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The + + + — signature of physical space-time focuses attention on the topologically dis-
tinct equivalence classes that permit a space and time partition of a four dimensional manifold
[45]. By first utilizing the idea that all manifolds admit a global immersion into Euclidean
space of possibly some higher dimension, a global metrical field gµν may be induced on space-
time. Particular emphasis will be given to that unique global 1form A = g4µdq

µ (µ = 1, ..., 4)

associated with the minus (timelike) sign in the metric signature. The various equivalence
classes of space-time may be determined by searching for all submersive maps to space-time
(with the given metric field) that preserve the retrodictive (pull back) features of the exte-
rior differential form A, its exterior derivative dA and the various intersections formed by
exterior products of the two. (Recall that a submersion is a continuous map whose Jacobian
coefficients are of maximal rank and onto.)
Every induced global metric field falls into one of four equivalence classes of submersive

maps. These classes identify all equivalent geometries that preserve the Pfaffian reducibility
[88] of A.

If A is closed, its exterior derivative vanishes: dA = 0. Such metrics are said to be of
Class I.
If dA 6= 0, but AˆdA = 0, the 1-form, A, integrable, and the metric field is said to be of

Class II.
If AˆdA 6= 0, but dAˆdA = 0, the metric field is said to be of Class III.
If dAˆdA 6= 0, the metric field is of Class IV.
The Pfaffian reducibility properties of A on a four-dimensional space-time are exhausted

by the four classes presented above.
For a metric of Class I these reducibility statements mean that, if in some choice of

coordinates qµ; (which admits a global metric field) the 1-form A has the full representation
as



A = A1(q)dq
1 +A2(q)dq

2 +A3(q)dq
3 +A4(q)dq

4, (1)

≈ g01(q)dt
1 + g02(q)dq

2 + g03(q)dq
3 + g00(q)dq

0, (2)

then there exists a submersive map ϕ from a set of coordinates xi to qµ such that in the
space of xi coordinates, the 1-form appears as the differential of a single function x1 = χ;
i.e., the pullback ϕ∗(A) has the equivalent form, as a perfect differential,

ϕ∗(A) = dχ. (3)

All geometries (systems of coordinates) are equivalent to this topological class if they are
submersively related.
For Class-II metrics the equivalence class of submersive maps yields the reduced form

ϕ∗(A) = ψdχ. (4)

For class-III metrics the reduced form is ϕ∗(A) = dβ +ψdχ, and for Class-IV metrics the
reduced Pfaffian form is ϕ∗(A) = αdβ + ψdχ, a result which exhausts the possibilities for
Pfaffian reduction over four dimensions.
Metrics of Class I support a global set of covariant vector lines continuously orthogonal

to the spacelike partition of the metric field. The physical interpretation of the topological
idea represented by global orthogonality is one of « infinite extension », or the existence of a
long-range field. Moreover, this gradient field, A = dψ, is globally normalizable. This 1-form
A does not support a 2-form structure, in that F = dA = 0. (Although from the standpoint
of differential topology there is no need to identify the 2-form F with the electromagnetic
field, for purposes of rapid comprehension of the ideas to be presented the reader is invited
to do so.) If A is identified as a representative of the electromagnetic-like potentials, the
vanishing of F implies that no electromagnetic-like fields1 exist in spaces that are of Class
I. Metrics of Class I can support mass, as exemplified by the Robinson-Walker metrics and
their attendant long-range fields. As F = 0, it is also true that FˆF = 0, which via the
electromagnetic-like identification of A implies that the pseudoscalar

FˆF = 2(E ·B)dxˆdyˆdzˆdt (5)

is zero, and remains zero for all elements of the class. The physical interpretation of this
topological fact is that parity is an invariant for such systems.

1For examples of the electromagnetic properties of nonclosed 1-form, A and a metric field, see [42].



Metrics of Class I support long-range parity-preserving phenomena, but do not support
electromagneticlike fields.
Metrics of Class II support a global set of covariant vector lines continuously orthogonal

to the spacelike partition of space-time, but now the field is not necessarily continuously
normalizable, globally. The partition need not be orientable for metrics of Class II. The
concept of global orthogonality again implies a physical feature of long range. For metrics
of Class II, however, the induced 2-form structure F = dA is not zero. Electromagnetic-
like fields are admissible, but, remarkably enough, the 4-form Lagrange density Fˆ∗F =

