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Abstract.  The algebraic differences between the space-time signature (-,-,-,+) and the
space-time signature (+,+,+,-) suggest that there may be a physical effect associated with
such a symmetry breaking.

Introduction
In this journal, almost twenty years ago [1,2], an argument was presented to show

how the properties of the four forces in physics could be deduced from the features of the
four distinct  Pfaffian equivalence classes of differential geometry that can be constructed
on a space of four dimensions.   The four equivalence classes were determined from the
metric solutions,  gµν , to the Einstein field equations, by constructing a 1-form of action,
A, in terms of the space time, g4µ, components of the metric field: A = g4µdxµ.  The
methods of Pfaff reduction can be used to generate four equivalence classes in terms of the
Pfaff dimension, or class, of this 1-form.  Summarizing the previous results, the
equivalence class of Pfaff dimension 1 class will support long range gravitation (mass) and
is parity preserving.  The second equivalence class of Pfaff dimension 2 will support both
gravity (mass) and electromagnetism (charge) and is to be associated with long range
parity preserving forces.  The third equivalence class of Pfaff dimension 3 will support
both mass and charge, but the forces - although parity preserving-- are of short range.
The last equivalence class of Pfaff dimension 4 involved short range interactions that can
violate time reversal and symmetry breaking .  Examples were given in terms of known
solutions to the field equations.

Although the previous methods were motivated by ideas of differential geometry,
it is now known that the concepts used to generate the four equivalence classes associated
with the four forces are not of a geometrical nature, but instead the equivalence classes
have their foundations in topology.  Indeed, the older analysis concluded that two of the
equivalence classes are to be associated with forces that are long range, in the sense of
having distance limits going to infinity, while the other two equivalence classes are to be
associated with forces that are of short range.   However, the concept of distance is more
of a geometrical idea, not a topological idea.

At the present time of writing this article it is perceived that the true nature of the
equivalence classes is based on the topological issue of connectedness, and does not
reflect the geometrical idea of distance necessarily.  Following the work of Baldwin, two
of the equivalence classes belong to a connected topology (Pfaff dimension 1 and 2), and
the other two equivalence classes belong to a disconnected topology (Pfaff dimension 3
and 4).  Hence the topological features of the strong and the weak forces do not involve
short range, but instead reflect the concepts of accessibility.  That is, the topology of the
"long range" forces is connected, while the topology of the "short range" forces is
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disconnected.   The topological idea of connectedness is to be exchanged for the
geometrical idea of  "long range".   There is a difference between the concepts of whether
or not the point b is not reachable by a continuous process and not reachable in a finite
time.

These ideas are most readily understood in terms of the Cartan topology built on  a
Pfaffian system, and its differential closure.  Such an exercise is presented in Appendix A,
and is a result of P. Baldwin for a single Pfaffian A [3].    Another method emphasizing the
topological features is to realize that the existence of a global 1-form of Action, A, on a
space of N+1 dimensions induces a line bundle on the variety N.  Intrinsic geometric
concepts and certain topological properties can be evaluated in two ways.  The first
method uses techniques of fiber bundle theory [4], but the second method generates all of
the interesting features more simply from the Jacobian matrix of the vector field adjoint to
the global 1-form, A.  The two even dimensional equivalence classes mentioned in the
older article, and discussed in the appendix below, are elements of the Chern characteristic
classes for the line bundle.  These sets have global properties, and therefore carry
topological significance.  These concepts of Pfaff equivalence classes have application not
only to the microcosm of atoms and elementary particles, as well as the cosmological
arena of galaxies, but also to the mundane physics of hydrodynamics.  Such methods have
been used recently to obtain a better understanding of the production of wake patterns,
and the creation and decay of turbulence in fluids.

Signature Symmetry Breaking
However, over the years a new feature of the analysis has appeared, and it is to

this new feature that this letter is directed.  Note that in the 1975 reference, the signature
of the quadratic form was taken to be { +,+,+,- }.  The question now arises:  Is there a
symmetry to be broken if one considers the often used but opposite signature { -,-,-,+ }.
The idea is that the wave equation

+ ∂2ψ/∂x2 +  ∂2ψ/∂y2 +  ∂2ψ/∂z2  =  + (1/c2)∂2ψ/∂t2  ,

has a set of characteristics which satisfy the partial differential system:

+ (∂ψ/∂x)2 +  (∂ψ/∂y)2 +  (∂ψ/∂z)2  =  +(1/c2)(∂ψ/∂t)2.

