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Abstract

Notes and comments on Holonomic and Anholonomic Constraints, Affine
Torsion, Object of Anholonomicity, Gaps, Defects, Frobenius integrability,
and Torsion of Various types

1. Introduction

1.1. Non singular linear Mappings A [M] # 0

A matrix [M], whose elements are functions on a domain £ of independent vari-
ables, defines at each point p a linear mapping carrying vector arrays into vector
arrays. (For most of the discussion herein, the matrix elements of [M] usually
will be restricted to C2 functions). The subset ¢ where the linear mapping has
a non-zero determinant divides the domain of independent variables ¢ into topo-
logical components. (The dimension of ¢ and ¢ are -at first- presumed to be the
same). Recall that the determinant is a highly non-linear function, whose zero
sets define a first level of topological defect structures in the domain . These
defect structures will be discussed later on on this article. At this time, it will
suffice to recall that the concept of a non-zero real determinant separates the
linear mappings into two components, those for which A [M] > 0 and those for
which A [M] < 0. The constrained linear mapping, [F| = [M],estrictedtoq , can be
used as a Basis Frame for a vector space over the reduced domain of definition,
q. 'The restriction implies that the matrix has no eigenvectors with eigen values
equal to zero.



Further constraints can be imposed. For example, if a point p is constrained
to move along some space curve in ¢, then the Basis Frame, as a set of C2 functions
whose arguments depend on the point p, also "moves”, with its matrix elements
changing values as p changes. The concept thereby defines what is known as
Cartan’s Repere Mobile (the moving basis frame). To define the curve C requires
N-1 Pfaffian equations, or 1-forms (consisting of functions and differentials) set
equal to zero. A typical example in the space on N-1 coordinates = and 1 variable
called time, ¢, is given by N-1 Pfaffian constraints, dz® — V¥(x,t)dt = 0. These
Pfaffian differential equations of constraint may be holonomic (unique solution to
the differential equation exists over the entire domain) or non-holonomic (unique
solutions do not exist). The motion of a point along the curve is typical of the
particle point of view used in classical physics or of the ray point of view used in
optics. The point p need not be constrained to a curve, but might be constrained
to, say, a N-1 hypersurface. Then only 1 Pfaffian equation of constraint is needed.
This point of view is more representative of the wave front concept used in optics.
A wave-particle duality concept requires that the "normal” to the wave front
behaves as a ray on a space curve, which is not universally true. Other forms
of constraint, typical of string theories, could appear as the Pfaffian expressions,
da® — V*(x, s, t)dt — ZF(x,s,t)ds = 0. Typical interpretations presume that s is
the string length parameter and t is the time parameter.

1.1.1. Non-Holonomic and Holonomic Linear mappings

There are several ways to utilize the Basis Frame. The most general situation is to
presume that the Frame matrix acts as map between vector arrays of differential
forms:

[Fe(d")] o [w(g,dq)) = |0*(¢,dq)) . (1.1)
The vector arrays of p-forms may be arrays of functions (O-forms), 1-forms, 2-
forms, ... N-1 forms, etc. A special case occurs if the vector arrays are assumed

to be vector arrays of perfect exact differentials, for then the equation
Holonomic  [Fy(¢")] o |dg*) = |dz"*) (1.2)

implies that there exist unique function mappings (solutions to the differential
equations) such that x* = f*(¢®). When true (not true), the Frame matrix is
defined as a holonomic linear mapping (non-holonomic linear mapping). A more
common situation found in practice for 1-forms is given by the non-holonomic



expression, where exact 1-forms are mapped into non- exact 1-forms:
Non — Holonomic [FX(q")] o |dg®)y = |o"). (1.3)

Each induced 1-form o* has to be tested to determine its Pfaff dimension or class.

For example, if the Pfaff dimension, or class, of all induced 1-forms is one, then
the domain of support for the determinant of the Frame matrix is such that the
induced right Cartan connection matrix (see below) is free from Affine Torsion.

1.1.2. The Relative Velocity formula and Curvature-Coriolis The-
orem

The Frame matrix has properties that are independent from the choice of the
vector arrays of p-forms, [w®(¢q,dq)) . The constraint on the domain of definition,
such that the determinant of [F] is non zero, implies that an inverse matrix, [G],
exists, such that [F]o [G] = [1]. It follows that the differentials of the Frame
matrix define a linear connection:

d[F] = —[F]o[dG]o[F] (1.4)
— +[Cy]o[F (L5)
= +[F]o][Cg], (1.6)

where [Cg] is defined as the right Cartan matrix of connection 1-forms, and [C]is
defined as the left Cartan matrix of connection 1-forms. The two forms of Cartan
connections are:

A second exterior differention leads to
dd[F] = +{d[Cr] = [C1] " [CL]} o [F] = [Or] 0 [F] (1.9)
= [F]o{d[Cr] + [Ck] " [Cr]} = [F] o [O&] (1.10)

The matrices of 2-forms [O] and [Of| are defined as the Left and Right Cartan
matrix of Curvature 2-forms. The right and left connnection matrices, as well
as the right an left curvature matrices are similarity transforms of one another.
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(The right Cartan matrix representation is prefered, as it keeps the order of the
functions and the exterior derivatives in proper sequence. Its use also strengthens
the idea that the invertible frame matrix implies that exterior differentiation is a
closure concept, such that the exterior derivative of any basis vector is a linear
combination of the set of basis vectors.)

Now return to the general mapping formula written as applied to vector arrays
of p-forms,

[G]o|o) = |w) . (1.11)
Exterior differentiation produces the vector array of p+1 forms,

[G] o {[—CL] " |o) + |do)} = |dw) . (1.12)

A second exterior differentiation produces the equation of p+2 forms.

[G] o {[CL] " [Cr] + [dCR]}" o) + |ddw)} = (1.13)
[F]o{[Or] " |w) + |ddw)}
[F] o {Curvature 2 — forms} = |ddo) = 0.

The ”second derivative” equation dd(map) expresses the closure concept (mod
singularities) of the basis frame in terms of the vector of induced Cartan ” Curvature-
Acceleration” 2-forms, [Og] "~ |w) , and the vector of Coriolis-Torsion-acceleration
2-forms, 2 [Cg] " |dw) . The nomenclature follows from the historic notation, when
the formulas are applied to the special case of dynamic discriptions of a 3D vec-
tor in a fixed frame of reference being compared to the dynamic description in a
rotating orthonormal frame of reference (see the example below).
The result can be expressed as a theorem:

Theorem 1.1. For C2 forms and Frame fields [F'], without Poincare sin-
gularities, Curvature effects are balanced by Coriolis effects

Remark 1. The conjecture that gravity - Curvature can be balanced (somehow)
by torsion-Coriolis and singularities is tempting. How to exploit this conjecture

is an open question.



1.1.3. Example Application: The classic formulas of Deformation about
a fixed point.

The fundamental dd(map) formula can be used to interpret the case where a
vector, defined relative to a distorting frame [F], is mapped into a vector defined
with respect to a fixed frame, [I]. The origins of the two frames are presumed to
be coincident (fixed points). The formulation is typical of the map from a rotation
frame into an ”inertial” frame. The map formula relates a position vector in the
expanding-rotating system and the position vector in a ”fixed” frame (using the
basis which is the identity matrix.)

[Flolg) = |x) = [1] o |z} (1.14)
Note that when |¢g) = 0, |z) = 0.
The d(map) formula yields

[FTo{[CR] " @) + |dg)} = |dx) . (1.15)

while the right Cartan matrix has matrix elements of the form

> Céib(q)dq"] (1.16)
b
If the system is now constrained by the possibly inexact Pfaffian forms (known as

the kinematic assumption) such that dg® — v*(q, t)dt = 0, and dx® — V*(q, t)dt =
0, then using the formula

> Cgb(q)v”] dt (1.17)
b
the d(map) equation becomes

[Flo{[2k] o lg) + |v)}dt = [V) dt. (1.18)

Canceling the dt factor on each side yields the ”velocity” composition formula of
deformation about a fixed point

[Flo{[Qg] o) +v)} =[V). (1.19)

If the original Basis frame [F] is chosen to be an element of the orthonormal group,
then there is no expansion distortion, only a rotation. The term [Qg] o |¢) in 3D
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becomes equal to the Gibbs cross product expression, 2 x q. A second exterior
differentiation of the distorsion formula yields.