(B ·H−D ·E)dxˆdyˆdzˆdt is negative, and so, in a rest frame, the energy density is electric-
like, and not magnetic-like. These facts are reminiscent of the properties of a Coulomb field.
Metrics of Class II support long-range parity-preserving phenomena, but in addition to the

features of Class I, these metrics admit electromagnetic-like concepts of charge and electric
fields. The Reissner-Nordstrom metric is an example of a metric of Class II.
Metrics of Class III do not admit a unique global (infinite extension) set of vector lines

continuously orthogonal to the spacelike partition. In this sense the topology yields a physical
interpretation in terms of a short-range field; i.e., a field which is not infinitely extendible.
The 1-form A admits a nonzero 2-form F inducing an electromagnetic-like interpretation.
Now, however, the Lagrange density FˆH = (B ·H−D ·E)dxˆdyˆdzˆdt can be either
electric-like or magnetic-like2. The 4-form FˆF vanishes for metrics of Class III, so that the
pseudoscalar E ·B remains zero, an invariant, for all members of the class, and parity is
conserved for such systems. The Godel metric is an example.
Metrics of Class IV again can be said to be short range for there does not exist a unique

set of vector lines continuously orthogonal everywhere to the spacelike partition. Moreover,
as the pseudo scalar E ·B does not vanish for such metrics, parity need not be an invariant
for such systems. The Kerr-Newman metric for a charged, spinning mass is an example of
Class-IV metrics.
The topological analysis presented above yields a tempting correlation with the four basic

«forces» of physics:

1. Long-range, parity-preserving, gravitational-like forces appear to be associated with
metric fields of Class I.

2. Long-range parity-preserving, electromagnetic-like forces seem to be admissible by met-
ric fields of Class II.

2Added 2004. The quantity H in this 1975 publication is now given the symbol G in works after 1980.
H is reserved to represent topological torsion, AˆF



3. Parity-preserving short-range forces, which may be associated with nonzero electric-
like or magnetic-like energy densities, appear to belong to the topological equivalence
class of metric fields of Class III.

4. Short-range parity-violating forces which may have nonzero electriclike and magnetic-
like fields appear to belong to the topological equivalence class of metric fields of Class
IV.

Although it smacks of «unified field syndrome », this author cannot resist presenting
the interpretation that the topological Class I is the representative of gravitational forces;
Class II is the representative of electromagnetic forces; Class III may be the representative
of nuclear forces; and Class IV may be the representative of the weak forces. Although the
interpretative work is in its infancy, the factual classification scheme of metric fields based
on irreducible Pfaffian forms and their equivalence classes of submersive maps as presented
above does suggest a way for possibly incorporating electric, nuclear and weak forces into
the metrical theory of physics in terms of topological, not geometric properties. A study
of the additional topological constraints implied by the zeros of the duals of A, F and the
exterior derivatives of these duals in combinations such as d ∗ A, dH = d ∗ F, AˆH and
d(AˆH) is in progress. For example, the topological constraint d ∗A = 0 is the analogue of
the Lorentz- gauge condition. The topological constraint dH = 0 implies no charge currents
and distinguishes the Schwarzschild metric (which is Class II, AˆF = 0, dH = 0) from the
Reissner-Nordstrom metric (which is also Class II, AˆF = 0, dH 6= 0).
The object AˆH, whose exterior derivative is related to the virial of Clausius, has the

units of angular-momentum density (per unit source), but no simple physical identification
has been made of this topological quantity.

1.1 Comments (as of 2004)

Following the original 1975 article, in 1992, it was realized that the methods of Pfaff topo-
logical dimension were topological ideas that did not require metric constraints. Hence
the original article was modified, with some new additions that related to the topological
differences based upon the signature of space time. I thought it remarkable that this article
(below) was rejected outright by the editors, without referee comments. Yet the ideas in
later years have become of interest to the physics community.



2 A Remark on the Symmetry Breaking of space time

This short note, as of 11/14/92, is an unpublished follow-on to the 1975 article
presented above. The fundamental difference was that it is now recognized that
"long range" is a metric idea, and Pfaff topological dimension is a topological
idea. Hence topologically "long range" is better stated as "not reachable". The
components of a system of Pfaff dimension greater than 2 are not topologically
connected and therefor are not reachable in a continuously connected manner.

Abstract. The algebraic differences between the space-time signature (-,-,-,+)
and the space-time signature (+,+,+,-) suggest that there may be a physical
effect associated with such a symmetry breaking.

