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Abstract

Characteristic solutions to Maxwell's equations, constrained to equiv-
alence classes by constitutive equations that have certain crystal symme-
tries, are represented by phase 1-forms, k, such that both 3-forms vanish:
k^F = 0 and k^G = 0: Simple examples are given which show the di®er-
ences between Faraday rotation where the 3-form of Topological Torsion is
not zero, A^F 6= 0, and Optical Activity where the 3-form of Topological
Spin is not zero, A^G 6= 0. The 1-form, k, whose line integral gener-
ates the phase function £; is not necessarily equal to the system 1-form of
Action per unit charge, A, whose components form the vector and scalar
potentials. The characteristic solutions demonstrate that linearly polar-
ized solutions are to be associated with topological spin, and that circularly
polarized solutions are to be associated topological torsion. This result is
counter to the popular view that "spin" is related to circular polarization.
When the 3-forms of A^F and A^G; are closed in a exterior di®erential
sense, then their integrals over closed domains form deformable invariants
with values whose ratios are rational (quantized). There are two types of
optical phase defects. The ¯rst type of defect is related to Faraday rotation,
circular polarization, and topological torsion, A^F 6= 0: The second type
of defect is related to Optical Activity, linear polarization, and topological
spin, A^G 6= 0: It would appear appropriate to describe the ¯rst type of
defect as Optical Vortices with defects of rotational shears. The second



type of phase defect is related to dislocations which involve translational
shears.

1. Introduction

1.0.1. Transverse Inbound and Outbound Waves

First consider a complex four vector potential solution to the vector wave equation
which propagates as a transverse wave in the §z direction with a phase µ =
kz¨!t: There are 4 possibilities: The E ¯eld rotates about the z axis in a Right
Handed manner as viewed by an observer looking towards the positive z direction,
or it rotates in a Left Handed manner. Outbound µ = kz ¡ !t and Inbound
µ = kz + !t waves are to be distinguished.

ORH =

¯̄
¯̄
¯
1
i

+
ei(kz¡!t) IRH =

¯̄
¯̄
¯
1
i

+
ei(kz+!t) ORH =

¯̄
¯̄
¯
1
¡i

+
ei(kz¡!t) I LH =

¯̄
¯̄
¯
1
¡i

+

(1.1)
For media with the symmetries of the Lorentz vacuum, the phase velocities v =
!=k are the same for all four modes. Addition or subtraction of ORH and OLH
produces a Linearly polarized state outbound. Addition or subtraction of IRH
and ILH produces a Linearly polarized state inbound.
Next, recall the experimental di®erences between Optical Activity and Faraday

Rotation:

1.0.2. Optical Activity

Consider an optically active °uid (sugar in water) in a cylindrical tube of length
L. For Optical Activity, there are also two distinct phase velocities, !=k1 and
!=k2: Outbound Right Handed (ORH) circularly polarized light propagates with
a phase speed equal to the phase speed of Inbound Left Handed (ILH) circularly
polarized light. Outbound Left Handed (OLH) polarized light propagates with
a phase velocity di®erent from the phase velocity of Outbound Right Handed
polarized light (ORH), but with the same speed as that of Inbound Right Handed
(IRH) polarized light. In summary,

Optical Activity Phase Velocity, VORH = VILH 6= VOLH = VIRH (1.2)
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The wave solutions for optical activity are of the format:
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The addition of jORHi+jOLHi produces a Linearly Polarized state propagat-
ing outbound, whose plane of polarization rotates. When the two inbound states
are added, jIRHi+ jILHi ; a linearly polarized state is achieved, and its plane of
polarization also rotates in the same direction as the outbound rotation. In other
words, the round trip (outbound+re°ection+inbound) motion does not cause the
plane of polarization to return to its initial value. This result de¯nes what is
meant by a reciprocal e®ect. If the plane of polarization of the original linearly
polarized light beam su®ers a rotation in the amount of µ degrees as it traverses
the Optically Active media, when re°ected in a mirror, the plane of polarization
su®ers an negative rotation of µ degrees, as the light beam traverses the media
in the reverse direction. The plane of polarization returns to its original state
after the round trip. (The sense of Right Handed and Left Handed polarization
is determined by an observer looking away from himself.)