Hence, there are two ways to write this constraint as an algebraic variety ( a null set) :

+ (∂ψ/∂x)2 +  (∂ψ/∂y)2 +  (∂ψ/∂z)2  -  (1/c2)(∂ψ/∂t)2  = 0, or

- (∂ψ/∂x)2  -  (∂ψ/∂y)2  -  (∂ψ/∂z)2  +  (1/c2)(∂ψ/∂t)2  = 0.

Each quadratic form is the complete mirror symmetry (the negative) of the other, but it
turns out that the signatures are intrinsically different from a topological point of view in
the neighborhood of the null variety.
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The analytic question that remains is:  Does this symmetry of space time signatures
have distinguishable consequences?  The physical question is: Are there experiments that
can be done to distinguish the symmetry breaking between {-,-,-,+} and {+,+,+,-}?

The analytic answer, based on the idea that the Clifford Algebras of such systems
are not isomorphic to one another [5], is yes!  The mathematical argument is similar to
that used to distinguish the two species of angular momentum algebras in quantum
mechanics, an argument which is based on the different signatures of the raising or
lowering operators (commutator or anti-commutator brackets) for Bosons vs. Fermions.
The fact that the differences in angular momentum signature are physically observable
implies that the differences in space-time signatures may also be measurable.

Consider the Clifford Algebra with signature {+,+,+,-}.  As discussed in reference
[5], this algebra is isomorphic to the algebra of 4x4 matrices with real numbers as matrix
elements.  This matrix algebra is the usual representation used for waves in 4 dimensions.
Next consider the Clifford Algebra with  signature {-,-,-,+}.  This algebra is isomorphic to
the algebra of 2x2 matrices with quaternions as matrix elements.  The non-abelian quality
of the quaternions makes this algebra have extraordinary differences from the algebra of
4x4 matrices over the real numbers.

This positive analytic result which breaks the symmetry between the two space-
time signatures implies there must be a physical difference between the two types of
space-time, one with signature {+,+,+,-}, and the other with signature {-,-,-,+}.  These
differences imply that there exist two species of waves.  What are they?   A possible
answer was first given by Schultz [6] who found exact quaternionic solutions to Maxwell's
equations that indicated that the speed of propagation in the inbound and outbound
directions would be different for such waves.  This result was in agreement with the ring
laser experiments of Sanders [7].  These sets of experiments indicated that the
electromagnetic four fold degeneracy of the Lorentz equivalence class could be broken
such that all four waves of left - right polarizations and of  to - fro propagation directions
would propagate at four distinct speeds.  A further more general analysis on the
macroscopic parity and time reversal symmetry breaking effects in electromagnetic
systems was presented in reference [8].  The question of whether or not these waves, or
the effects of {+,+,+,-} vs. {-,-,-,+} signatures, produce any quantum or hydromechanical
effects is open.

APPENDIX A :   THE CARTAN TOPOLOGY
     Starting in 1899, Cartan [8,9,10,11] developed his theory of exterior differential
systems built on the Grassmann algebraic concept of exterior multiplication, and the novel
calculus concept of exterior differentiation.  These operations are applied to sets called
exterior p-forms, which are often described as the objects that form an integrand under the
integral sign.    The Cartan concepts may still seem unconventional to the engineer, and
only during the past few years have they slowly crept into the mainstream of physics.
There are several texts at an introductory level that the uninitiated will find useful
[4,12,13,14,15,16,17].  A reading of Cartan's many works in the original French will yield
a wealth of ideas that have yet to be exploited in the physical sciences.  It is not the
purpose of this article to provide such a tutorial of Cartan's methods, but suffice it to say
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the "raison d'être" for these, perhaps unfamiliar but simple and useful, methods is that they
permit topological properties of physical systems and processes to be sifted out from the
chaff of geometric ideas that, at present, seem to dominate the engineering and physical
sciences.
     Cartan built his theory around an exterior differential system, Σ, which consists of a
collection of 0-forms, 1-forms, 2-forms, etc. [18].  He defined the closure of this
collection as the union of the original collection with those forms which are obtained by
forming the exterior derivatives of every p-form in the initial collection.  In general, the
collection of exterior derivatives will be denoted by dΣ, and the closure of Σ by the
symbol, Σc, where

 Σc = Σ ∪ dΣ.                                                             (a1)