[F] o {[Qg] 0 [Qr]o|q)dt+ d[Qr]} o |q) +2[Qg] o |v) + |dv)} = |dV). (1.20)

If the further kinematic ”acceleration” constraints are made, such that dv® —
a’(q,t)dt =0, dV* — A*(q,t)dt = 0,and d[Qgr] = [a] dt, and if the original frame
is presumed to be orthonormal, then the classic Coriolis equation is obtained:

[Flo{Qx(Qxq)+axq+2Qxv+|a)} =]|A). (1.21)
1.1.4. Matrix methods

As shown below, holonomic Affine Torsion is a myth. Holonomic Linear mappings
never produce Affine Torsion. A holonomic domain need not be global over the
domain of independent variables . The holonomic domain is ”global” only over
the subset ¢ where the determinant of the Frame matrix [F] is not zero. (Think
space mod particles.)

The Basis Frame [F f(qb)] is defined herein as a row column square matrix of
C2 functions whose arguments are the independent variables q. Over a restricted
domain, the rows (upper index) of the matrix often can be put into correspon-
dence with components of contravariant vectors for a given column (lower) index.
Similarly for a fixed row index, the matrix columns can be put into correspon-
dence with covariant vectors. A fiber space allusion can be based on the notion
that the set ¢ is a subset of = produced by the constraint det[F| = 0. However
the fibers are ”points” as the dimension of z and the dimension of ¢ are the same.

1.1.5. Singularities of the induced 1-forms

k

Recall that any particular induced 1-form, ¢”, can be used to generate its Pfaff

sequence,

{o*, do* o""do*, do* do*, ...} (1.22)

which will contain j < N non-zero entries. The number j determines the mini-
mum number of functions (in a limited, finite, but local, domain) that are required
to express the exterior differential properties of the given form. The number j
is defined as the class, or Pfaff dimension, of the 1-form, o*. Note that if the
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1-form is exact, then its Pfaff dimension is 1; only one function (the minimum
number) is required to define the 1-form locally. When the 1-form is exact, the
minimum number of functions becomes a global property. However, if the 1-form
is closed but not exact, then do* = 0, and the Pfaff dimension is still 1; but now
the 1-form will have ”singularities” that will impose further restrictions on the
admissable domain ¢q. The classic example is given by the ”circulation” 1-form
of = {Ydyp* — *dip}/{)*1p} which has zero curl and is well defined except at
the nodes of . The allusion to quantum mechanics is deliberate. Therein the
”excited stationary states” - which have nodes - are to be treated as singularities,
or topological defects. Closed integrals whose integration chains encircle singu-
larities produce values which have rational ratios. That is, the closed integrals are
quantized.

Circulation singularities are often represented by "holes”, or sets of missing
points, in a surface. The second excited state of the ”quantum” example given
above would have two holes; the ground state would have zero holes. A decay
process to the ground state involves a topological change. It is extraordinary that
topological changes at the Pfaff dimension 1 level (changing the number of holes
in a surface) can occur continuously or discontinously. That is, it is possible to
devise evolutionary processes where both the creation of holes or the destruction
of holes can be done continuously! The continuous creation of a hole implies
that the domain has a boundary, and the new holes are created as the boundary
is deformed and glued together. The continuous destruction of holes does not
require the domain to be bounded.

There are other topological defects that depend on the fact that the Pfaff di-
mension of a particular 1-form is greater than 1. For example when the Pfaff
dimension is 3, then it is possible to show that topological evolution to create
such 3D defects cannot be done continuously, but the destruction of such discon-
tinuities can be accomplished in a continuous manner. Such concepts lead to a
non-statistical basis for thermodynamic irreversibility.

2. Pronouncements

Using the Cartan methods of the exterior calculus leads to the following statements
and conclusions:

1. The Cartan connection: Holonomic Affine Torsion is a myth.  The
proof of the statement depends upon the definition of a right Cartan matrix
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of 1-forms, [C¢(q)], called the Cartan connection, which always exists on the
domain ¢, for C1 functions. On the domain, ¢, the Frame matrix [F*(q)]
has an inverse [G¢,(q)] such that

(G ()] o [F5(g)] = [1]. (2.1)

Differentiation of this matrix expression leads to the equation

[dG ()] o [F ()] + [Gr(@)] o [dER(g)] = [0, (2.2)

Pre-multiplication by the matrix, [Fc’“(q)] yields the formulas that define
the right [C¢(q)] and left [AF (¢)] Cartan connection matrices of 1-forms:

= [dF}(q)]

These equations are also used to define ” parallel transport”. Focus attention
on the right Cartan Connection:

d[Fi(q)] = [Fi(@)] o [C5(q)] = [F(q)] o

> Cib(q)dqb] L (29)

The construction is independent from a metric constraint that might be
imposed upon the system, and only depends upon the existence of an inverse
Frame matrix. There are two possible formats:

= [Ca()] = = [dGr. ()] o [F*(9)] = (G (a)] © [dF"(q)]

(2.6)
It is important to note that both the indices that denote the elements of
the right Cartan matrix, and its arguments, are defined on the initial state,

q.

Z Cgb(Q)dqb
b

. Anholonomic Affine Torsion: The coefficients of Affine Torsion are
defined as Cf,(q) = Cg,(q) — Cf,(q). Anholonomic Linear mappings do
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not necessarily produce Affine Torsion. Holonomic Linear mappings never
produce Affine torsion If the induced differential 1-forms are closed, but
not exact, the Frame does not produce Affine Torsion. However, there
is possibly another level of topological defect structures produced by those
induced 1-forms which are closed but not exact. (with applications to
understanding the Bohm-Aharanov effect, Flux quantization, Berry phase,
Lift of a Joukowski airfoil, etc. via deRham theory). Such defects are
defined by ”"two dimensional” Pfaffian constraints (zero sets of 2-forms).
When functions are equal to zero, their induced closures (1-forms) vanish as
necessary anholonomic constraints. Note that the vector of closure 2-forms
can be written as:

|do®) = [dF;(q")] " |dg®) = [FE(q")] o [Clyda® dg”) . (2.7)

Hence if the LHS vanishes, implying closure, then the RHS = 0, implying
that the affine torsion is zero for any situation where the induced 1-forms

o are closed, even if they are not exact.

. Closure 2-forms: Bottom line: The Pfaff dimension of one or more of
the induced 1-forms o must be greater than 1 if Affine Torsion is to exist.
In other words, some of the induced 1-forms must not be closed, if Affine
torsion is to exist. This implies that some of the (covariant) rows of a Frame
matrix (not the contravariant columns) must have non-zero "curl”. The
vector of closure 2-forms can be written as:

|do®) = [dF;(¢")] " 1dg") = [{OF; /0" — OFy /0q"}dq""dg") . (2.8)

If the RHS = 0 (zero curl), then the LHS = 0, implying that the Affine
Torsion coefficients, above, must vanish.

. The Object of Anholonomicity: If the inducedl-forms 0" are complete,
such that the product, o! 0% ..c¥ # 0,then every 2-form do* can be
expanded as: do* = QF o® "%, The vector of ”closure” 2-forms becomes:

|do) = |, 0™ 0") = {(F(@)dg”) (Fr(q)dq”)}
= | (B Fy = Fr g dg®) (2.9)

a

The 3-indexed coefficients of this expansion, € . define the ”Object of

Anholonomicity” and are different from the ”3 indexed Object of Affine
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Torsion”, C’f;b]. In summary, there are three distinct, but equivalent, ways
to write the vector of closure 2-forms:

Closure 2 — forms ‘dak> = ‘Qﬁm (F"Fy — FPFy g dg®)
{0F; /04" — OFy/0q"}dg""dg")
= [F¥q")] o |Clyda” dg®) (2.10)

Due to linear independence, a zero of any of the three representations implies
a zero for the other representations. It follows that a zero closure condition
(all elements of }dok> are of Pfaff dimension 1) implies zero "curl”, zero
Affine Torsion and Zero Object of anholonomicity.