Introduction In this journal, almost twenty years ago [45] [46], an argument was pre-
sented to show how the properties of the four forces in physics could be deduced from the
features of the four distinct Pfaffian equivalence classes of differential geometry that can be
constructed on a space of four dimensions. The four equivalence classes were determined
from the metric solutions, gmn , to the Einstein field equations, by constructing a 1-form of
action, A, in terms of the space time, g4m, components of the metric field: A = g4mdx

m.
The methods of Pfaff reduction can be used to generate four equivalence classes in terms of
the Pfaff dimension, or class, of this 1-form. Summarizing the previous results, the equiva-
lence class of Pfaff dimension 1 class will support long range gravitation (mass) and is parity
preserving. The second equivalence class of Pfaff dimension 2 will support both gravity
(mass) and electromagnetism (charge) and is to be associated with long range parity pre-
serving forces. The third equivalence class of Pfaff dimension 3 will support both mass and
charge, but the forces - although parity preserving— are of short range. The last equivalence
class of Pfaff dimension 4 involved short range interactions that can violate time reversal and
symmetry breaking . Examples were given in terms of known solutions to the field equations.
Although the previous methods were motivated by ideas of differential geometry, it is now

known that the concepts used to generate the four equivalence classes associated with the
four forces are not of a geometrical nature, but instead the equivalence classes have their
foundations in topology. Indeed, the older analysis concluded that two of the equivalence
classes are to be associated with forces that are long range, in the sense of having distance
limits going to infinity, while the other two equivalence classes are to be associated with
forces that are of short range. However, the concept of distance is more of a geometrical
idea, not a topological idea.
At the present time of writing this article it is perceived that the true nature of the

equivalence classes is based on the topological issue of connectedness, and does not reflect



the geometrical idea of distance necessarily. Following the work of Baldwin, two of the
equivalence classes belong to a connected topology (Pfaff dimension 1 and 2), and the other
two equivalence classes belong to a disconnected topology (Pfaff dimension 3 and 4). Hence
the topological features of the strong and the weak forces do not involve short range, but
instead reflect the concepts of accessibility. That is, the topology of the "long range" forces
is connected, while the topology of the "short range" forces is disconnected. The topological
idea of connectedness is to be exchanged for the geometrical idea of "long range". There
is a difference between the concepts of whether or not the point b is not reachable by a
continuous process and not reachable in a finite time.
These ideas are most readily understood in terms of the Cartan topology built on a Pfaffian

system, and its differential closure. Such an exercise is presented in Appendix A, and is a
result of P. Baldwin for a single Pfaffian A [1]. Another method emphasizing the topological
features is to realize that the existence of a global 1-form of Action, A, on a space of N+1
dimensions induces a line bundle on the variety N. Intrinsic geometric concepts and certain
topological properties can be evaluated in two ways. The first method uses techniques of
fiber bundle theory [13] [12], but the second method generates all of the interesting features
more simply from the Jacobian matrix of the vector field adjoint to the global 1-form, A. The
two even dimensional equivalence classes mentioned in the older article, and discussed in the
appendix below, are elements of the Chern characteristic classes for the line bundle. These
sets have global properties, and therefore carry topological significance. These concepts of
Pfaff equivalence classes have application not only to the microcosm of atoms and elementary
particles, as well as the cosmological arena of galaxies, but also to the mundane physics of
hydrodynamics. Such methods have been used recently to obtain a better understanding of
the production of wake patterns, and the creation and decay of turbulence in fluids.
Signature Symmetry Breaking
However, over the years a new feature of the analysis has appeared, and it is to this new

feature that this letter is directed. Note that in the 1975 reference, the signature of the
quadratic form was taken to be { +,+,+,- }. The question now arises: Is there a symmetry
to be broken if one considers the often used but opposite signature { -,-,-,+ }. The idea is
that the wave equation

+∂2ψ/∂x2 + ∂2ψ/∂y2 + ∂2ψ/∂z2 = +(1/c2)∂2ψ/∂t2, (6)

has a set of characteristics which satisfy the partial differential system:

+(∂ψ/∂x)2 + (∂ψ/∂y)2 + (∂ψ/∂z)2 = +(1/c2)(∂ψ/∂t)2. (7)

Hence, there are two ways to write this constraint as an algebraic variety ( a null set) :



+(∂ψ/∂x)2 + (∂ψ/∂y)2 + (∂ψ/∂z)2 − (1/c2)(∂ψ/∂t)2 = 0, (8)

−(∂ψ/∂x)2 − (∂ψ/∂y)2 − (∂ψ/∂z)2 + (1/c2)(∂ψ/∂t)2 = 0 (9)

