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Abstract

An algorithm for generating a class of closed form solutions to the
Navier-Stokes equations is suggested, with examples. Of particular interest
are those exact solutions that exhibit intermittency, tertiary Hopf bifurca-
tions, °ow reversal, and hysteresis.

1. Introduction

The Navier-Stokes equations are notoriously di±cult to solve. However, from the
viewpoint of di®erential topology, the Navier-Stokes equations may be viewed as a
statement of cohomology: the di®erence between two non-exact 1-forms is exact.
Abstractly, the idea is similar to the cohomology statement of the ¯rst law of
thermodynamics.

Q¡W = dU (1.1)

For the Navier-Stokes case, de¯ne the two inexact 1-forms in terms of the dissi-
pative forces

WD = fD ² dr =½fºr2Vg ² dr (1.2)

and in terms of the advective forces of virtual work



WV = fV ² dr =½f@V=@t+ grad(V ²V=2)¡V£ curlVg ² dr (1.3)

Then the abstract statement of cohomology, formulated as WV ¡WD = ¡dP ,
when divided by the common function, ½; is precisely equivalent to an exterior
di®erential system whose coe±cients are the partial di®erential equations de¯ned
as the Navier-Stokes equations,

f@V=@t+ grad(V ²V=2)¡V£ curlVg ¡ fºr2Vg = ¡gradP=½ (1.4)

The cohomological constraint on the velocity ¯eld, V, is such that the kinemati-
cally de¯ned vector, f ,

f = fV ¡ fD (1.5)

is a vector ¯eld that satis¯es the Frobenius integrability theorem [1]. That is,

f² curl f = 0 even though v² curl v 6=0: (1.6)

The meaning of the Frobenius criteria is that the vector f has a representation
in terms of only two independent functions of fx; y; z; tg. The Navier-Stokes
equations makes this statement obvious. One of these functions has a gradient,
gradP; in the direction of the tangent vector to f ; and the other function, ½; is a
renormalization, or better, a reparametrization factor for the dynamical system
represented by f .
These observations suggest that there must exist certain constraint relation-

ships on the functional forms that make up the components of any solution vector
¯eld, V, (which usually does not satisfy the Frobenius condition in general) such
that the covariant kinematic vector, f , is decomposable in terms of at most two
functions. If such a constraint equation can be found in terms of the component
functions that represent V, then its solutions may be easier to deduce than the
direct solutions of the Navier-Stokes equations. For example, the constraint rela-
tion may involve only 1 partial di®erential equation rather than 3. In fact such a
single constraint relation can be found by imposing a type of symmetry condition
on the system, a symmetry condition that expresses the existence of a two dimen-
sional (functional) representation for the vector ¯eld, f : In this article attention
will be focused on the two spatial variables, r and z, such that the solution exam-
ples will have a certain degree of cylindrical symmetry. As these solutions involve
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dissipative terms with a kinematic viscosity coe±cient, º; they are not necessarily
equilibrium solutions of an isolated thermodynamic system.
Closed form solutions are few in number [3], but it appears that many of the

known steady-state solutions to the Navier-Stokes equations fall into the following
class of systems: Consider a variety fx; y; z; tg with r2 = x2 + y2. Consider three
arbitrary functions, £(r; z) and ©(r; z; t), and ¤(r; z) which are de¯ned in terms
of two independent variables spatial variables, (r; z); and time. De¯ne the °ow
¯eld, V in cylindrical coordinates as,

V = ¤(r; z)uz +£(r; z)ur + ©(r; z; t)uÁ=r; (1.7)

where uÁ is a unit vector in the azimuthal direction. Note that this vector ¯eld
does not necessarily satisfy the Frobenius theorem. Note that for simplicity, the
only time dependence permitted is in the azimuthal direction.
Substitution of this format for V into the equation for f will yield a vector

equation of the form

f = ®(r; z)uz + ¯(r; z)ur + °(r; z; t)uÁ=r: (1.8)