. Cartan Torsion 2-forms: In addition to the three ways of producing a
vector of closure 2-forms, it is possible to construct other useful sets of vector
valued 2-forms, with arguments and indices both assocated with the initial
state. One possibility is consider the vector valued 1-forms constructed by
pre-multiplying the fundamental mapping equation by the inverse matrix to
yield

[Gi@)] o |0*) = |dg°) (2.11)

Exterior differentiation followed by pre multiplication by [FI™*(q)] yields a
vector valued set of 2-forms

[5F) = [A%(9)] " o™) + |do™) =0 (2.12)

which involves the Left Cartan connection, [Afn(q)] The vector valued
2-forms, {Ek>, could be used to define a Cartan vector of Cartan torsion
2-forms, which like the Cartan matrix of curvature 2-forms, must vanish
on the parallelizable domain ¢. It is apparent that the vector of Cartan
torsion 2-forms is not the same as the Closure 2-forms used to define Affine
Torsion.  Exterior multiplication of each element of the vector of Cartan
torsion 2-forms by the appropriate 1-form produces a vector of 3-forms that
must vanish necessarily:

" Ay, () 0™) + |o* do*) = 0. (2.13)

The last term is precisely the vector of Topological Torsion 3-forms for each
induced 1-form, 6™. So there are two cases: (a) Either each term vanishes,
which implies that the topological torsion vanishes, or (b) the two terms
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in each element of the Cartan torsion 3-forms cancel, and the topological
torsion is not zero.

In the more general situation, where

[F] o {[CR] " |w) + |dw) } = |do) . (2.14)
the vector of Cartan Torsion 2-forms could be defined as

=) ={[Cr] " [w) + |dw)} = [G] 0 |do) (2.15)

. Intrinsic Closure Gaps Both Affine Torsion and sectional Gauss Cur-
vature will produce ”closure Gaps”. A differential closure gap is defined
as nonzero result obtained following a displacement along dq,1 followed by
a displacement along dq2, followed by a displacement along -dql, followed
by a displacement along -dq2. These specific closure gaps are intrinsic in
that they reside in the 2-plane defined by the two exact differential displace-
ments, dql and dq2, used in their construction. There are other types of
curvature gaps (induced by topological torsion) which are not intrinsic. The
Affine torsion gap, as physically induced by translational shears to produce
edge and screw dislocations, is intrinsic. The Gauss curvature gap, often
associated with "rotations” and disclinations is intrinsic. In crystalline
structures, the energy to produce curvature gaps is much larger than the
energy to produce Affine torsion gaps. The opposite is true in fluids. In
an ideal crystal, it might be said the translational shears are permitted, but
rotational shears are not. In an ideal fluid, translational shears are not
permitted, but rotational shears are permissible. The nomenclature ”screw
dislocation” is unfortunate for such differential displacements form a piece-
wise curve whose endpoints reside in the ”tangent plane” to a helical surface.
The screw dislocation closure gap does not exhibit ”helicity” which would
require that the gap has components orthogonal to the tangent plane.

. Non-Intrinsic Topological Torsion Gaps: There are other types of
torsion closure gaps (topological torsion) which are not intrinsic. A gap is
defined as not intrinsic if the closure gap is not in the 2-plane defined by
the two exact differential displacements. The non-intrinsic torsion gap has
components perpendicular to the 2-plane defined by the two exact differen-
tial displacements. Such gaps have helicity (are intrinsically 3 dimensional)
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Dizlocation

Torzsion Gap
dql. -dql
dg2. -dq2

Figure 2.1:
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Lattice with curvature

——— dq1 or 'dq1
— dg2 or -dg2

curvature gap

Figure 2.2:
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and cannot be approximated by a gap in the plane. These gaps are not
formed by translational shears, but are more to be associated with rota-
tional shears in combination with translations. If the non-holonomic linear
mapping of interest is an element of the Affine group, then Affine torsion
is possible, and the Affine torsion gap is intrinsic. If the non-holonomic
linear mapping is not an element of the affine group, then there can exist
non-intrinsic torsion. For example, the linear mapping could be a projective
mapping (not affine) and it would be expected that there existed ”torsion”
gaps that are orthogonal to the 2-plane defined by the two exact differen-
tials. This concept of (topological) torsion (not affine torsion) is closest to
the concept of Frenet Torsion of a space curve. Frenet Torsion equal to zero
means the space curve in 3D resides on a 2-surface (the plane in euclidean
space). Non-intrinsic Torsion and Torsion gaps out of the 2-plane exist only
if the Topological Torsion is non-zero. If the non-holonomic linear mapping
of interest is an element of the projective (but not affine) group, then the
induced (non-Affine) torsion can be non-intrinsic. Cartan torsion, for ex-
ample, is not necessarily intrinsic, but depends upon the embedding. How
does one know that such things exist without Cartan’s intuition? Mathe-
matically the trick is to embed the manifold into a suitably large Whitney
space, and then partition the Whitney space into a subspace of interest.
Then all of the features described above can be evaluated on the subspace.
Another method is to presume the existence of a global 1-form on a domain
of dimension n+1. Then compute the n associated vectors that annihilate
the 1-form. Use these n vectors, and the components of the initial 1-form
(multiplied by some non-zero function) to define a projective basis frame
in dimension n+1. The n dimensional subspace can have non-zero curva-
ture and affine torsion as well as non-affine non-intrinsic Cartan torsion, or
topological torsion. The embedding space is a space of absolute parallelism.
This has been done in detail at :

http://www22.pair.com/csdc/pdf/defects2.pdf

. An A4 space is a 4 dimensional space that has Zero Cartan torsion, and
Zero Cartan curvature. This means that the curvature gaps are zero, and
the Affine torsion gaps need not be zero. The domain is parallizeable. The
Shipov idea that the vacuum has both possibilities (zero Affine torsion with
zero curvature, or non-zero Affine torsion with zero curvature) is what I
applaud. (It is not clear that Shipov considers the case of Topological
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11.

12.
13.

14.

15.

Torsion)

His work stimulates me to conjecture that the Shipov vacuum
may be extended to a space that has Zero curvature, but non-zero
topological torsion. That is, the vacuum may have no mass (im-
plying zero curvature) but both affine (intrinsic) and topological
(non-intrinsic) torsion. Such effects can occur in a space of ab-
solute parallelism, but the topological torsion is then constrained.
Without the constraint, the space-time vacuum would have to be
embedded in a higher dimensional space. It could not be an A4
space of absolute parallelism.

An Anholonomic linear mapping can be elastic (reversible but perhaps chaotic)
even if the topological torsion is not zero. That is, there exist elastic helical
deformations which are elastic.

For multi-sheeted solutions, envelopes, edges of regression, various types of
catastrophes, the topological torsion of

one or more of the induced 1-forms cannot vanish.

A plastic (irreversible) deformation requires that the topological torsion is
not zero, and is not closed in an exterior differential sense. The minimum
dimension for (continuous) irreversibility is 4.

Almost all Frame matrices are not Unitary.

A unitary matrix is normal and therefor the decomposition into RH and LH
parts is degenerate. Chirality is where the RH and LH parts are distinct.
(Hence such matrices are not normal in the sense that they do not commute
with their adjoint and therefore are not unitary)

A choice of anholonomic constraints refines the topology of the domain of
interest. IMO the presence of dynamical matter not only generates a metric
field with metric curvature, but also generates torsion of both the intrinsic
and not intrinsic types.

Distant parallelism that is holonomic implies independence from path. Dis-
tant parallelism which is anholonomic is path dependent. The concept of
independence from path is related to the closed loop integral of a 1-form.

15



If the 1-form is exact, all closed loops give zero value for the integral. If the
1-form is not exact, the closed loop integral on a boundary is zero, but a
closed loop on a cycle which is not a boundary is not zero (see deRham).
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3. NOTES

3.1. Preliminary: differential forms

The topics described below deal with things called Pfaffian equations and differ-
ential forms on a domain. Perhaps the simplest way to think of differential forms
as to note that they are objects that form the integrands of multi-dimensional
integrals. The most well known differential forms are 1-forms and 2-forms (re-
lated to 1 dimensional line integrals and 2 dimensional surface integrals) and N-1
form and N forms (related the integrands of current densities and density vol-
ume elements). An extraordinary feature of differential forms is that they are
well behaved in a functional sense as invariants relative to admissable coordinate
transformations called diffeomorphisms (which are maps that do not change topol-
ogy). Perhaps even of greater importance is the fact that differential forms are
well behaved in a functional sense with respect to C2 differentiable maps which
are not homeomorphisms. Such maps describe continuous topological evolution.