Each quadratic form is the complete mirror symmetry (the negative) of the other, but it
turns out that the signatures are intrinsically different from a topological point of view in
the neighborhood of the null variety.
The analytic question that remains is: Does this symmetry of space time signatures have

distinguishable consequences? The physical question is: Are there experiments that can be
done to distinguish the symmetry breaking between {-,-,-,+} and {+,+,+,-}?
The analytic answer, based on the idea that the Clifford Algebras of such systems are

not isomorphic to one another [5], is yes! The mathematical argument is similar to that
used to distinguish the two species of angular momentum algebras in quantum mechanics,
an argument which is based on the different signatures of the raising or lowering opera-
tors (commutator or anti-commutator brackets) for Bosons vs. Fermions. The fact that
the differences in angular momentum signature are physically observable implies that the
differences in space-time signatures may also be measurable.
Consider the Clifford Algebra with signature {+,+,+,-}. As discussed in reference [2], this

algebra is isomorphic to the algebra of 4x4 matrices with real numbers as matrix elements.
This matrix algebra is the usual representation used for waves in 4 dimensions. Next consider
the Clifford Algebra with signature {-,-,-,+}. This algebra is isomorphic to the algebra of 2x2
matrices with quaternions as matrix elements. The non-abelian quality of the quaternions
makes this algebra have extraordinary differences from the algebra of 4x4 matrices over the
real numbers.
This positive analytic result which breaks the symmetry between the two space-time

signatures implies there must be a physical difference between the two types of space-time,
one with signature {+,+,+,-}, and the other with signature {-,-,-,+}. These differences imply
that there exist two species of waves. What are they? A possible answer was first given by
Schultz [90] who found exact quaternionic solutions to Maxwell’s equations that indicated
that the speed of propagation in the inbound and outbound directions would be different for
such waves. This result was in agreement with the ring laser experiments of Sanders [52].
These sets of experiments indicated that the electromagnetic four fold degeneracy of the
Lorentz equivalence class could be broken such that all four waves of left - right polarizations
and of to - fro propagation directions would propagate at four distinct speeds. A further
more general analysis on the macroscopic parity and time reversal symmetry breaking effects
in electromagnetic systems was presented in reference [67]. The question of whether or not



these waves, or the effects of {+,+,+,-} vs. {-,-,-,+} signatures, produce any quantum or
hydromechanical effects is open.
Appendix A : The Cartan Topology
Starting in 1899, Cartan [7] [10] [8] [9] developed his theory of exterior differential systems

built on the Grassmann algebraic concept of exterior multiplication, and the novel calculus
concept of exterior differentiation. These operations are applied to sets called exterior p-
forms, which are often described as the objects that form an integrand under the integral
sign. The Cartan concepts may still seem unconventional to the engineer, and only during
the past few years have they slowly crept into the mainstream of physics. There are several
texts at an introductory level that the uninitiated will find useful [2] [19] [3] [10] [34] [91]
[30]. A reading of Cartan’s many works in the original French will yield a wealth of ideas
that have yet to be exploited in the physical sciences. It is not the purpose of this article
to provide such a tutorial of Cartan’s methods, but suffice it to say the "raison d’être" for
these, perhaps unfamiliar but simple and useful, methods is that they permit topological
properties of physical systems and processes to be sifted out from the chaff of geometric
ideas that, at present, seem to dominate the engineering and physical sciences. Many of
Cartan’s works have been translated by David Delphnich.
Cartan built his theory around an exterior differential system, Σ, which consists of a

collection of 0-forms, 1-forms, 2-forms, etc.. He defined the closure of this collection as the
union of the original collection with those forms which are obtained by forming the exterior
derivatives of every p-form in the initial collection. In general, the collection of exterior
derivatives will be denoted by dΣ, and the closure of Σ by the symbol, Σc, where

Σc = Σ ∪ dΣ. (10)

Cartan’s interest in this closure was that founded on the idea that he was able to prove that
the system of 1-forms adjoint to the closure were completely integrable. The result allowed
him to devise schemes for prolonging a non-integrable system until it became integrable.
For notational simplicity in this article the systems of p-forms will be assumed to consist

of the single 1-form, A. Then the exterior derivative of A is the 2-form F = dA, and the
closure of A is the union of A and F : Ac = A∪F. The other logical operation is the concept
of intersection, so that from the exterior product it is possible to construct the set AˆF
defined collectively as H: H = AˆF . The exterior derivative of H produces the set defined
as K = dH, and the closure of H is the union of H and K : Hc = H ∪K.
This ladder process of constructing exterior derivatives, and exterior products, may be

continued until a null set is produced, or the largest p-form so constructed is equal to the
dimension of the space under consideration. The collection of sets so generated is defined



as a Pfaff sequence. The largest rank of the sequence determines the Pfaff dimension of the
domain (or class of the form, [88]], which is a topological invariant.
The idea for evolutionary systems is that the 1-form A (in general the exterior differential

system, Σ) generates on space-time, {x,y,z,t}, four equivalence classes of points that act as
domains of support for the elements of the Pfaff sequence, { A,F,H,K}. The union of all
such points will be denoted by X = A ∪ F ∪H ∪K. The fundamental equivalence classes
are given specific names:

