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Abstract

It is suggested that the quantization of flux, charge, and angular
momentum be interpreted as a set of independent natural concepts which
physically exhibit certain topological properties of the fields on a space-time
manifold. These quantum, or topological, properties may be described in
terms of one-, two-, and three-dimensional periods, respectively. In terms of
this viewpoint, topological constraints between the one-, two-, and three-
dimensional periods can be put into correspondence with various gauge
theories. If a dynamical system is to be nondissipative, in the sense that
its one-, two-, and three-dimensional-topological periods are reversible in-
variants of the motion, then it is proved herein that the dynamical field V
must be a Hamiltonian vector field, the field currents must be proportional
to V, and the Lagrangian difference between the elastic and.inertial energy
density must be twice the interaction energy density, respectively.

1. INTRODUCTION

It is the purpose of this article to display certain topological properties of physical
theories and to demonstrate that the notions of quantized flux, charge, and spin
can be interpreted in terms of independent topological ideas of fields built on
manifolds. The fact that these quantities are in relation to the integers then follows
from Brouwer’s theorem about closed manifolds. Brouwer’s theorem effectively
states that values of the closed integrals on a closed oriented manifold are integer
multiples of some smallest value (see Appendix A).



A manifold is a nice mathematical object in that the difficulties of singularities,
in a sense, have been removed. The regions of difficulty, which lead to phrases like
”fields which are zero almost everywhere” can be eliminated, but at the expense of
changing the topology of the domain over which the fields are defined. Topology of
a base space can be defined in terms of a system of constrained differential forms.
- (See Appendix B). Each form can be split into two parts, one of which is closed
in the-exterior derivative sense. This closed piece can further be decomposed into
a part which is exact and integrable and another part which is not. The closed
integral of an exact form is zero, but the closed integral of a closed, but not
exact, form is not necessarily zero on a non-Euclidean manifold (see Appendix
C). (In fluids, this effect implies the existence of circulation without vorticity. )
The total closed portion of a form is defined to be the gauge of the form. This
definition widens the usual concept of gauge to include more than just an exact
contribution. The number of distinct closed integrals over the gauge parts of a
form (the periods) depends upon the manifold topology. In this theory it appears
that the quantization of flux concerns the periods of a fundarnental 1-form, A;
the quantization of charge concerns the periods of a fundamental 2-form density,
‘H; the quantization of spin concerns the periods of a 3-form density, S. The
distinction between forms and form densities (as well as pair and impair forms)
becomes evident with respect to the discrete symmetry transformations such as
parib and time reversal.

Each quantization concept is independent, and this observation is a point of
departure from the Dirac and Schwinger magnetic monopole theories, which, in
a sense, are conditional theories, in that they claim that charge is quantized if
flux, or angular momentum, is quantized. Any such relationship between the
one- two-, and three-dimensional periods must be considered to be a topological
constraint, and it is demonstrated below that-these constraints form the basis of
various gauge theories. The manifold approach indicates that flux and charge can
be quantized even though divB = 0 everywhere on the manifold. (In a sense,
these ideas lead to the geometrodynamic-like concept of a mono-pole without a
monopole).

Of additional interest Is the clarification of the fact that physical content is
to be associated with potentials, counter to the usual historical claim that the
potentials have no physical significance. Physical significance is to be associated
not with an individual potential, but with the topological equivalence class to
which it belongs. The quantum numbers of flux, charge, and spin relate to the
one-, two-, and three-dimensional equivalence classes of periods, e. g., of integrals



of closed forms over closed chains. In Euclidean space (or better, Euclidean topol-
ogy) there exist no nontrivial periods and therefore, from the topological point
of view, no quantization. The hypothesis of a Euclidean base space for classical
field theories therefore precludes any notion of topological quantization. Classical
theories contain within them the germs of quantization which become nontrivially
evident when the domains of definition are not based on Euclidean topology. In
that which follows, the topology of fields built on a four-dimensional spacetime
will be studied in terms of a set of fundamental differential forms. For each phys-
ical system it is assumed that there exists such a set of fundamental forms, and
the ensuing analysis then is applicable to all physical systems which are usually
described in terms of a field theory. The presentation of the abskact theory will
be given first in the more familiar language of electrodynamics; this presenta-
tion then will be followed by a hydrodynamic application which demonstrates the
relationship between topological constraints and the NavierStokes equations.