The Pfa±an form W = f ± dr will become an expression in two variables if
the azimuthal factor °(r; z; t) is constrained to the value zero. In other words, a
single constraint on the functions, £(r; z) and ©(r; z; t), and ¤(r; z), de¯ned by the
equation °(r; z; t) = 0; can be used to reduce the Pfa±an form to the expression

®(r; z)dz + ¯(r; z)dr = ¡dP=½(r; z) (1.9)

The left hand side represents a Pfa±an form in two variables, and therefore always
admits an integrating factor. It is this idea that is used to ¯nd new solutions to
the Navier-Stokes equations. First a solution to constraint equation is determined.
Then the Cartan 1-form of total work is computed. The 1-form is either exact,
or can be made exact by an appropriate integrating factor. If the 1-form is exact
then the Pressure is obtained by integration. It the 1-form is not exact a suitable
integrating factor is found, and that integrating factor represents a variable °uid
density, ½: For a given choice of integrating factor, the Pressure is again obtained
by integration.
It is also useful to consider a rotating frame of reference de¯ned by the equation

! = !uz: (1.10)
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It is the choice of rotational axis that de¯nes the cylindrical symmetry. For such
rotating systems the same technique will insure that the °ow ¯eld, V, is a solution
of the Navier-Stokes equations in a rotating frame of reference,

@V=@t+ grad(V ±V=2)¡V£ curlV (1.11)

= ¡gradP=½+ ºr2V¡ 2! £V¡ ! £ (! £ r) (1.12)

By direct substitution, into the Navier-Stokes equation above, of the presumed
format for the velocity ¯eld V yields an expression for °(r; z) in terms of the three
functions £(r; z) and ©(r; z), and ¤(r; z) :

°(r; z) = f@©=@t+ ¤(r; z)@©=@z +£(r; z)(@©=@r ¡ 2!r) (1.13)

¡ºf@2©=@z2 + @2©=@r2 ¡ (@©=@r)=rg: (1.14)

Similar evaluations of the standard formulas of vector calculus in terms of the
assumed functional forms for the velocity ¯eld lead to the useful expressions:

divV = @£=@r +£=r + @¤=@z (1.15)

curlV = f@©=@r uz ¡ @©=@z urg=r + f@£=@z ¡ @¤=@rguÁ

curl curlV = f¡@2¤=@r2 + @2£=@z@rguz + (1.16)

f¡@2£=@z2 + @2¤=@z@rg ur +
f¡@2©=@z2 ¡ @2©=@r2 + (@©=@r=r)guÁ=r

V £ curlV = £f@£=@z ¡ @¤=@rguz + (1.17)

¤f@¤=@r ¡ @£=@zg ur +
f(1=r2) grad (©2=2)¡ f¤@©=@z +£@©=@rguÁ=r

grad(V ²V)=2 = f£@£=@z + ¤@¤=@z +©(@©=@z)=r2guz + (1.18)

f£@£=@r + ¤@¤=@r +©(@©=@r)=r2 ¡ ©2=r3gur
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grad(divV) = f@2£=@z@r + (@£=@z)=r + @2¤=@z2guz + (1.19)

f@£2=@r2 + @2¤=@r@z + (@£=@r)=r ¡£=r2gur
It is remarkable that many solutions to the Navier-Stokes equations then can

be found by using the following algorithm: Choose a functional form ©(r; z) of
interest and then deduce functions ¤(r; z) and £(r; z) to satisfy the azimuthal
constraint,

°(r; z; t) = 0: (1.20)

The °ow ¯eld V so obtained is therefore a candidate solution to the com-
pressible, viscous, three dimensional Navier-Stokes equations for a system with
a density distribution, ½ and a pressure, P . The components of °ow ¯eld so
determined then permit the evaluation of the coe±cients of the Pfa±an form

W = ®(r; z)dz + ¯(r; z)dr (1.21)