When defined on a differential variety of coordinate functions, the differential
forms can separate the domain into two sets. Regions of support (where the
differential form is not zero) and the zero sets (regions where the differential form
vanishes.) Pfaffian equations are of the latter category; they are essentially dif-
ferential forms constrained to zero. Pfaff’s problem is to find solutions to Pfaffian
equations. Differential forms may be exact, closed, integrable or non-integrable.
For exact forms, there exists a single global pre-image whose exterior derivative
reproduces the differential form. For 1-forms, an exact 1-form is represented by
the exterior derivative of a unique global zero form, or function. The components
of the exact 1-form behave as the components of a gradient field. A Pfaffian
equation as an equation of constraint between coefficient functions and differen-
tials of a 1-form may or may not be exact. If the constraint is exact, then the
constraint is defined as a holonomic constraint. All other constraints are called
non-holonomic (or equivalently anholonomic) constraints. Pfaffian equations as
anholonomic constraints appear throughout physical theories. Sometimes they
appear in subtle and unappreciated ways. For example:

Kinematics as an anholonomic constraint A common set of anholo-
nomic constraints (and a set that is usually unappreciated as an anholonomic
constraint) is given by the zero set of the kinematic (particle) 1-forms (on the
domain {q¢*, t}). That is, consider a C2 map ¢ from {¢*, t} = {a*}. Tt is useful
to recognize that the map is from a domain (or initial state) to a range (or a final
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state). The arguments of the map are the independent variables of the initial
state. Then consider the definitions.

ot £ da® = Vg, t)dt = {06"(q,)/0¢™ Ydg™ = A*
With - VF(q,t) £ {0¢"(q,t) /0t }. (3.1)

There are 5 cases that will be considered herein.: The 1-forms o*

closed, integrable, or non-integrable.

The kinematic hypothesis is that the 1-forms ¢" vanish on the domain of
interest, which implies that the ”anholonomic fluctuations”, A*, must vanish.
The constraint implies that

are zero, exact,

k

{0¢"(q,1)/0¢™ }dg™ = 0 (3.2)
From which it follows that either all of the displacements vanish, dg¢™ = 0,such
that the ¢™ = constant ”initial conditions”, or the matrix {0¢"(q,t)/0¢™ } has
a zero determinant, and the non-zero displacements define the Null eigenvector
of the given matrix. In the latter case the initial conditions are not constants,
but are constrained to a singular set. The kinematic constraint is satisfied if the
anholonomic fluctuations vanish (the classic case).

A less restrictive constraint is that the 1-forms o
do* = d(Ak) =0, but A* £ 0.

k are closed, in the sense that

If do® =0, then dV*dt = (OA*/0t) dt = {0%¢"(q,t)/Otdq™ }dt" dg™ = 0
(3.3)
Then either ¢ = constant, or the ”Velocity” functions, V¥, can be functions of
t alone. That is there exists a single parameter map from ¢ into the functions,
VE(t). The fluctuation 1-forms A* are not zero, but are independent from time,
t. Such is the foundation of the Langevin approach to fluctuations.

The 1-forms ¢ need not be exact perfect differentials, and contain infor-
mation about certain (1-dimensional) topological properties (or defects) of the
domain. Such domains of induced coordinate 1-forms do not support Affine tor-
sion. A necessary requirement for Affine Torsion is that some or all of the induced
coordinate 1-forms, 0¥, are not closed.

A third situation and even less restrictive constraint may be posed by the
requirement that the Pfaffian equations are integrable. The implication is that
there is a set of 3-forms that must vanish, 0% do* = 0. Such a rank 3 Pfaffian an-
holonomic constraint is required if there exists and integrating factor \*(z,t; 3)
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for each o%,such that although do® # 0,the product of the integrating factor
and the 1-form is closed: d{\(z,t;8) o*} = 0. If 6*"do* # 0, then the Pfaf-
fian equations are not uniquely integrable integrable, and if the 3-form is closed
(do*"do* = 0), the 3-forms carry another set of topological properties (or defects)
different from the defects generated by a closed, but not exact, system of 1-forms.
When 0% do* # 0, the domain is said to support " Topological Torsion”.

It will be demonstrated below that both (1) holonomic coordinates (where
each coordinate is a gradient) and (2) closed but not exact coordinates (typical
of multi-valued functions) are NOT to be associated with Frame matrices that
produce Affine Torsion.

Thermodynamics as an anholonomic constraint Cohomology is the
study of forms whose difference is exact. The most famous such physical system is
that given by the first law of thermodynamics: @ —W = dU. Neither the 1-form
of heat, @), nor the 1-form of work, W is (necessarily) closed, but their difference
is exact! The first law is another example of a non-holonomic constraint:

Q-—W—dU =0. (3.4)

Rolling without Friction as an anholonomic constraint When a ball
rolls on a surface without slipping of skidding, there is an anholonomic constraint
imposed upon the dynamics. The constraint is often formulated by the Pfaffian
equation Adf — dx = 0.

3.1.1. Exact 1-forms

A differential form, o(q) = Apdq®, has a Pfaff dimension, or class, represented
by an integer, m, that defines the minimum number of independent functions
that are required (over a limited domain) to define the differential form. If the
differential form has a global definition in terms of a single function ¢(q) over the
entire domain, then the form is said to be exact.

An Exact 1-form:  o(q) = do(q) = {06(q)/0q"}dq" (3.5)

The coefficients of the exact 1-form have the components of a gradient field. Exact
forms are globally integrable.
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3.1.2. Closed 1-forms

A closed form is a form where the exterior derivative of the form vanishes. All
exact 1-forms are closed (for C2 functions),

do(q) = d(de(q)) = {0°¢/0q"0¢" — 0*¢/dq"dq"}dq""dg” = 0. (3.6)
However, there are 1-forms that are closed, but not exact. Closed, but not
exact, 1-forms are integrable over a restricted domain, which may be finite but
not global. As an example, consider the 1-form constructed from two independent
functions:

Ezample : o(q) = {¢(q)dx(q) — x(q)dd(q)}/{ag” + bx?}*/* (3.7)

The example is closed (has zero "curl”) but is not exact.  do(q) =0 (3.8)

The Pfaff dimension of a closed but not exact 1-form is 1, but the form cannot
be globally represented by a gradient of a single function. The domain contains
a topological defect(s), not typical of a Cartesian space. There are closed paths
(cycles) that are not shrinkable and are not boundaries. A typical example is given
by a planar disc with a central hole. Each hole is represented by a unique closed
but not exact (deRham) that says something about the fact that the domain of
definition is not simply connected. Note that if the two functions in the example
are taken to be ¢ = ¥ and x = ¥ then the closed (but not exact) 1-form becomes
(fora=1,b=1,p=2)

o(q) = {ad¥' — wav} /(') = {UV, V' — OV, U}dg™/(UID), (3.9)

which is recognized as being proportional to the ”probability current” in quantum
mechanics. The integrals around closed cycles of such closed but not exact 1-
forms are the basis for the Bohm Aharanov effect, and the deRham formulas are
the basis for what has been popularized as ”flux quantization” or as the ”Berry
phase”.

Closed forms which are not exact are often related to multi-valued functions.
The closed 1-form given above is not well defined when the denominator goes to
zero. If the domain of definition excludes these regions, then the form is well
defined, and there exist closed integration chains called cycles ( which are not
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necessarily boundaries) for which the integral of the form along the closed chain
is NOT zero.  If the integration is performed about a boundary cycle(s) the
value of the integral is zero. An exact form integrated about a closed cycle is
zero, whether it is a boundary or not. These closed but not exact 1-forms carry
topological information (in terms of the excluded points which are interpreted as
defects or singularities). As mentioned above. these closed but not exact 1-forms
have physical significance as the flux quantum. Similar closed, but not exact
2-forms, have physical significance as the charge quantum. Closed but not exact
3-forms have physical significance as the spin quantum.

See http://www22.pair.com/csdc/pdf/periods.pdf or R. M. Kiehn, J. Math
Phys 18 4 (1977)

3.1.3. Not closed but integrable 1-forms

Even if a 1-form o is not closed, such that do # 0, it still may be true that there
exists an integrating factor \ that makes the form closed. That is

d(\q) o) = d(\(q) Apdq”) = d\ o + Ado = 0 (3.10)

It follows that a necessary condition for the existence of an integrating factor is
that
o {d\' o+ Ado}=0"d\N' o+ Ao"do =0+ No"do =0 (3.11)

Hence, the 3-form 0" do must vanish if an integrating factor exists. The condition
is known as the Frobenius condition of integrability. The integrating factor does
not necessarily convert the non-closed 1-form into an exact 1-form.

3.1.4. Non-integrable 1-forms

If the associated 3-form o”do does not vanish, then an integrating factor does not
exist, and the system is said to be non-integrable. The Frobenius condition of
integrability fails.

