry defines
the position vector to a second field of space curves. Space curves from different
families can have different parametrizations. Hence, the vector Z represents
the vector difference of points on two different space curves which cannot be
synchronized parametrically. Next assume that the displacements of interest are
constrained by two parametric curves given by the exterior differential system
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de - Vldt =0 and dR2 - ngtl == O, (221)

where the parameters dt and dt/ are not functionally related, such that

dt"dtr # 0, but dt*dt =0 and df'"dt’ = 0. (2.22)

The vector D can be interpreted as the displacement vector between points
on the space curve C1 parametrized by ¢, and the points on another space curve
C2 parametrized by ¢/. The integral to be evaluated is

Lk = //I dF B //1 di(Z/)\)d(g@Q — 1) d(y2 —y1) "d(22 — 21)
=[] /A)Var = Vi) (Vaadt’ = Viadt) (Vasdt' = Vigdt) + ..
- //, d(l/)‘)(vm — V1) (VazVig — ViaVag)dt dt’ + ... (2.23)

using dt"dt' # 0, but dt"dt = 0 and dt/"dt/ = 0. Rewriting the formula using the
isotropic Gauss format, a=b=c=1,p=2 leads to the classic Gauss Linkage formula,

Lk = [[ G=¢¢{(Ry—Ry)oVyx Vy}dt dt' /A (2.24)
closed tt
A = (RyoR;—2R;0Ry;+Ry0Ry)Y? (2.25)

However, the zero divergence formula works for the anisotropic case, for any a,b,c
and for any exponent p.

From Stokes theorem, if the closed 2 dimensional integration domain is a
boundary of a 3 dimensional domain, then the Link integral vanishes. However,
if a particular integration chain is a closed cycle (not a boundary of a 3 dimensional
domain) then the linking integral has values with rational ratios. These closed
integrals are deRham period integrals in two dimensions. Points where D vanishes
are excluded.

When the two curves are distinct, the integration is over the two bounding
cycles of a closed ribbon. The ribbon surface is closed but it is not a boundary
of any volume. Then the two non-intersecting cycles (that form the boundary of
the ribbon area) are defined by the two distinct parameters, dt, and dt’. When
integrations are computed along these closed curves whose tangent vectors are V;
and Vs, then the integer values of the closed integral may be interpreted as how
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many times the two curves are linked. The interpretation of the closed surface
integral as a orientable ribbon works if the triple product divided by lambda does
not change sign as ¢t and t' are varied. If the integrand changes sign, then the
ribbon in non-orientable.

The constraint that dt"dt’ # 0 implies that the "motion” along the curve
generated by R; is independent of the "motion” along the curve generated by Re.
If the curve generated by R; is a conic in the zy plane and the curve generated
by Ry is a conic in the zz plane, then the surface swept out by the vector D is
a Dupin cyclide. Such surfaces have application to the propagation of waves in
electromagnetic systems.

Example 2: Flat tangential developables From another point of view,
consider the ruled surface defined by the vector field of two parameters, {t, u}
(isotropic, a=b=c=1 , p=2). The ruled surface will be defined by the position
vector R(t) to a space curve and a ruling parameter p times the tangent Velocity
vector to the space curve, V(t).

Use the general methods above to create the doubly parametrized diver-
gence free vector field:

Z(p,t) = {R() £ pV(t) } (2.26)
Mu,t) = (R(t) oR(t) £ 2uR(t) o V(t) + uV(t) o uV(£))*2.  (2.27)

Vector fields of this type are primitive examples of ”strings” for fixed values of
the parameter, ¢, and string parameter, p. Direct substitution of the physical
constraints, dR — Vdt = 0, and dV — Adt = 0, such that dZ = d{R(t) +
1V (t) }into the definition of the linking integral

i(Z/N)dZ " dZ2 dZ? (2.28)
closedon N

leads to yet another realization and interpretation of the Gauss formula:

Q = [/ G= [f {RopVxA}dt'du/A

closed closed on ut

= [f {AoRxuV}dt"du/(RoR+2uR oV + uVo V)2 (2.29)

closed
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It is apparent that the interaction of the "angular” momentum, L = R X
1V, and the acceleration, A, produces a topological invariant whose values are
”quantized” ( in the sense that the ratios of the closed integrals are rational).
Note that the triple vector product of the integrand numerator is proportional to
the Frenet torsion of the orbit. For an orbit that is planar the Frenet torsion is
zero everywhere, and the Gauss integral vanishes.