If the expression is not a perfect di®erential, then use the standard methods of or-
dinary di®erential equations to ¯nd an integrating factor, ½(r; z): The integrating
factor represents the density distribution of the resulting Navier-Stokes solution.
The Pressure follows by integration.
This method is demonstrated in the next section for the known viscous vortex

examples reported in Lugt. In addition, several new closed form exact solutions
are generated by the technique. Among these closed form solutions are exact solu-
tions to the Navier Stokes equations (in a rotating frame of reference) that exhibit
the bifurcation classi¯cations for N = 3 as given by Langford [2]. In particular,
exact, non-truncated solutions are given that represent the trans-critical Hopf bi-
furcation, the saddle-node Hopf bifurcation, and the hysteresis Hopf bifurcation.
It has been long suspect that many phenomena in hydrodynamics exhibit Hopf
bifurcation; now these exact solutions to the Navier-Stokes equation formally jus-
tify this position, and are especially interesting for the understanding of slightly
perturbed Poiseuille °ow and the onset of turbulence in a pipe.

2. Examples

In the following examples, the vector ¯eld speci¯ed has been used to compute the
various terms in the Navier-Stokes equations. The algebra has been simpli¯ed by
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use of a symbolic computation program written in the Maple syntax. For each
example, the two vector components that make up the work one form have been
evaluated and are displayed with the solution. For the divergence free cases, the
pressure function also has been computed. First, known solutions are exhibited,
and are shown to be derived from the above technique. Then a few new solutions
are exhibited.

2.1. Old solutions

2.1.1. Example 1. The Rankine Vortex

©(r; z) = a+ (b+ !)r2; £ = 0; ¤ = 1 (2.1)

fV = f¡(a+ br2)2=r3gur + f0guÁ=r + f0guz (2.2)

fD = f0gur + f0guÁ=r + f0guz (2.3)

This °ow is a solution independent of the kinematic viscosity coe±cient (the
velocity ¯eld is harmonic, as fD = 0) and therefore could be construed as an
equilibrium solution. This solution, for a and b equal to piecewise constants, will
generate the Rankine vortex.
As the °ow is isochoric (divV = 0), the steady pressure can be determined by

quadrature, and is given by the expression,

P = 1=2(b2r4 + 4abr2ln(r)¡ a2)=r2 (2.4)

2.1.2. Example 2. Di®usion Balancing Advection.

©(r; z) = a+ br2+m=º ; £(r; z) = m=r; ¤ = 1; ! = 0 (2.5)

fV = f¡m2 ¡ (a+ br(2º+m)=º)2=r3gur + (2.6)

fbr(2º+m)=ºm(2º +m)=ºr2guÁ=r + f0guz

fD = f0gur + fbr(2º+m)=ºm(2º +m)=ºr2guÁ=r + f0guz (2.7)

In this case the Laplacian of the vector ¯eld is not zero, but the dissipative parts
exactly cancel the advective parts in the coe±cient of the azimuthal ¯eld, thereby
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satisfying the constraint condition. As the functions depend only on r, the integra-
bility (gradient) condition is satis¯ed, and these solutions obey the Navier-Stokes
equations for a system of constant density. The Pressure function may be com-
puted as

P = (¡ºb(4a(m+ º) + bmr(2º+m)=º))r(2º+m)=º) ¡ (2.8)

(m(º +m)(a2 +m2))=(2m(º +m)r2)

The solutions are cataloged in Lugt. As these solutions explicitly involve the
kinematic viscosity, º; they cannot be equilibrium solutions to isolated systems.
Instead they represent steady state solutions, far from equilibrium. A special case
exists for m=º = ¡2.

2.1.3. Example 3. Burger's Solution, but with Helicity and Zero Diver-
gence.

©(r; z) = k(1¡ e¡ar2=2º); £(r; z) = ¡ar; ¤ = U + 2az; ! = 0 (2.9)

fV = f¡(ke(¡ar2=2º) + r2a¡ k)(ke(¡ar2=2º) ¡ r2a¡ k)=r3gur +
fkra2=º e(¡1=2ar2=º)guÁ=r +
f2(U + 2az)aguz

fD = f0gur + f¡kra2=º e(¡1=2ar2=º)guÁ=r + f0guz (2.10)

This solution corresponds to a modi¯cation of Burger's solution and exhibits a
3-dimensional °ow (in 2-variables) in which the di®usion is balanced by convection
to give azimuthal cancellation. The Burgers solutions has been modi¯ed to exhibit
zero divergence. This °ow in a non-rotating frame of reference exhibits a helicity.