4. FRAME MATRICES

The columns of a matrix of functions for which the determinant is non-zero on a
finite domain {¢*} can be used as a basis matrix for contravariant vectors. The
columns of the frame matrix are treated as contravariant vectors with components
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designated by the upper (row) index. The rows of the Frame matrix are treated
as the components of covariant vectors, with the component index being the lower
(column) index. The designations follow in accord with the existence of integral
maps from the domain to the target. However, the requirements for a Frame
matrix do not require that the Frame be deducible from a map of functions. All
that is required is that the Frame matrix form a linearly independent set of basis
vectors at every point p. The requirement is that the determinant of the Frame
matrix is non-zero. Points on the domain where the determinant of the Frame
matrix is not zero are called defects or singularities.
There are 4 major cases to consider:

1. The Frame matrix maps exact differentials into exact differentials (the holo-
nomic case where the map from range to target is known.)

[F2 ()] o |dg®) = |o*) = [da™) (4.1)

2. The Frame matrix maps exact differentials into non-exact differentials (non-

holonomic)
[Fa(d")] o ldg") = |o*) (4.2)

There are three subcases to consider.

(a). The induced 1-forms |o*) are closed, integrable, or not integrable.
Note that the term "non-holonomic” is used to imply that the induced 1-
forms are not exact. As will be shown below, both holonomic (exact) and
special non-holonomic (closed but not exact) Frames are Affine torsion free.

(b) Non-holonomic is a necessary, but not sufficient, condition to produce
Affine torsion. The lack of closure (the 2-form vanishes: do® # 0) is a
sufficient requirement to produce Affine torsion. However, in certain cir-
cumstances the system may be integrable in the Frobenius sense, such that
a new Frame can be constructed in terms of ”integrating” factors, and that
new frame will be of the types (a) or (b) above. A necessary condition for in-
tegrability is that the topological torsion 3-form must vanish: (o*"do* = 0).

(c) In the non-integrable cases, (6% do® # 0).

3. The Frame matrix maps non-exact differentials into exact differentials

[Ff(qb)] o|w*) = }d$k> (4.3)
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4. The Frame matrix maps non-exact differentials into non-exact differentials
[F7(g")] o w®) = |o*) (4.4)

Only the first case is holonomic, for in that case there exists a functional map
from {q"} to {z*}. The other cases are anholonomic. The first three cases are
special cases of case 4.

Note that in every case there is a right Cartan connection such that

d[Fy(q)] = [F¥(q)] o [Ci(q)] = [FE(g)] o (4.5)

Z Cgb(Q)dqb
b

This result is deduced from the condition that the Frame matrix [F¥(g)] has an
inverse [G%,(q)]. The result of a connection is not imposed as a definition out of
the blue. The connection matrix of differential 1-forms is constructed as

[Z Cib(Q)dqb] = [Ca(@)] = = [dGT(g)] o [F"(9)] = [Gra(a)] o [dFT"(g)]  (4.6)

The construction is independent from a metric constraint imposed upon the sys-
tem. It is important to note that the indices that denote the elements of the right
Cartan matrix are defined on the initial state, and the arguments are in terms of
initial state variables.

Consider the exterior derivative of the Frame matrix, without the imposition
of the constraint that the determinant be non-zero. Then for case 2

d [FE(q")] o|dg®y = {OF) /0q" — OFy /0q}dg""dg” (4.7)

When the inverse matrix exists, another expression for the vector of closure 2-
forms is obtained as

d|o*) = [Gi(q)] o {OF)/0q" — OFy [0q"ydg" dg* = (4.8)

Consider the two definitions: (constructed from the connection generated by
the Frame matrix)

The Vector of Affine Torsion 2-forms is defined as : |AT°) = [C5(q)] ~ |dg®) = }C’fab]dqb%
(4.9)
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The Matrix of Curvature 2-forms is defined as  [0F] = {[dC5(q)]+[C;(q)] ~ [Co(q)]}
(4.10)

4.1. Holonomic systems (Case 1)

The basis assumption is that Frame matrix maps exact differentials into exact
differentials.
[FE ()] o |dg*) = |dz*) (4.11)

Such a situation exists when there exists an explicit mapping from one set of
(coordinate) variables {¢®} to another set of variables {z*} is given in terms of
C2 differentiable functions,

¢:q" = 1" =¢"(q"). (4.12)

The induced exact coordinate differentials ‘dxk> are related linearly to the exact
differentials |dg®*) by the Jacobian mapping:

do : |dg*y = |da*y = [06"(¢")/0q")] |dg®) (4.13)

The exact coordinate differentials are said to be holonomic, as they have a unique
functional pre-image. Note that a necessary condition (but not sufficient) for
integrability to exactness is that the exterior derivatives of the coordinate differ-
entials must vanish, d(dz*) = 0. Often the target of the map is presumed to
be a (pseudo) euclidean space with a diagonal metric of constants equal to +1.
The reverse problem of mapping from a (pseudo) euclidean space can also be
considered.

For the integrable situations, the Jacobian matrix of functions may be used as
a basis frame [F7(¢")]

[Fi(a")] = [0¢"(d")/0a")] (4.14)
on subspaces of {¢’} where the determinant of the Jacobian matrix does not
vanish. As the Frame matrix (in this case the Jacobian matrix) has an inverse on
such domains, the exterior derivatives of the Jacobian matrix lead to the concept

of a connection [C] that linearly connects the differentials of the basis functions
to linear combinations of the basis functions. This concept of a connection is

24



consequence of the linear independence of the column vectors that define any
basis Frame matrix, and is not a postulated definition:

> Céb(q)dq”] : (4.15)

c=1..n
The matrix elements of the right Cartan connection matrix, [C¢(q)], are differen-
tial 1-forms, C¢,dq’.

If the functions of the holonomic mapping are C2 differentiable, then by direct
computation,

d[Fy(q)] = [Fi(@)] o

d(dz*) = [F¥(q)] o [Cilq)] " |dg®)

> Céb(q)dq”] “dg*
c=1..n

= [Fi(a)] o|[{C% — Cr}dq" dg") = 0 (4.16)
The vector of two forms based on the anti-symmetric components of the connection
has been defined as the vector of Affine torsion 2-forms:

Vector of Affine Torsion 2-forms: }C’[cab]dqudq“> (4.17)

However, this vector of Affine Torsion 2 forms must vanish as d(dx) = 0.

BOTTOM LINE: If the exterior differential system has a preimage as a
holonomic mapping, the Vector of Affine Torsion 2-forms must vanish.

(Hence statements about ”holonomic affine torsion” are misleading if not false
(see Sarfatti Vigier 2000).)
Application of the exterior derivative one more time yields

d(d(da®)) = df [F (9)] © [ ( )}] |dq”) (4.18)
= [Fi(9)] o f ( )] [dC ()]} [dg”)
= [F@]ol \dq
The result is that the 3-form [©°] " |dq ) must vanish for the holonomic case.

This necessary condition does not imply that the matrix of curvature 2-forms
must vanish, although that is a possibility.

In summary The holonomic case is Affine torsion free, but may or may not
admit non-zero curvature
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4.2. Anholonomic systems - Case 2

Even without knowledge of the unique integral solutions (which may not exist),
it often possible to construct (or impose by other arguments) over a domain a
Frame Field, [F]. The Frame field acts as a basis matrix of linearly independent
functions with arguments on the variety, y*. (Methods for constructing [F] are
described in ”"The Many Faces of Torsion”). The domain may be finite, but not
global. Consider the anholonomic (non-holonomic) case where

[FF(q")] o |dg®y = |o") . (4.19)
Multiplying by the inverse frame yields
|da") = [Gh(@")] o [o") (4.20)

Exterior differentiation of the first equation yields

[F(q")] o [Co(d™)] " ldg®) = d|o®) (4.21)

which implies that the vector of Affine Torsion 2-forms is given by the expression
[C2] " ldg") = [Gi(d")] o d|o®) (4.22)

The important result is that the vector of Affine Torsion 2-forms will vanish even
if the induced 2-forms }0k> are closed, not merely exact. Affine Torsion requires
that the induced 1-forms are not closed.

Exterior differentiation of the second equation yields

d|dg") = 0= [dG}(¢")] o |o") + [G2(¢")] o d o) (4.23)

So if the reciprocal frame field is used as a basis frame, there exists a reciprocal
right Cartan connection, [Dy*(¢")], such that

d|dg"y = 0= [G5,(¢")] o {[DF(¢")] o |o*) + d |o"*)} (4.24)
The term in the curly brackets defines the Vector of Cartan Torsion 2-forms based
on |0’“> . It is apparent that this Vector of Cartan torsion 2-forms is zero and
consists of two compensating parts, one of which is the Vector of Affine connection
2 forms.