Recall that if a the space curve is an edge of regression, then the ruled
surfaces associated with to the forward and backward motions (the + signs in the
formula) are not same to second order. Such a result demonstrates an obvious
distinction between forward and backward motion that breaks time reversal sym-
metry. Linear rulings in one direction are on 1 sheet of the ruled surface, and
rulings in the opposite direction are on the other surface. The two surfaces meet
at an edge of regression. Similar time reversal symmetry breaking effects have
been observed macroscopically in dual polarized ring lasers,

Example 3. Scrolls The two parameter surface described above is closely
related to the ruled surface known as the tangential developable. Such ruled
surfaces (parametrized by arc length s rather than time, t, and with the directrix
of the ruling in the direction of the unit tangent vector, and multiplied by p) have
zero Gauss curvature. Though bent, such surfaces can be rolled out flat. By
constructing the ruled surfaces in terms of the normal and/or binormal to a space
curve, other forms of ruled surfaces yield negative values for the Gauss curvature
of the surface, and are not "flat”. They are defined as Scrolls.

Of particular interest to physics are those ruled surfaces of negative Gauss
curvature, which are also minimal surfaces. They have application in describing
hydrodynamic wakes. These surfaces can be viewed as double edged ribbons for
given values of p. The equations for the ruled surface of a scroll, with a directrix
in the direction of the binormal, b(s), are :

D(p,s) = {R(s) + ub(s)}/A (2.30)
A = (R(s)oR(s) £ 2uR(s) o b(s) + ub(s) o ub(s))¥?.  (2.31)
When the parameter ptakes on the constant values p = /7%, (with k = the

Frenet curvature, and 7 = the torsion of the space curve) then the ruled surface is

a minimal surface, and the binormal field twists about the space curve generated
by R(s).
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Another interesting scroll is that generated by the Darboux vector.

D(9,s) = {R(s)% (n(s)cos(d)+ b(s)sin(6)}/A (2.32)
A = (DoD)*2 (2.33)

which seems to be of interest to Longcope.

3. Braids, Spin and Torsion_Helicity (3-forms)

Braids For n = 4 the same procedures described above may be used to
produce a period integral over a closed 3-dimensional domain. The technique
is to define a 4 dimensional vector field, Z =[Z, Z5, Z3, Z;]. Use the general
renormalization function,

A= {aZl + BZ8 + N ZE + eZ\P (3.1)
and set n=4, for zero four divergence. Construct the closed 3 -form,
F - Z(Z/)\)leAdZQAdZSAdZAL (32)

Assume the 4 component vector has a realization as Z = P1+P2+P3, where
the three independent fields P represent three space-time curves that obey the
kinematic constraints:

dPl—fldS == O, sz—fgdS/ == 0, dP3—f3dS” =0. (33)

Substitute for each of the differentials in I' (and further assume that the domain
{x,y,2,t} of interest is further constrained such that dt = 0) to yield the three
form

G ={fio(fy x f3)}ds"ds'""ds" /X (3.4)
A= {aZl + BZ8 + N7 + eZEYMP (3.5)
The spatial braid integral becomes equal to

Br:=¢¢ ¢ fio(fy x f3)}ds"ds'"ds" /A (3.6)
t ot

U 7
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The integrations are now over three closed curves whose tangents are the
”Newtonian forces”, f, on three ”particles”. Where in the two dimensional Gauss
integral, of the previous section, the evaluation was along the closed curves of
a ribbon, in this case the integrations are along the closed trajectories of three
"particles” which form the vertices of a triangle.

The idea that three ”"lines” are used to form the integral (whose values
form rational ratios) is the reason that this topological integral in the format given
above is defined as the braid integral. Of course the three form of topological
torsion is a variant of the braid integral, but applies to those topologies where the
system is not reducible to three factors dt, dt/ and dt”. An example of a period 3
braid with Braid integral zero (chaotic) and Braid integral 2 (non-chaotic) is given
in Figure 5. It is illuminating to construct the two braids by wrapping a long flat
ribbon of paper smoothly around the palm of your hand. Close the ribbon surface
by pasting the ends together. Then make another example, where this time
thread the loose end underneath the middle wrap, rather than over the middle
wrap, before gluing the ends together. Take the two examples from your hand
and note that one is continuously deformable into a closed cylinder (Tw = zero)
while the other has a 4 pi twist (Tw =2). What is surprising is that it is the Tw
=0 configuration that has a chaotic neighborhood, while the Tw = 2 structure is
not chaotic. To test for chaos construct the equivalent of the closed braid from
copper tubes. Then link any pair of tubes with a large loop of elastic or thread.
Push the looping thread around the period three copper tube, and note that for a
Tw=2 configuration, the looping thread becomes untangled after 6 pi revolutions
about the central axis. For the Tw = 0 configuration, the looping thread never
unwinds, but becomes more and more twisted and complex.