Helicity = (U + 2az)(ka=º)e(¡1=2ar
2=º) (2.11)

2.2. New Solutions

2.2.1. Example 4. A Beltrami Type Solution

©(r; z) = r2 cos(z=a); £(r; z) = r sin(z=a); ¤(r; z) = 2a cos(z=a); ! = 0
(2.12)
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fV = f¡rgur + f0guÁ=r + f¡4a cos(z=a)sin(z=a)guz (2.13)

fD = º=a
2[f¡r sin(z=a)gur + f¡rcos(z=a)guÁ=r + f¡2a cos(z=a)guz] (2.14)

This solution is a Beltrami-like solution, has zero divergence, and can be made
time harmonic by multiplying the velocity ¯eld by any function of t. The °ow
exhibits Eckman pumping and has a super¯cial resemblance to a hurricane. The
time independent steady °ow is a strictly Beltrami (curl v = a v)with the vor-
ticity proportional to the velocity ¯eld. In all cases the helicity is given by the
expression,

Helicity := (r2 + 4a2 cos(z=a)2)=a: (2.15)

The kinetic energy is a/2 times the helicity, which is a times the enstrophy. The
Pressure generated from the Navier Stokes equation is given by the expression

P = 1=2(r2 + (r2(º=a2)¡ 4º)sin(z=a) + 4a2 sin(z=a)2) (2.16)

2.2.2. Example 5. A Saddle Node Hopf Solution

©(r; z) = !r2; £(r; z) = r(a+ bz); ¤(r; z) = U ¡ dr2 +Bz2 (2.17)

The components of the advective force and dissipative force are given by the
expressions,

fV = fr(a+ bz)2 + (U ¡ dr2 +Bz2)rbgur + (2.18)

f0guÁ=r +
f¡2r2(a+ bz)d+ 2(U ¡ dr2 +Bz2)Bzguz

and

fD = f0gur + f0guÁ=r + ºf¡4d+ 2B]guz (2.19)

The divergence of the velocity ¯eld is given by the expression:

divV := 2fa+ (b+B)zg (2.20)
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The helicity of the °ow depends upon the rotation, !;

Helicity : !(+r2b+ 2U ¡ 2bz2) (2.21)

but remarkably changes for ¯nite values of r and z, depending on mean °ow speed,
U:
Note that when b = 0; B = 0; a = 0; the solution is equivalent to the standard

incompressible Poiseuille solution for °ow down a pipe. The vector velocity ¯eld
is not harmonic, but vector Laplacian of the velocity ¯eld is a constant.
Without these constraints, it is remarkable that the ordinary di®erential equa-

tions that represent the components of the velocity ¯eld are in one to one cor-
respondence with the saddle node - Hopf bifurcation of Langford. That is, the
ODE,s representing the Langford format for the SN-Hopf are given by the expres-
sions:

dz=dt = ¤(r; z) = U ¡ dr2 +Bz2 (2.22)

dr=dt = £(r; z) = r(a+ bz)

dµ=dt = !

:This ¯rst order system which exhibits tertiary bifurcation is associated with an
exact solution of the Navier Stokes partial di®erential system in a rotating frame of
reference. In principle, the method also relaxes the constraint on incompressibility,
and allows a density distribution, or integrating factor, to be computed for an
exact solution to the compressible Navier-Stokes equations which can be put into
correspondence with saddle node-Hopf bifurcation process.
This example exhibits isochoric (divV = 0) °ow for B + b = 0; a = 0: The

steady isochoric pressure is then determined by quadrature, and is given by the
expression,