There are four cases to consider depending on the properties of the induced
1-forms:
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a. If the non-exact 1-forms are closed, such that d }ak > = 0,then the vector of
affine 2-forms, [C%(q)] * |dg*), must vanish. This anholonomic domain does
not support Affine Torsion. Moreover the 3-form, [©¢] " |d¢®) must vanish.
A sufficient but not necessary condition is that the matrix of curvature 2-forms
is zero. In other words such anholonomic domains could have curvature without
torsion.

b. If the non-exact 1-forms are not closed then d }ak> # 0. The constraint
implies that this type of anholonomic domain necessarily supports Affine Torsion.
A second application of the exterior derivative implies that, again, the 3-form
[©¢] " |dg*) must vanish. Hence, such anholonomic cases necessarily support
Affine Torsion, but may or may not have zero curvature.

c. If the }ak> are not closed but integrable, then the vector of 3-forms,
{akAdak> must vanish.

d. If induced 1-forms are not integrable. Such domains are said to support
topological torsion. The 3-form |o%"do*) # 0. In simple terms, Affine Torsion
is related to the ”curl” of the induced coordinate 1-forms, o*. If the 1-forms
have zero curl, the domain does not support Affine Torsion. If the 1-forms are
integrable, then the topological torsion is zero. Non-zero topological torsion
implies that the {ak> are not integrable.

4.3. Anholonomic systems - Case 3

Consider the anholonomic (non-holonomic) case where
[F¥(q")] o |w® = |dz*) . (4.25)
Exterior differentiation yields
d{[F;(d")] o lw")} = [Fi(¢")] o {[Ca(q)] " |w) + |dw)} = d |da"™) = 0 (4.26)
It must be true that the vector of Cartan torsion 2-forms based w® on must vanish
Vector of Cartan Torsion 2-forms:  [C¢(q)] * |w?®) + |dw®) = C%dg" w® (4.27)

A second exterior differentiation leads to the condition:
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[F2 ()] o {[Ca(a)] " [Cal@)] " |w*) +2[Ca(a)] ~ |dw?) +[dCZ(q)] " |w*)} = 0 (4.28)

or

[F3(a")] o {[05()] " [w*) +2[C5()] " |dw")} =0 (4.29)
The bracket term 3-form has to vanish under the starting hypothesis, which implies
that the curvature component [©¢(q)] * |w®) can be compensated by the Coriolis
term 2[C<(q)] * |dw®) , if each component is not identically zero. No conditions
are place upon the vector of Affine Torsion 2-forms which is not at all equivalent
to the vector of Cartan Torsion 2-forms.
Now the 1-forms |w?®) may be composed of linear combinations |w®) = A¢dq®
such that

(Co(q)]  |w) = O, dge” Agdg?

As will be seen (below) when the system is not holonomic, and no unique
integral equivalent exists, then the spaces involved can have connections which
are not free of affine torsion. The bottom line is that there is a correspondence
between integrability and no- torsion. This correspondence will be demonstrated
below.

4.4. Suggested Reading

There are three books on Pfaffian systems that cover the topics in some detail.
The first is by

Schouten, J. A. and Van der Kulk, W., ”Pfaff’s Problem and its Generaliza-
tions”, (Oxford Clarendon Press, 1949)

Another is by

M. Zhitomirski, ” Typical Singularities of differential 1-forms and Pfaffian Equa-
tions” Mathematical Monographs 113, AMS 1992.

Neither of these texts is easy reading.

A third book of interest in ” Exterior Differential Systems” by Griffiths, Bryant,
Chern et al. (I will update this reference later.)

A paper by P. Fiziev and H. Kleinert gr-qc/9605046 May 1996 does a detailed
job explaining ” Anholonomic Transformations of Mechanical Action Principle(s)”

A paper by Manual del Leon and David de Diego ”On the geometry of non-
holonomic Lagrangian systems” J Math Phys. 37 (7) 1996, p.3389 gives some
examples, and a set of references, but is mostly restricted to what are called
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semi-holonomic constraints below. Also see ”Solving non-Holonomic Lagrangian
Dynamics....” Extract Mathematica 11, 2 1996 p.325, by the same authors

Also see David C. Robinson and W. F. Shadwick ”The Griffiths-Bryant algo-
rithm and the Dirac theory of Constraints” Fields Institute Communications 7

1996, p189
kok

5. Basic Ideas
First a few definitions.

Definition: An exterior differential form, o, is a function of inde-
pendent variables (functions) and the differentials of the independent
variables. (There are also a few restrictions of anti-symmetry and
homogeneity in the differentials that lead to algebraic closure. These
conditions need not be discussed now. See Flanders ”Exterior Differ-
ential Forms”)

Adif ferential form: o= f(a*, da") (5.1)

Example: The classic Cartan Hilbert Action is a (linear) exterior differential
form
w = f(aF, da*) = w = ppdq® — H(px, ¢", t)dt. (5.2)

Definition: A constraint is an exterior differential form set equal to
Zero.

w = f(zF dz*) = 0. (5.3)

Definition: The zero set of a differential form (which is homogeneous
in the differentials) defines a constraint called a Pfaffian equation.
(The differential form, especially when linear in the differentials, often
is referred to as the ”Pfaffian”).

w = w= f(a da") ZAk Ydz* = 0. Pfaf fian Equation

(5.4)

29



Classic examples of Pfaffian equations of constraint are given by the kinematic
and dynamic expressions subsumed as axioms of freshman mechanics:

de® — Vet =0, dV* — A%dt =0, dpy, — Fdt = 0. (5.5)

Definition: A constraint that does not depend upon differentials is
said to be a holonomic constraint. A constraint that involves the dif-
ferentials is said to be an anholonomic or a non-holonomic constraint.
If only one differential is involved, then the constraint is called a semi-
holonomic constraint.

Example 1 A Holonomic constraint: f(z*) —c = 22 + 2 +22 -1 = 0.
This constraint, as a function of coordinate (independent) variables, if applied
to a mechanical system, implies the motion must be confined to a sphere of unit
radius. Holonomic constraints define hypersurfaces which are oriented, global,
and often of more than one component. A Mobius band cannot be represented
by a holonomic constraint (submersion) on a three dimensional space (It can be
represented by a two dimensional immersion into a three dimensional space.)

Example 2 An Anholonomic constraint: g(x,y, z,dx,dy,dz) = 0 is a non-
holonomic or anholonomic constraint. Such an equation, if linear in the differ-
entials, is defined as a Pfaffian equation. This definition is a bit more general
than that definition used in many control theory texts. (see the definition for
semi-holonomic constraints given below where the differentials are replaced by
velocity functions). The constraint of rolling without slipping is a anholonomic
constraint.

A — dz =0 (5.6)

Often it is not appreciated that the kinematic definitions given above are indeed
anholonomic constraints on the domain.

Example 3 A Semi Holonomic constraint: g(z,y,z; V*, V¥ V?#) = 0. It is
usually assumed that V* V¥ V* are defined as differentials of x,y,z with respect
to time. Note that this assumption implies that the system admits the additional
anholonomic kinematic constraints mentioned above. Under the assumption that
df — Qdt = 0 and dx — Vdt = 0, the anholonomic constraint of rolling without
slipping becomes a semi-holonomic constraint.

A= V)dt =0> (A2 —V) =0. (5.7)
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Particle motion subsumes the kinematic constraints. Wave (or fluid motion)
does not. Particles and waves are equivalent on domains where the kinematic
equations are valid for the velocity field. These domains form a submanifold of the
space of coordinates and velocity functions. The space of ”waves” is much larger
than the space of "particles”. (It turns out that when the system is integrable, the
two developments are alias-alibi related, and then can be said to be equivalent. A
Hamiltonian formulation and a Lagrange formulation are strictly equivalent only
when they are integrable. A Lagrange formulation with anholonomic constraints
is equivalent to a Hamiltonian formulation if they are of the same class or Pfaff
dimension. (see below) As will be shown below, integrability implies that either
the differential 1-form can be represented in terms of at most two independent
functions of the original independent variables: w = pdiy, or w = diy. The
associated Pfaffian equations of constraint are the same for either representation.
However, the exterior derivative of the first possibility is not zero, where the
exterior derivative of the second possibility is zero.