2. THE FUNDAMENTAL FORMS

For a rapid expose of the theory, consider the formulation of electromagnetism
as given by Toupin [1] in which it is assumed that a four-dimensional spacetime
supports a 2-form F of electric intensity and an (N-1 =3)-form density, J, of
electric current. The arguments that J is conserved imply that J is closed. The
idea of charge neutrality implies that J is exact, for then integrals of J over
compact, oriented three-dimensional manifolds must vanish. It follows that, from
de Rham’s theorem, there exists an (N- 2)-form potential density, H, such that
dH = Jwhich yields the second pair of Maxwell’s equation involving D, H, J,
and p. However, the potential H consists of a part which is not closed and a
gauge part which is closed. That is,

H=Hy+H (2.1)

where dHy = J and dH = 0. The gauge of H is a closed form density and, if
integrated over a closed 2-chain, yields a period of H. The choice of gauge has
physical significance, for the closed integrals of H that is, the periods of H are
to be identified with the electric charge. Classically, charge is the topological,
global, quantity of electric flux. The concept that the periods of H define charge
is merely the abstraction of Gauss’ law,
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Now the remarkable result is that all periods (integrals on closed manifolds) are
integer multiples of some smallest value, by Brouwer’s degree of a map theorem.[2]
Hence, the idea that charge Q is quantized by the integers is a natural result of the
notion that charge is a topological property of a two-dimensional gauge period. No
magnetic monopole assumption is needed to provide a reason for the quantization
of charge once the topological viewpoint is admitted. The nonintegrable parts of
the gauge have physical content, counter to the usual claim that potentials have
no physical meaning.[3]

A similar argument goes for F, the electric intensity 2-form; the potential A,
such that F = dA, can be split into a nonclosed part and a gauge part which is
closed, but which need not be exact:

A=A, + A, dA = 0. (2.3)

As F is exact, dF = 0 by the Poincare lemma; which yields the first Maxwell
pair of equations involving B and E without any ”"monopole” source. The one-
dimen-sional periods of A define the topological property physically called the
flux quantum,

o= A (2.4)
1 cycle
Again the Brouwer degree of a map theorem for closed manifolds asserts that
these periods are quantized in terms of some smallest value. Again the choice
of gauge has physical significance, as do the potentials themselves, for it is the
topological properties of the gauge that yield the flux quantum. Note that A is
a pair form, and not a form density.

The quantization of the flux (4) is related to the Bohr Sommerfeld idea which
quantized the periodic action-angle variables. Note that here the 1-form, A, is
not a single action component, but is a Pfaffian form summed over all spacetime
variables. Depending on the topology, many such distinct Pfaffian forms exist,
each yielding a different topological period. This author was made aware of the
possibilities that charge and flux quanta were related to two-dimensional and one-
dimensional periods by E. J. Post.[4] The Toupin specification of electromagnetic
theory in terms of an exact 2-form F, and an exact 3-form density, J, was a
culmination of ideas put together by Cartan, Weyl, Bateman, Murnaghan, Van
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Dantzig and Post, but Toupin’s treatment does not consider the periods of the
potentials. The relationship of quantization of the periods to an interpretation of
Brouwer’s theorem appears herein for the first time.

Now on a spacetime of four dimensions, there also should exist a fundamental
exact 4-form or 4-form density, which should carry the properties of the three-
dimensional periods in space-time. The gauge parts of the associated 3-form
should be quantized. Toupin [5] introduced a concept of a 4-form density of ”ac-
tion” but did not exploit the topological features of the idea. The present author
found an exact representation for such a 4-form density in terms of the previously
described fields, and interpreted the relationship between the divergence of the
three potential and the 4-form density as an intrinsic transport theorem.[6] The
exact 4-form density is closely related to the Lagrange density of classical field
theory, save for a factor of two in the field energy densities. The explicit formula
for the action is

L=FH-AJ=BoH-DoE—AocJ+ pp) (2.5)

where () is the volume element dx"dy dz"dt. This 4-form density is exact with
a potential, S,such that £ = d(S) = d(A"H), and leads to the three-dimensional
period of action,

Sp:///gz///(A“H):///(z’(AxH+ng,AoD)Q (2.6)
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It is the periods of the gauge part of S that are of interest herein, for by
Brouwer’s theorem they are quantized. Note that formally the units of S are joule-
sec, while the units Q are Coulombs and the units of ® are joule-sec/Coulombs
for an electromagnetic representation. The electromagnetic representation of the
topological theory thereby demonstrates that the periods of a 1-form A can be
put into correspondence with flux quanta, the periods of a 2-form density H can
be put into correspondence with charge quanta, and the periods of the 3-form
density S can be put into correspondence with spin or action quanta. It is to be
emphasized that by use of forms and form densities the previous equations, and
those which follow, have an intrinsic significance. For any coordinate sequence
abstractly labeled as (1, 2, 3, 4) and with corresponding 2-form [(N-2)-form den-
sity| coefficients labeled as E, B (or D, H), the intrinsic equations are invariant in
form. For example, in any coordinate system, if B is the sequence of coefficients



associated with the (2,3), (3,1), and (1,2) coordinate pairs in the 2-form F, and
if H is the sequence of coefficients as-sociated with the (1,4), (2,4), and (3,4) co-
ordinate pairs of the (N- 2)-form density H, then the magnetic energy density is
given exactly by the engineering format, 2B o H, even though the frame is not
Cartesian. The results to be obtained, therefore, are independent of the choice of
a reference coordinate frame when the engineering format is used.