The equivalent to Figure 5, and the fact that there are two distinct pe-
riod 3 configurations, one chaotic and one non-chaotic, was brought to the au-
thor’s attention during a stimulating lecture given by J. Los at the August, 1991,
Pedagogical Workshop on Topological Fluid Mechanics held at the Institute for
Theoretical Physics, Santa Barbara UCSB.

It is to be noted that the 3-form of topological torsion is related to the
braid integral, a three dimensional thing in four dimensions, and not the Gauss
linkage integral, which is a two dimensional thing in three dimensions.

3.1. Magnetic Helicity ( a 3-form)
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Spin 0 {Chaotic) Spin 2 {Non-chaotic)

Figure 5. Period 3 Braids

Figure 3.1:
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First, the definition of Magnetic Helicity with which I am comfortable is that
given by the 3D (volume) integral of the vector potential dotted with its curl:

Definition 3.1.

Magnetic Helicity := [[[ AocurlAdVol = [[[ AcBdVol = [[[ A"F = [[[ A"dA
(3.7)

For me this object is a well defined object on any variety {z,y,z}. On
every 3 dimensional closed manifold for which A = A(z,y, 2), it is easy to show
that the closed integrals of Magnetic Helicity density, A o B, are deformation
invariants of any continuous evolutionary process that can be described by a
singly parametrized vector direction (or flow) field, V(x,y,z). In the language
of Poincare-Cartan, the closed integral is a relative integral invariant. All that
is required is that the points which make up the integration chain in the initial
state remain on the same flow fiber in the final state.

This topological conservation law has nothing to do with electromag-
netism, per se, but for classical definitions of the Magnetic Field intensity, such as
B = curl A, it works for electromagnetism. It is also true for fluids or any other
system that can be described by a 1-form of Action, A, and can be extrapolated
to higher dimensions. The proof is easy:

Lgvy [[] AoBdVol =[] {d(i(BV)A"F)+i(BV)d(A"F)} =

closed closed

JIT {d(i(BV)A"F)+i(6V) F"F}

closed

= 040D evolutionary invariance for any (3V3.8)

The first integral vanishes because the integral of an exact form over a closed
integration chain vanishes. The second integral vanishes as F'"F' = 0 on a 3 di-
mensional manifold; all 3-dimensional volume elements are closed. As (3(zx,y, z) is
arbitrary, it acts as a possible deformation parameter. The result is true for any
gauge, does not depend upon metric, and is independent of any geometrical con-
nection, and certainly does not depend upon a constitutive constraint. A true
topological quantity. Note that the closed 3-dimensional integration domain can
be a cycle and does not have to be a boundary (of a higher dimensional space).
It is important to realize (for application to domains that do not have a euclidean

16



topology) that the 3-form A" F has components that transform as a covariant
tensor of rank 3.

Perhaps it is more important that the theorem of Topological deformation
invariance of the closed integrals of the 3-form is also valid in any dimension for
which F"F' is zero. In higher dimensions the integral must be evaluated over
3-sub_manifolds that need not be space-like. For 4 dimensions the 3-form A" F
has 4 components and can be constructed as

Topological Torsion: A"F = i(Ty)dz"dy dz"dt (3.9)
where
T,=[E x A+ ¢B, A o B]

From this formulation it must be remembered that the components of this ” vector”
transform as a third rank covariant tensor field; A o B is merely the fourth
component. In the literature such objects are often described as pseudo vectors.

The criteria F"F = 0 for topological invariance with respect to any con-
tinuous evolutionary process is equivalent to the statement that Eo B = 0. The
condition is sufficient, but not necessary, for topological invariance of the Helicity
integral, even when the fields are explicitly time dependent. The relative integral
invariant in 4D is:

H= [[[ AF= [ff Ty dz"dt—T¥dz"dz"dt+T?dz"dy dt — A o Bdz"dy dz

closed closed
(3.10)
In all cases the 3 divergence of B vanishes, and the 2-form F is closed, for
it is exact, dF' = 0. For isochronous domains, dt = 0, and the integral reduces
to the standard spatial format of plasma physics. However, there are example
electromagnetic fields for which A o B = 0, and yet T, is not zero.
Example: Define

A =10,0,(z*+9*)/2], &=z (3.11)
Then
B [y, z,0] (3.12)
E (0,0, —1] (3.13)
AoB = 0, EoB=0, (3.14)
T, = [2B,0] (3.15)