Every differentiable holonomic constraint, ¢(z?) — ¢ = 0, leads (by differenti-
ation) to a non-holonomic Pfaffian equation:

dp(a’) = (0¢/0*)da* = Ag(a!)da* =0 (5.8)

k

but not conversely. Differential forms, w, not equal to zero define a mod-
ule of vector fields such that i(V)w = 1. Pfaffian equations (differential forms
constrained to zero) define a module of vector fields such that i(V)w =0

Definition: A differential 1-form, w = (3, Ax(27)dz") is said to
be integrable on domains where either >, Ax(z?)da* = d¢(z7) or
O(x?) (>, Ax(29)da*) = dp(a7).  The function O(z?) is defined as
an integrating factor.

A Pfaffian equation of constraint constructed from an integrable 1-form has
a unique direction field, in the sense that the coefficient functions, Ay(z7), are
proportional to the gradient of a single function, ¢(z7). The hypersurface, ¢(x’) =
0, defines the subspace (N-1 dimensional domain) of points which are isolated from
the larger (N dimensional) domain.
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Theorem: (Frobenius) An integrable differential 1- form w = Ag(27)dx®
satisfies the exterior differential equation (an equation of constraint!)

w dw = 0. (5.9)

Definition: The 3 -form w”dw is defined as the ”topological torsion”.
Integrable 1-forms have zero topological torsion.

The kinematic constraints mentioned above satisfy the Frobenius theorem.
As the differentials dx are presumed to be exact, their exterior derivatives vanish.
Hence the exterior derivative of the differential form w = dx — Vdt, whose zero
set represents the Pfaffian constraint, has only one component equal to the 2-
form, dw = dV* dt. If the Pfaffian is integrable, it must be true that dw = 0.
Hence this single 2-form must vanish, which implies that V* = V*(¢) a function
of t alone. That is, the kinematic assumption implies that the velocities admit
a representation in terms of a single parameter (usually called time) Consider
a more general case, where there exists a differentiable map of more than 1-
parameter (string or m-branes) from {t,y™} = z* = f*(¢,y™). Then

w = da® —{Of*(t,y™) /0ty dt = {0f*(t,y™)/0y’} dy’ (5.10)

This equation has the appearance of the kinematic formula, if the function {9 f* (¢, y™)/0t}
is identified with V*(¢,4™), and if the RHS is zero: > {0f*(t,y™)/0y’} dy’ = 0.

If the matrix [F(¢t,y™)] = {0f*(t,y™)/0y’} is of maximal rank (det [F] # 0) then

the only possibility is that the 3™ are fixed constants in the sense that dy™ = 0. If

the y™ are not constants (constant initial conditions) then the kinematic equations

will have fluctuations where the RHS is not zero.

Definition: A Pfaff sequence of a differential 1-form A consists of a
finite number n of ordered non-zero elements, constructed as {A, dA,
A~dA, ...}. The class, or Pfaff dimension, of the 1-form A at a point
{z*} is equal to n, the number of non-zero elements of the sequence.

Example: The differential form A = y*dy?+dy?® defined on the 4 dimensional
domain, {y!, 9% 3, y*} generates the Pfaff sequence,

{A =y'dy* + dy?,dA = dy' "dy?, A"dA = dy* “dy* dy®,dAdA = 0}.  (5.11)

32



The Pfaff dimension of the example is 3. The first zero element in the sequence
is the 4 form dA"dA. The class or Pfaff dimension of an integrable form is 2 or
less. The proof follows from the Frobenius theorem. The Pfaff dimension in effect
determines the minimum number of independent functions which are required to
describe the 1-form. Integrable 1-forms can be written in the format A = pdy
where ¢(2%) and 1 (2") are independent functions of the independent variables.

Definition: An Anholonomic Kinematic Fluctuation is defined as

de® —VFdt = Ax¥ £ 0. dVF — A dt = AVF £ 0. (5.12)

The Cartan-Hilbert invariant integral has an Action integrand, A, which is
based upon Anholonomic Kinematic Fluctuations. The ”"momenta” p;., play the
role of Lagrange multipliers.

Action = L(x,V,t)dt + peAx® = L(x, V, t)dt + pp(da® — V*dt) (5.13)
= prda® — (pVF — L)dt = ppda® — H(p, VF, 2% t)dt  (5.14)

Note that the ”Hamiltonian” function H (py, V*, 2%, t) depends, in general, on the
velocity functions, V¥, as well as the Lagrange multipliers, p;,, and the coordinates
and time, 2%, t. The Maximum Pfaff dimension of the Action is 2n+2 although
though there are what appear to be 3n+1 independent functions used in its con-
struction.

The exterior derivative of the Cartan Hilbert Action is given by the expression

dA = (py — OL/OVF)(AV*) dt + (dpy — OL/0z dt)" (Az") (5.15)

which demonstrates the influence of the fluctuations (in both velocity and po-
sition) on the 2-form, dA. It is apparent that the anholonomic fluctuations in
velocity, (AV*), are unimportant if the momenta are presumed to be canoni-
cal, (pr, — OL/OV*) = 0. Intuitively, fluctuations in Velocities are attributed to
temperature, where fluctuations in position are associated with pressure.

Definition: Topological torsion of a 1-form of Action, A,(on a 4 di-
mensional domain) is defined as the 3 form A"dA

A differential 1-form with non-zero topological torsion is of Pfaff dimension 3
or more. The 1-form can be expressed in terms of not less than 3 independent
functions. Therefore, according to the Frobenius theorem, thel-form A which
supports a non-zero Topological Torsion 3 form is not uniquely integrable.
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6. Subtleties

6.1. Exactness and Closure

A constrained differential 1-form, A, usually does not have a unique primitive
function, ¢, whose total differential generates a Pfaffian equation to within a
factor, ©. A necessary but not sufficient condition for the existence of the unique
global holonomic function is that the exterior derivative of A, or at least {©A},
must vanish. For © = 1, the covariant vector field of components, A, must have
zero "curl”. If A represents a vector potential, then such potentials produce no
field intensities, B. In a fluid, one would say that there is no vorticity. (The
integrating factor sometimes can be considered as a conformal factor)

When the exterior differential of a form vanishes, dw = 0, the form is said to
be closed, and the union of the form and its closure forms a differential ideal. If
the differential form is exact then there is a unique pre-image (in the example, a
function ¢) such that w = d¢. What is the difference between and exact form
and a closed form? The answer is that on a simply connected domain, there is
no difference. However, if the domain is not simply connected (think of holes in
a piece of paper) then there is a difference. For each hole there is a closed but
not exact component to the differential form. As an example consider the 1-form
which as it stands is neither exact nor closed.

o = (ydr — zdy) with do = 2dy"dx (6.1)
Multiply the form o by the closure factor 1/(+2? + y?).

v =o/(+2? £ 9?) = (ydv — xdy)/(£2* £ y*) with dy=0 (6.2)

The resulting 1-form is now closed but not exact. The domain of support must
exclude a small set where the denominator goes to zero. If the signs are the same,
the excluded set is a point at the origin. The original euclidean plane now has a
hole, and is no longer simply connected. The form + is called a harmonic form
(in the sense of deRham).

What is remarkable is that the integral of a closed and exact form on a cycle,
z1, is zero, but the integral of a closed but not exact form on a cycle is an integer
multiple of some constant.

/ dp=0 but / v =n2m (6.3)
z1 z1
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Gauge conditions as exact differential additions to a 1-form, are trivial. Gauge
conditions of the closed but not exact type are NOT trivial. They contain topo-
logical information (such as the hole count in a non-simply connected domain.
(Bohm-Aharanov, Joukowski airfoil, Meissner expulsion, Sommerfeld quantum
conditions, etc.)

These same concepts work for differential forms that are not linear in the
differentials. Hence the postulate of electromagnetism that F'—dA = 0 is a strong
topological anholonomic constraint, that says over the domain of support, the 2-
form of F' (E and B) is exact; that is, the 2-form does not have harmonic parts
(although the 1-form, A, can have harmonic parts which are the "flux quanta”).
The second postulate of Maxwell electrodynamics is the statement J — dG = 0.
The idea again is that the 3-form J is exact without harmonic parts. The 2-form
G can have harmonic parts, which serve as the charge quanta.

Now consider the topological torsion for the 1-form A which is defined as
the 3-form H = A"F = A"dA. If dH = 0, then the question arises: Does H
have harmonic parts? If the answer is yes then the harmonic parts serve as
”topological” torsion quanta. A necessary condition for existence of such quanta
is that the second Poincare invariant must be zero.