P = b(dr4=2¡ (r2 ¡ 2z2)U ¡ bz4)=2¡ º(4d¡ 2b)z (2.23)

where the constant U can be interpreted as the mean °ow down the pipe. Part
of the pressure is due to geometry, and part is due to the kinematic viscosity.
Note that the pressure is independent from the viscosity coe±cient when the
velocity ¯eld is harmonic; e.g. when (2d¡ b) = 0: As the vector Laplacian of the
velocity ¯eld determines the dissipation in the system, intuition would say that
the harmonic solution is some form of a limit set for the otherwise viscous °ow.
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2.2.3. Example 6. A Transcritical Hopf Bifurcation

©(r; z) = !r2; £(r; z) = r(A¡ a+ cz); ¤(r; z) = br2 +Az +Bz2 (2.24)

fV = fr(A¡ a+ cz)2 + (br2 +Az +Bz2)rcgur + (2.25)

f0guÁ=r +
f2r2(A¡ a+ cz)b+ (br2 +Az +Bz2)(A+ 2Bz)guz

fD = f0gur + f0guÁ=r + ºf4b+ 2Bguz (2.26)

This example exhibits isochoric (divV = 0) °ow for a = 3A=2 and B = ¡c: The
steady isochoric pressure is then determined by quadrature, and is given by the
expression,

P = ¡1=4cbr4 ¡ 1=8A2r2 + 1=2A2z2 ¡ Az3c+ 1=2c2z4 ¡ º(4b¡ 2c)z: (2.27)

Again it is apparent that the pressure splits into a viscous and a non-viscous
component, and when the °ow is harmonic (2b¡c = 0); the pressure is independent
from viscosity, and there is no dissipation in the °ow.
The transcritical Hopf bifurcation is represented by the Langford system

dz=dt = ¤(r; z) = br2 +Az +Bz2 (2.28)

dr=dt = £(r; z) = r(A¡ a+ cz)
dµ=dt = !

2.2.4. Example 7. A Hysteritic Hopf Bifurcation

©(r; z) = !r2; £(r; z) = r(a+ bz); ¤(r; z) = U ¡ dr2 +Az +Bz3 (2.29)

fV = fr(a+ bz)2 + (U ¡ dr2 +Az +Az3)rbgur + (2.30)

f0guÁ=r +
f¡2r2(a+ bz)d+ (U ¡ dr2 +Az +Az3)(A+ 3Az2)guz
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fD = f0gur + f0guÁ=r + ºf¡4d+ 6Azguz (2.31)

This system has the remarkable property that the vector Laplacian changes sign
at a position z = 2d=3A down stream. There is no global way of making this
solution isochoric, for the divergence is equal to

divV = (A+ 2a) + 2bz + 3Az2: (2.32)

The hysteretic Hopf bifurcation exhibits what has been called intermittency.
The Langford system is

dz=dt = ¤(r; z) = U ¡ dr2 +Az +Bz3 (2.33)

dr=dt = £(r; z) = r(a+ bz)

dµ=dt = !

2.2.5. Example 8:

In Figure 3, a time history showing the intermittent bursts of torsion wave energy
is demonstrated. These pu®s are not periodic in time and exhibit a pre-chaotic
Poincare section. Of most interest is the idea that these °ows model vortical
structures associated with whirlpools, tornadoes, and rotational solitons. In fact,
a general solution can be obtain in the form,

©(r; z) = !r2; £(r; z) = rG(z); ¤(r; z) = (U ¡ dr2H(z)) + F (z) (2.34)

The zero divergence condition requires that dF=dz = 2G, and dH=dz =
0. These and other bifurcation solutions are constrained to produce no sound
(divV = 0). Yet the generation of torsion waves permits the bifurcation process
to proceed. If the condition of zero divergence is relaxed, then more options are
permitted to stimulate the bifurcation process. Both longitudinal and torsional
waves may be generated. Of particular interest to pipe °ow and the onset of
turbulence is