1.0.3. Faraday Rotation

Consider a gas of He-Ne in a cylindrical tube of length L. Surround the tube
with a coil of wire that will produce a coaxial magnetic ¯eld that partially aligns
the spins of the gas atoms. For Faraday media, there are two distinct phase

velocities, !=k1 and !=k2. Outbound Right Handed (ORH) circularly polarized
light propagates with a phase speed equal to the phase speed of Inbound Right
Handed (IRH) circularly polarized light. Outbound Left Handed (OLH) polar-
ized light propagates with a phase velocity di®erent from the phase velocity of
Outbound Right Handed polarized light (ORH), but with the same speed as that
of Inbound Left Handed (ILH) polarized light. In summary,

Faraday E®ect Phase Velocity, VORH = VIRH 6= VOLH = VILH (1.5)

The wave solutions for the Faraday e®ect are of the format:
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The formulas represent circularly polarized waves. The addition of jRHOi +
jLHOi produces a Linearly Polarized state propagating outbound, whose plane
of polarization rotates. When the two inbound states are added, jRHIi+ jLHIi ;
a linearly polarized state is achieved, and its plane of polarization also rotates in
the same direction as the outbound rotation. In other words, the round trip
(outbound+re°ection+inbound) motion does not cause the plane of polarization
to return to its initial value. This result de¯nes what is meant by a non-reciprocal
e®ect. If the plane of polarization of the original linearly polarized light beam
su®ers a rotation in the amount of µ degrees as it traverses the Faraday media,
when re°ected in a mirror, the plane of polarization su®ers an additional rotation
of µ degrees, as the light beam traverses the media in the reverse direction. The
plane of polarization does not return to its original state, but instead ratchets by
2µ degrees upon completing the round trip. (The sense of Right Handed and Left
Handed polarization is determined by an observer looking away from himself.)

1.0.4. Polar and Axial vectors

Following Schouten [2], Post points out that Faraday Rotation is "generated" by
a "W vector", while Optical Activity is generated by a "vector". Under certain
constraints, the W vector plays the role of an "Axial" vector, while the "vector"
becomes a "polar" vector. Upon re°ection, a polar vector changes its sense
(determined by the arrow head). Point your ¯nger into a mirror. The image
points back at you. The sense of the image is opposite to the sense of the object.
For polar vectors with a line of action parallel to the mirror surface, the opposite
result is obtained. The sense of the image is the same as the sense of the object.
Note the di®erences of orthogonal and parallel re°ections.
A re°ected axial vector does not change its sense if the line of action is or-

thogonal to the mirror. Curl you ¯ngers and align your thumb in a direction
orthogonal to the mirror. It does not matter whether the thumb points into or
away from the mirror. The sense of the "axial vector" is determined by the curl
of the ¯ngers. The sense of the re°ected image is the same as the sense of the
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object. The opposite e®ect occurs when the line of action of the axial vector is
parallel to the re°ection surface. The sense, as determined by the curl of the
¯ngers, is opposite to that of the re°ected image.
The magnetic ¯eld B and the angular velocity ­ are examples of spatial "W

vectors". On the other hand, the D ¯eld is a spatial "polar vector" in the sense
used by Post. The anti-symmetric spatial components of the covariant ¯eld
intensity tensor 2-form, F = dA; are formed by the spatial "W vector" ¯eld B:
The anti-symmetric spatial components of the tensor density, N-2 form, G; where
J = dG; are formed by the spatial "polar vector" ¯eld D: These facts yield a clue
for distinguishing Faraday Rotation and Optical Activity on topological grounds.
As will be shown below, Faraday Rotation is to be associated with the concept of
Topological Torsion, and Optical Activity is to be associated with the concept of
Topological Spin.