3. INVARIANCE OF PERIODS

3.1. General theory

A vector field representing a transformation of the space may or may not preserve
the system topology. If the vector field is a homeomorphism, then all topological
properties are invariants of the transformation. In the context of this paper the
pertinent topological properties are determined by the periods of one-, two-, and
three-dimensions, and it is of some interest to determine the constraints on dy-
namical transformations which are necessary if these periods are to be individually
invariant. Physically, the question may be stated as: For what transformations do
the quanta of flux, charge, and spin remain invariant? Cartan has demonstrated
that an extremal vector field which reversibly leaves the one-dimensional periods
invariant is represented by Hamilton’s equations of motion. Cartan’s concept has
been formulatedt in terms of a Lie derivative by the statement that,

L(Wv)q> = L(WV) %.A =0. all Y (3.1)

that is, it is necessary and sufficient that a vector field which leaves invariant
the one-dimensional closed integral, § A, independent of parametrization -y, be
a Hamiltonian vector field. This work has been extended to nonhomeomorphic
vector fields which indicate that the lack of topological invariance of the l-form A
is related to dissipation, for if A is mechanically represented in terms of the system
momentum, then a nonzero value for (7) implies a nonzero value for the cyclic
work, § f.dg*. The result (7) implies that Hamiltonian systems are necessarily
adiabatic. In an electromagnetic sense, the result (7) implies that such systems
conserve flux quanta.

It is also of some interest to-study the invariance of the two-dimensional peri-
ods. For a vector field vV, invariance of the charge quanta implies that
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Expanding the last integral in electromagnetic format yields

// (I = pV) o dS + // (I x V)dt"dl =0 (3.3)

2 cycle 2 cycle

. If this result is to be true for all periods for all v, then the integrand must vanish
(by deRham’s theorem). Hence it is necessary for invariance of the two-dimension
periods that the current density be proportional to the velocity field:

J =pV. (3.4)

This requirement is generally assumed in most magneto-hydrodynamic treat-
ments, a priori, which then implies that a flow which starts without two-dimensional
periods, remains without two-dimensional periods. Conversely, when J #pV.,
then two-dimensional periods can be created or destroyed. This concept is re-
lated to another form of dissipation, intrinsically different from the dissipation
associated with the one-dimensional periods (in the electromagnetic problem it
takes work to separate charge). In a hydrodynamic context it is not apparent that
all solutions to the Navier Stokes equations yield flow vector fields for which the
two-dimensional periods remain invariant. The seat of hydrodynamic instabilities
will be related to the creation of one-, two-, and three-dimensional periods.

Similarly, the invariance of the three-dimensional periods may be examined by
means of the action of the Lie derivative on Sp, and exhibited in electromagnetic
format as

LowviSp = L(W)///3 ’A“H:///S ]d(AAH):///S FH - A B
cycle cycle cycle

///WJ(B oH-DoE)— (AoJ — po)li(yV)92.

If all three-dimensional periods of spin are to be flow invariants independent
of v, then the integrand vanishes, putting a constraint on the magnetic and elec-
tric energy density difference. For a system without interactions, then, the field
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Lagrangian must vanish for invariance of the spin quanta. Electromagnetically
such a result is approximated by traveling waves for which E and B are in phase.
Note that for standing waves the invariance result is only valid in a time aver-
age sense. (This notion is reminiscent of Wheeler’s geometrodynamic froth. )
The invariance of the flux quanta (one-dimensional) periods and charge quanta
(two-dimensional) periods does not (necessarily) guarantee the invariance of the
angular momentum quanta (three-dimensional) periods .

Summing up the topological invariance properties in terms of three fundamen-
tal theorems, it is to be noted that:

1. Flux quanta reversible invariance requires Hamilton’s equations of motion.

2. Charge quanta reversible invariance requires V.= J/p

3. (Spin) Angular momentum reversible quanta invariance requires

(BoH—-—DoE)—(AoJ—pg)]=0.

3.2. Parametrization and reversibility

The above discussion describes topological invariance theorems with respect to
vector fields {V,1} parametrized by ~, where «y is an arbitrary function on the
domain. In a space of N dimensions, vector fields have N components, any one
of which may be selected as a parametrization function, leaving, by division, a
local flow field v{V,1}. For = completely arbitrary, it is to be noticed that the
inversion V.= —V (y = 1 = v = —1)changes the direction of the flow field
(relative to the parameter). Invariance w. r. t. all 7 implies that the object is
not only invariant with respect to propagation down the flow lines, but also the
invariance concept is independent of the propagation direction. Not all systems
admit such a reversibility invariance.