Topological ACTION : A (11)

A = Aµdx
µ (12)

Topological VORTICITY : F = dA (13)

dA = Fµνdx
µ ˆdxν (14)

Topological TORSION : H = AˆdA (15)

AˆdA = Hµνσdx
µ ˆdxνˆdxσ (16)

Topological PARITY : K = dAˆdA (17)

dAˆdA = Kµνστdx
µ ˆdxνˆdxσˆdxτ . (18)

The Cartan topology is constructed from a basis of open sets, which are defined as follows:
First consider the domain of support of A. Define this "point set" by the symbol A. A is
the first open set of the Cartan topology. Next construct the exterior derivative, F = dA,
and determine its domain of support. Next, form the closure of A by constructing the union
of these two domains of support, A∪F = Ac. A∪F forms the second open set of the Cartan
topology.
Next construct the intersection H = AˆF , and determine its domain of support. Define

this "point set" by the symbol H. H forms the third open set of the Cartan topology. Now
follow the procedure established in the preceding paragraph. Construct the closure of H as
the union of the domains of support of H and K = dH. The construction forms the fourth
open set of the Cartan topology. In 4 dimensions, the process stops, but for N > 4, the
process may be continued.
Now consider the basis collection of open sets that consists of the subsets,

B = {A,Ac,H,Hc} = {A,A ∪ F,H,H ∪K} (19)



The collection of all possible unions of these base elements, and the null set, {0} generate
the Cartan topology of open sets:

Topen = {X, 0, A,H,Ac,Hc, A ∪H,A ∪Hc, Ac ∪H}. (20)

These nine subsets form the open point sets of the Cartan topology constructed from the
domains of support of the Pfaff sequence {A,F,H,K}.

Table 2. The Cartan T4 Topology
A 1-form in 4D: A = Ak(x)dx

k

X = {A, F = dA, H = AˆF, K = FˆF}
Basis subsets {A, KCl(A), H, KCl(H)} = {A,A ∪ F,H,H ∪K}

T (open) = {X, ∅, A, H,A ∪ F, H ∪K, A ∪H, A ∪H ∪K, A ∪ F ∪H}
T (closed) = { ∅,X, F ∪H ∪K,A ∪ F ∪K, H ∪K, A ∪ F, F ∪K, F,K}
Subset

σ

Limit Pts
dσ

Interior
.

Boundary
∂σ

Closure
σ ∪ dσ

∅ ∅ ∅ ∅ ∅
A F A F A ∪ F
F ∅ ∅ F F

H K H K H ∪K
K ∅ ∅ K K

A ∪ F
A ∪H
A ∪K
F ∪H
F ∪K
H ∪K

F

F,K

F

K

∅
K

A ∪ F
A ∪H
A

H

∅
H ∪K

∅
F ∪K
F ∪K
F ∪K
F ∪K
∅

A ∪ F
X

A ∪ F ∪K
F ∪H ∪K
F ∪K
H ∪K

A ∪ F ∪H F,K A ∪ F ∪K K X

F ∪H ∪K K H ∪K F F ∪H ∪K
A ∪H ∪K F,K A ∪H ∪K F X

A ∪ F ∪K F A ∪ F K A ∪ F ∪K
X F,K X ∅ X

(21)

The closed sets of the Cartan topology are the compliments of the open sets :

Tclosed = {0, X, F ∪Hc, Ac ∪K,Hc, Ac, F,K}. (22)

It is apparent that the Cartan topology as given in Table 1 is composed of the union of
two subsets which are both open and closed ( X = Ac ∪Hc), a result that implies that the



Cartan topology is not connected, unless the Topological Torsion, H, and hence its closure,
vanishes. This extraordinary result has a number of physical consequences.
It is possible to compute the limit points for every subset relative to the Cartan topology.

The classical definition of a topological limit point is that a point p is a limit point of the
subset Y relative to the topology T if and only if for every open set which contains p there
exists another point of Y other than p [27]. The results of this definition are presented in
Table I which is due to P. Baldwin [1] (Also see Chapter 5 in vol 1.). Note that the Cartan
exterior derivative is a limit point operator relative to the Cartan topology. In this sense,
the Field Intensities of electromagnetism, E and B, generated as elements of F = dA, are
the limit sets of the potentials, A.
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