1.1. Topological Formulation of Maxwell's Equations.

1.1.1. Exterior Di®erential Systems

It is known that Maxwell's system of PDE's (without constitutive constraints)
can be expressed as an exterior di®erential system [3] on a variety of independent
variables. Exterior di®erential systems impose topological constraints on a dif-
ferential variety. For the Maxwell electromagnetic system on a domain fx,y,z,tg
the two topological constraints have been called the Postulate of Potentials, and
the Postulate of Conserved Currents. [4]. These two topological constraints lead
to the system of Partial Di®erential Equations, known as Maxwell's equations,
for any coordinate system so constrained. No metric, no connection, nor other
restraints of a geometrical nature are required on the 4 dimensional di®erential
variety of independent variables, typically written as fx; y; z; tg:

Postulate of Potentials (an exact 2-form) F ¡ dA = 0 (1.8)

Postulate of Conserved Currents (an exact 3-form) J ¡ dG = 0 (1.9)

The method of exterior di®erential systems insures that the description is
not only di®eomorphically invariant in form (natural covariance of form with re-
spect to all invertible smooth coordinate transformations), but also the description
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is functionally well de¯ned with respect to maps which are C2 continuous, but
not necessarily invertible. This statement implies that those exterior di®erential
forms which are de¯ned on a ¯nal state variety can be "pulled back" in a func-
tionally well de¯ned manner to an initial state variety, even though the map from
initial to ¯nal state of coordinate variables is NOT a di®eomorphic coordinate
transformation. The inverse mapping need not exist. This result is truly a
remarkable property of Maxwell electrodynamics, for it permits the analysis of
certain irreversible electrodynamic processes without the use of statistics. The
"push forward" process is not functionally well de¯ned when the inverse map does
not exist, a fact that demonstrates that topological evolution induces an "arrow
of time" [5].

1.1.2. Constitutive Constraints

In practical applications, it is possible to impose constraints on the Maxwell sys-
tem in the form of constitutive relations between the thermodynamically conju-
gate variables of ¯eld intensity (E;B) and ¯eld excitations (D;H). Post has
demonstrated that the constitutive tensor (density) has many of the properties of
the Riemann tensor [6]. These constraints are NOT necessarily equivalent to
the Riemann tensor generated by a Riemannian metric imposed upon the variety
fx; y; z; tg: In many circumstances the equivalence classes of such constitutive
constraints can be put into correspondence with the geometrical symmetries of
the 32 crystal classes that are used to discriminate between the many di®erent
observed physical structures. As mentioned above, a complex 6x6 constitutive
constraint has been used by Post to delineate between Optical Activity, Faraday
Phenomena, Birefringence and Fresnel-Fizeau motion induced e®ects in electro-
magnetic signal propagation. The complex constitutive tensor cannot be deduced
from a real metric tensor. However it would appear that it has a constructive
de¯nition in terms of a non-symmetric connection.
Indeed, the work of Post using a complex constitutive tensor has been ex-

tended [7] to demonstrate the existence of irreducible "quaternion" solutions to
the Maxwell system. Quaternion waves cannot be represented by complex func-
tions, which are the usual choice for describing electromagnetic signals. Complex
wave solutions generate a 4th order characteristic polynomial for the phase speed
which is doubly degenerate. The wave speeds have only two distinct magnitudes
depending upon direction and polarization. For cases where a center of symmetry
is not available, and yet the medium supports both Optical Activity and Faraday
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rotation, the wave solutions can NOT be expressed as complex functions, but can
be written as quaternions. The resulting 4th order characteristic polynomial for
the wave speeds is not degenerate, and has four distinct root magnitudes. The
results indicate that the phase propagation speed of light is di®erent for each di-
rection of propagation and for each mode of polarization. The theory has been
used to explain the experimental results measured in dual polarized ring laser
apparatus.
In contrast, in a medium with the Lorentz symmetries, the characteristic poly-

nomial is 4-fold degenerate; e.g., all polarizations and all directions have the same
propagation speed. The result leads to the ubiquitous statement that the speed
of light is the same for all observers, which is incorrect for media that do not have
the Lorentz symmetries. For Birefringent, or Optically Active, or Faraday media,
the characteristic polynomial for phase velocity is doubly degenerate, implying a
relationship exists between for the 4 modes of propagation. There exist only two
distinct phase velocity magnitudes. The correlation speeds for direction and
polarization pairs have been presented above. Faraday rotation and Optical Ac-
tivity have di®erent propagation direction-polarization handedness correlations.
The Faraday rotation is not reciprocal; the rotation induced by Optical Activity
is reciprocal.

1.2. TO be completed

1.3. Optical Activity is a D e®ect (translational accelerations)

1.4. Faraday e®ect is a B e®ect (rotational accelerations and vorticity)
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