Cartan's interest in this closure was that founded on the idea that he was able to prove that
the system of 1-forms adjoint to the closure were completely integrable.  The result
allowed him to devise schemes for prolonging a non-integrable system until it became
integrable.
     For notational simplicity in this article the systems of p-forms will be assumed to
consist of the single 1-form, A.  Then the exterior derivative of A is the 2-form F = dA,
and the closure of A is the union of A and F: Ac = A∪F.  The other logical operation is
the concept of intersection, so that from the exterior product it is possible to construct the
set A^F defined collectively as H:   H = A^F.  The exterior derivative of H produces the
set defined as K = dH, and the closure of H is the union of H and K:  Hc = H ∪ K.
     This ladder process of constructing exterior derivatives, and exterior products,  may be
continued until a null set is produced, or the largest p-form so constructed is equal to the
dimension of the space under consideration.  The collection of sets so generated is defined
as a Pfaff sequence.  The largest rank of the sequence determines the Pfaff dimension of
the domain (or class of the form, [19], which is a topological invariant.
   The idea for evolutionary systems is that the 1-form A (in general the exterior
differential system, Σ) generates on space-time, {x,y,z,t}, four equivalence classes of
points that act as domains of support for the elements of the Pfaff sequence, { A, F, H,
K}.   The union of all such points will be denoted by X = A∪F∪H∪K.  The fundamental
equivalence classes are given specific names:

TOPOLOGICAL ACTION          A =  Aµdxµ

TOPOLOGICAL VORTICITY    F = dA = Fµνdxµdxν

TOPOLOGICAL TORSION          H = A^dA = Hµνρdxµdxνdxρ

TOPOLOGICAL PARITY            K = dA^dA= Kµνρσdxµdxνdxρdxσ.

     The Cartan topology is constructed from a basis of open sets, which are defined as
follows:  First consider the domain of support of A.  Define this "point set" by the symbol
A.  A is the first open set of the Cartan topology.  Next construct the exterior derivative, F
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= dA, and determine its domain of support.  Next, form the closure of A by constructing
the union of these two domains of support, A∪F = Ac.   A∪F forms the second open set
of the Cartan topology.
     Next construct the intersection H = A^F, and determine its domain of support.  Define
this "point set" by the symbol H.  H forms the third open set of the Cartan topology.
Now follow the procedure established in the preceding paragraph.  Construct the closure
of H as the union of the domains of support of H and K = dH.  The construction forms the
fourth open set of the Cartan topology.  In 4 dimensions, the process stops, but for N > 4,
the process may be continued.
     Now consider the basis collection of open sets that consists of the subsets,

B = { A, Ac, H, Hc } = { A,  A∪ F, H,  H∪K}

The collection of all possible unions of these base elements, and the null set, {0} generate
the Cartan topology of open sets:

Topen= { X, 0, A, H, Ac, Hc, A∪ H,A∪ Hc,Ac∪H}.

These nine subsets form the open point sets of the Cartan topology constructed from the
domains of support of the Pfaff sequence {A,F,H,K}.

 Subsets Limit Pts Interior Boundary Closure

σ dσ ∂σ σ∪dσ

0 0 0 0 0
A F A F A∪F
F 0 0 F F
H K H K H∪K
K 0 0 K K
A∪F F A∪F 0 A∪F
A∪H F,K A∪H F∪K X
A∪K F A F∪K A∪F∪K
F∪H K H F∪K F∪H∪K
F∪K 0 0 F∪K F∪K
H∪K K H∪K 0 H∪K
A∪F∪H F,K A∪F∪H K X
F∪H∪K K H∪K F F∪H∪K
A∪H∪K F,K A∪H∪K F X
A∪F∪K F A∪F K A∪F∪K
X F,K X 0 X

Table 1   Cartan's Topological Structure
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The closed sets of the Cartan topology are the compliments of the open sets :

Tclosed =  { 0, X, F∪Hc , Ac∪K, Hc, Ac, F , K }.

     It is apparent that the Cartan topology as given in Table 1 is composed of the union of
two subsets which are both open and closed ( X = Ac∪Hc ), a result that implies that the
Cartan topology is not connected, unless the Topological Torsion, H, and hence its
closure, vanishes.  This extraordinary result has a number of physical consequences.

     It is possible to compute the limit points for every subset relative to the Cartan
topology.  The classical definition of a topological limit point is that a  point p is a limit
point of the subset Y relative to the topology T if and only if for every open set which
contains p there exists another  point of Y other than p  [20].  The results of this definition
are presented in Table I which is due to P. Baldwin [3].  Note that the Cartan exterior
derivative is a limit point operator relative to the Cartan topology.  In this sense, the Field
Intensities of electromagnetism, E and B, generated as elements of F = dA, are the limit
sets of the potentials, A.
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