Similarly for the 3-form of topological spin S = A”G. The necessary condition
for existence of EM spin quanta is that the dS = 0, or in other words that the
First Poincare invariant must vanish. These points are exemplified at

http://www22.pair.com/csdc/car /carhomep.htm

For an interesting solution to the Maxwell postulates, further constrained by
the Lorentz vacuum conditions. See

http://www22.pair.com/csdc/maple/reed21.html

Here, the Torsion field is not closed, but the Spin field is closed. In fact the
Spin field in the example is the torsion field multiplied by an integrating factor.
One would be led to say torsion is source of spin. However, the solution is a
special case and the conclusion is not general, for the next example demonstrates
that you can have finite topological torsion with zero topological spin. See

http://www22.pair.com/csdc/maple/reed31.html

6.2. Equations of Motion

Given an arbitrary 1-form of Action, which is not closed, Cartan has shown that
the equations of motion generating a vector field V' are of a Hamiltonian form if
the Lie derivative of the Action, A, with respect to the vector field V' is exact.
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Theorem: Solutions V' to the equation LA = d(©) are Hamil-
tonian vector fields.

This theorem is equivalent to the statement that the closed integrals of the
harmonic components of A are constants of the motion. The number of holes does
not change. The 1-dimensional topological property expressed as the harmonic
1-form is an invariant of processes that are generated from a Hamiltonian function.

Writing out the theorem shows that it is a statement in the form of an anholo-
nomic differential constraint

i(V)dA — d(© — i(V)A) =0 (6.4)

Use the symbols W = i(V)d A defined as the work 1-form, and U = (V') A defined
as the ”internal energy”. The work 1-form W is closed and exact. Hamiltonian
systems are systems where the Pfaff dimension of the Work 1-form is 1.

6.3. Equations of motion for Non-Hamiltonian dynamics

It is apparent that to find equations of motion for non-Hamiltonian systems, the
fundamental anholonomic constraint

i(V)dA =d(© —i(V)A) (6.5)
must be modified to include harmonic parts, and non-closed parts.
W=iV)dA=d(O© —i(V)A)+~vy+Z (6.6)

AW =dZ #0 (6.7)

The last equation destroys the Helmholtz theorem, and the Poincare even di-
mensional integrals are no longer evolutionary invariants. An example of such a
non-Hamiltonian mechanics was suggested in 1974. See
http://www22.pair.com/csdc/pd2/pd2freb.htm
The formula is the anholonomic constraint

W —TA=i(V)dA—TA=0. (6.8)

It is know that this equation requires that the Pfaff dimension of the Action 1-form
be even (2n+2). Hence the Pfaff space supports the topological torsion 3-form.
Moreover, a unique solution vector V' does exist for this problem. In a space
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of 4 variables this vector is equivalent to the Torsion current ( with components
proportional to those of the 3-form of non-zero topological torsion, A"dA). Evo-
lution in the direction of the Torsion current is thermodynamically irreversible,
as the heat 1-form, (), does not satisfy the Frobenius integrability theorem, and
therefor does not admit an integrating factor.

6.4. Extremals and the Calculus of variations.

For integrals of the Action around closed loops, the values at the ”endpoints”
cancel out. Similar constraints are often placed on open integrals, forcing the
cancellation of contributions at boundary points. The solutions of the problem
are then given by vector fields that generate paths such that

v>/ / dA+/1dz( A:>/ V)dA =0 (6.9)

It is apparent that the if equation is satisfied (giving the equation for an extremal
as the "Lie derivative” of the integral must vanish) then the work 1-form must
vanish. The bottom line is that Extremals are associated with anholonomic
constraints, W = fydaz* — Pdt = 0. Extremal solutions say that there are vector
fields such that f,V* — P = 0. This equation is the freshman definition of power
as the product of force times velocity.

What is even more remarkable is that this equation, W = 0, has solutions only
in spaces (as defined by the Pfaff sequence for the Action 1-form) of odd Pfaff
dimension, 2n+1. (e.g. State Space).

Theorem: Unique extremals, defined as solutions to the equation
i(V)dA=0 for a given A, do not exist on domains of Pfaff dimension
2n+2

The theorem is easy to prove, for if the Pfaff space is a symplectic manifold
of even dimension then the 2-form dA has an anti-symmetric matrix representa-
tion with no zero eigenvalues. On the other hand if the Pfaff space is an odd
dimensional contact manifold, then the anti-symmetric matrix representation of
dA has a unique eigen vector with eigen value zero. Hence on 2n+1 Pfaff space,
the extremal exists and is unique.
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Figure 7.1:

7. DEFECTS

The primitive defect structures are of several types for any object that can be
represented by an exterior differential form, be it a 0 form (function) or a n form
(density) or a 1-form, or in general a p form. For the linear mapping the most
interesting situation is to find the singular points of the determinat of [M]. There
are several cases to consider.

1. The object itself is zero (as in this case where the determinant function is
Z€ero).

2. Both the object and its (exterior) differential vanish. This case is called the
characteristic set.

3. The object is not zero, but its exterior differential vanishes. This case is
often called the extremal case.

4. Neither the object nor its differential vanish. (The primitive non-singular
case)

For a simple graph, the following figure depicts some possible singularities.
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The constrained linear mapping, [F| = [M | estrictedtoq , can be used as a Basis
Frame over the reduced domain of definition, g. Note that in the real case there
are, in general, two distinct linear mappings; those with determinant positive and
those with determinant negative. Special cases of interest are those where [F]
contains the identity, where [F])* contains the identity, and where [F]* contains the
identity. If the determinant of the Basis Frame (which is similarity invariant) is a
polynomial function of degree n which can be factored, then each factor, of degree
(say) m, when set equal to zero implicitly defines a distinct topological component
. (The degree n is usually not the same as the dimension N of ¢.) The components
can behave in a sense as ”coherent structures or particles”. It is interesting to
note that if the factors of the determinant are complex curves (a function of two
complex numbers of degree m set equal to zero: f(z1(x),22(x)) = 0), Arnold says
that such a factor (component) has the properties of a real surface with (m-1)(m-
2)/2 handles and m holes. (I do not know where this theorem is proved.) Complex
curves can be arranged to satisfy anti-symmetry under ”particle” interchange.

8. CLOSURE 2-forms (a component of Cartan Torsion 2-
forms)
8.0.1. The curl format (apparently is favored by Kleinert.)

Consider the vector array of 1-forms:|o*) = [F¥(¢*)] o |dg”) and the vector of ”
closure” 2-forms:

|do*) = [dF;(q")] " |dg") = |{0F; /0q" — OFy /0q"}dg" dq") ~ (8.1)
8.0.2. The Object of Anholonomicity format ( apparently is favored

by Corum.)

Recall the Cartan-Darboux idea that if the 1-forms o® are complete, such that
the product, o' “0? "...c" # 0, then every 2-form do® can be expanded as: do* =
QF o™ o™ The vector of 7 closure” 2-forms becomes:

|do*y = |QF,,0™ ™). (8.2)
The three index symbols QF  form the components of the Object of Anholonomic-
ity.
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8.0.3. The Affine Torsion format (apparently is favored by Cartan.)

It the basis frame is complete, then there exists a right Cartan matrix of connection
1-forms [dFF(¢")] = [F¥(q")] o [C&dg"] such that the vector of ” closure” 2-forms
becomes:

|do™) = [FE(q")] o |Chydq” dg™) (8.3)
The three index symbols C[‘;b] are the coefficients of the Affine torsion object.

8.0.4. Summary

Hence there are three equivalent formulations for the vector of closure 2-forms:

d0¥) = |Qho™ 0™ = [{OF/0d — OFS (0" Yg i) = [FE]o|Chpdd“de?)
(8.4)

The Affine torsion 3 index symbols are not the same as the Object of Anholo-

nomicity, but all three formulations express the same vector of closure 2-forms

do*)

8.1. to be completed later

1. Discuss the torsion induced by A as compared to the torsion induced by W.

2. Discuss the affine torsion associated with an integrable but not exact coor-
dinate system and how the idea intertwines with conformal maps and dilatations
and chirality.

3. Compare Cartan Torsion 2-forms, affine torsion, topological torsion.

4. The retrodictive point of view would consider the pullback process, where
given a Frame matrix on ¢, and a vector array of p forms on the final state x, use
the pullback mechanisim to induce p forms on q. The matricies would be the
transpose of F and the adjoint of F, both of which exist for both det non zero
and det zero domains.
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