2.2.6. Example 9:

©(r; z) = !r2; £(r; z) = r(a+B cos(kz¡t)); ¤(r; z) = U¡dr2+A sin(kz¡t)
(2.35)
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Poiseuille °ow with Torsion waves This solution represents a modi¯cation to
Poiseuille °ow to include waves propagating in the both z directions. The coe±-
cients A and B are complex. The waves are therefore transverse and elliptically
polarized, if the zero divergence condition is to be satis¯ed ( ikA = 2B ). These
waves represent spiral or torsion waves propagating down the pipe. In general,
these torsion waves are guided by the "lines" of vorticity, and may exchange en-
ergy with the mean °ow ¯eld in the manner of a traveling wave ampli¯er [Johnson
1957].

2.2.7. Example 10:

Torsion waves in a non-rotating frame This solution represents helical or torsion
waves without sound (div V = 0). The wave vector k and frequency,!, are
complex, as is the amplitude A. A solution to the Navier-Stokes equations in a
non-rotating frame is given by the dispersion relation: These waves do not depend
upon the compressibility of the medium. They have several of the features of the
Eckman system, but are rotational rather than translational shear solutions. The
solutions exhibit a time dependent Beltrami °ow ( curlV = kV ). It is to be noted
that the complex frequency can be adjusted to be pure real if the imaginary and
real parts of the wave vector are equal. Such a choice leads to exponential growth
or attenuation in space of the torsion wave "packets". However such torsion wave
"packets" persist in time. On the other hand, if either the real or imaginary part
of the wave vector, k, is made to vanish, then the frequency, w is pure imaginary.
The solution can exhibit oscillatory behavior spatially, but the mode attenuates
or grows in time, and is not a traveling wave. In a rotating frame of reference,
the dispersion relation and solution are modi¯ed by the rotation rate.

3. Conjugate helical waves

The ability to generate closed form solutions to the Navier-Stokes equations in
rotating reference frames focuses attention on the importance of propagating con-
jugate helical waves in °uids, and their superposition and interference. Consider
the velocity ¯eld

V = (yi¡ xj)=(x2 + y2) (3.1)

This vector ¯eld is harmonic in that it has zero curl and divergence except at
those points that make up the z axis. This vector ¯eld may be considered to be
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the superposition of two helical °ows:

V = [yi=(x2 + y2) + ck]+[¡xj)=(x2 + y2)¡ ck] (3.2)

In particular it may be demonstrated that the Poiseuille solution may be modi-
¯ed to include conjugate helical or spiral waves that propagate in both directions.
The steady state solution consists of the phase coherent superposition of these
two oppositely propagating or conjugate waves, forming a steady state. If for
any reason the perfect phase coherence is destroyed locally, then the steady state
formed as a cojugate wave interference pattern will be destroyed and a pu® of a
traveling wave packet would be expected to form mixed in with the steady pipe
°ow. Near the critical value of a bifurcation parameter, these conjugate pairs of
helical waves would be expected to lose their phase coherence, and the system
would enter the turbulent regime.
A plot of the saddle-node Hopf solution is presented in Figure 1 for a choice of

parameters that indicates its close relationship to the Hill spherical vortex [Lamb,
1945]. In fact, the torsional or twisted Hill ellipsoidal vortex is the epitome of a
three dimensional torsion obstruction, or bubble, in a °uid °ow. It is remarkable
that these torsional, irreducibly 3-dimensional, defects may be produced contin-
uously in an evolutionary °uid °ow. The saddle-node solution that is divergence
free is the kernel of the USTF solution created by Mo®att [Mo®att, 1989].
Another immediate application is the solution that represents hysteretic Hopf

bifurcation, a solution which produces intermittent torsion bursts and °ow rever-
sal. The recent experimental work of Roesner [Roesner, 1989] on °uid °ow in
a cylindrical cavity with a rotating lid is qualitatively replicated in some of its
essential features by the hysteretic Hopf solution in a rotating frame. Figure 2
exhibits the °ow reversal in the z direction given by such a solution, while Figure
3 displays the intermittent torsion bursts in the xy plane.
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