Note that in 4 dimensions (that admit time dependent fields), the frozen in
lines are the line of the Torsion vector, which can be dominated by the B field
but also have a component due to E x A. I suspect that measurements are made
on the lines of T4, and only indirectly on the ”lines” of "B” (for remember the
electromagnetic field has six components which can transform into one another).
The implication is that the lines of T can continuously evolve, with most regions
in a plasma dominated by ¢B # 0, Ex A — 0. Then as B lines approach
one another, induction causes E x A # 0, 9B — 0. The "B lines” terminate
on a null (a boundary point), break apart, and then possibly reconnect different
segments, after which ¢B # 0, E x A — 0. (I believe this mechanism is that
which Hornig is developing).

I call A"F the topological torsion of the field, and d(A"F) = F"F, the topo-
logical parity.

Special situations become evident when the integration domain is compact
with a boundary, for then Stokes law may be applied, and deformation invariance
requires that i(6V)A"F=0 on the boundary. These are interesting but special
cases which are invariants of only a special choice of boundary conditions. For
example, if G(x,y,z) = 0 defines the boundary, then for deformation invariance
of the integral it must be true that the function  also must be an evolutionary
invariant, such that Lw)dB = i(V)dB = 0. Classically the function § which is
used to define the boundary, is not arbitrary, but must be a first integral of the
evolutionary vector field. For such special cases, the field on the boundary need
not be tangential! There are other special situations as well.

For integration domains which are open, the criteria for absolute inte-
gral invariance is much more severe, and requires that d(i(GV)A"F) = 0. This
constraint is to be recognized as the criteria that the evolutionary vector field
BV be an element of the symplectic group. I have demonstrated that all such
evolutionary processes are thermodynamically reversible.

Spin (a 3-form) To relate the above definition of a 3-form of Helicity with
the six dimensional formulation involving the Biot-Savart substitution ( to me)
is an extraordinary constraint on the topology of the domain. The substitution
effectively mixes a tensor and a tensor density, where definition 1 above mixes a
tensor with a tensor, A" F. There is however, another well defined electromagnetic
3-form, A"G, which mixes a tensor (A) and a tensor density (G). I call A"G —
with physical dimensions of angular-momentum— the Spin 3-form. (The 3-form
A" F has physical dimensions of Angular momentum divided by Ohms.)
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In electrical engineering notation,

Spin : Sy = [A x H+ ¢D, A o D]

Torsion_Helicity : Ty = [E x A + ¢B, A o B]

The closure of A" defines a measure known as the first Poincare invari-
ant,

Pl:=(BoH—-DoE)—-(AoJ—p¢) =dA°G)
while the closure of A”F yields the second Poincare invariant.
P2:=2(EoB)=d(A"F).

When these measures vanish (the divergences of the 4-vectors vanish), then there
exist separate topological conservation laws ( of Spin and Helicity).

It is extraordinary to me that the Solar - Plasma community does not
seem to make use of this other topological property which is conserved when the
first Poincare measure is zero. The Spin 3-form is of equal importance as the
3-form of Torsion-Helicity, yet no one in the Plasma community seems to use it.

For the above example, with the added assumption that D = ¢E and
B=uH

A =0,0,(2* +94?)/2], ¢ =z Then

B =[y,—x,0]

E=0,0,-1]
AoB =0,

T, = [zy, —22,0,0]

P2=EoB =0,

AoD = —¢(2?+9?)/2
Ss = [x(2?+y?)/2,y(a® +v?) /2, —epz, —epn(z® +4?) /2] /1
Pl =(2(2*+y*) —ep)/p
J= [0’ 0, _2/:u]
p=0
which implies that Helicity is conserved but Spin is not conserved in the ex-
ample field.

For more details about Torsion vs. Spin see
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http://www.uh.edu/ rkiehn/pdf/classice.pdf

You might also be interested in something that I did after the Chapman con-
ference stimulated me. I think I have found a raison d’etre for the formation of
an accretion disk in a otherwise central field problem. Using Maple, I have found
a time dependent solution to Maxwell’s equations that makes the z=0 plane of
a rotating plasma a chiral attractor. The force of attraction from the top and
the bottom is due to a Lorentz J x B term. This the first time I have ever seen
a simple mechanism that might explain the formation of accretion disks around
stars and planets. The Solution is just a model field, but exhibits both Helicity
and Spin effects.

see

http://www.uh.edu/ rkiehn/pdf/diracch.pdf
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