For example, suppose = is chosen to satisfy the continuity requirement that
the volume element be invariant, then

L2 =0, (3.6)

or

[dy/dt + ~ div VI =[07/0t + V o grady + v div V]Q2 = 0. (3.7)

Then, if 7 is continuous, solutions to (13) indicate that +y is one sign, either positive
or negative: Even though div V may vary between positive and negative values,
v never goes through zero. Note that (13) implies a dual interpretation for . In



addition to its interpretation as a parametrization function for the vector field V,
it may be interpreted also as a measure function for €.

For a particular choice of -, the invariance of one-, two-, and-three-dimensional
periods implies

Lov) p  A=0, =i(V)iA=dP/y (3.8)
cycle
Low) / / H=0 = i(V)H = do/ (3.9)
2 cycle
Ly ///S =0, =1i(V)dS=da/y, fizred 7. (3.10)
3cycle

The forms P, #,and o are respectively zero-, one-, and two-dimensional fields
which are completely arbitrary at this level of analysis. By examing the require-
ment for invariance of the one-dimensional periods, the function P can be identi-
fied as the pressure addition to Hamiltonian field. For A = p,dg" — H(p, ¢,t)dt on
a state space of 2n + 1 dimensions, the modified Hamiltonian equations of motion
become, for the vector field v[v, f, 1],

v = +0H/dp, + (1/7)(0P/0p,). (3.11)

f = —0H/d¢" — (1/7)(dP/g"). (3.12)

Such a field leaves the one-dimensional periods, fl eycle A, invariant for a given
choice of parametrization, . Similar arguments may be constructed for the other
pressurelike terms, 6 and a.

The set of continuously parametrized vector fields which leave the periods
invariant fall into two classes, those with positive parametrizations and those with
negative parametrizations. The intersections of these two sets are those vector
fields that satisfy the Hamilton equations of motions and yield absolute relative
invariants which are independent of propagation direction. The compliment of
the intersection forms two disjoint sets which produce relative integral invariants
that are sensitive to the direction of propagation. It appears that a positive
choice of v (mechanically interpreted in its measure sense as a mass density)
selects one of these disjoint sets such that in dissipative (irreversible) systems
at least one of the periods is not preserved as an invariant. The concept of



an entropy increase may be put into correspondence with this lack of period
invariance in the forward (predictive) direction. It is interesting to observe that a
statistical concept like pressure is related to the lack of reversibility of a topological
period. The relationship between specific choices of the parametrization function
and the concept of orientation is described in Appendix D.

The topological ideas presented above do not yield information about the
magnitude of the quanta (why is Q=1.6 x107* Coulombs, why is h = 6.67 x
10-3*joule — sec?), but they do indicate that the magnitudes of the ®, Q, and S
quanta can be interrelated, especially for those cases where separability permits,

[l ffn-f affr

3cycle 3cycle cycle

Then the flux quantum, charge quantum, and angular momentum quantum are
not independent; the separability concept in effect imposes a topological constraint
on the one-, two-, and three-dimensional gauges, in the sense of a gauge theory.
Indeed, the Lagrange action potential S, built from the product S = A" H, is yet
another gauge theory [6] relating periods of A, H, and S. Several classical gauge
theories which impose certain constraints on the cohomology of spacetime are
described in the next section. These are gauge theories of the second kind and
are associated with restricted nonhomogeneous contact transformations. Gauge
theories of the first kind based upon inhomogeneous contact transformations will
be ignored in this article, except for the fact that they may be generalized to
include the effects of dissipation. In certain cases gauge theories of the first kind
are equivalent to gauge theories of the second kind. For example, it may be
true that Aexp(if) = A — dip. However, such an equivalence requires that A be
integrable; i.e., A"dA = 0, which is certainly not the case for the most general
physical system. The concept of integrability will be shown below to be related
to the notion of when the Lagrange and Hamiltonian formalisms are equivalent.

4. GAUGE THEORIES

4.1. Classical development

The recognition that the vector spaces of the fundamental forms, For H, and
A, H,or Sare of the same dimensions leads to the notion that a map between
the spaces of similar dimensionality effectively makes a statement about a choice
of one-, two-, and three-dimensional gauges, and therefore influences a choice of
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quantization. It is the purpose of this section to demonstrate the topological basis
for several historical gauge theories. One of the earliest gauge theories was due
to Maxwell who utilized the idea of a constitutive map,

x: F—H (4.1)

to describe the electromagnetic properties of matter. In view of the fact that
F' is exact, but H need not be exact, the Maxwell constitutive map may be
considered to be a gauge theory in that it specifies something about the two-
dimensional periods of H, or the quantized charge. Historically this observation
was not made.

Somewhat later Lorentz utilized the idea that charge-current meant particles
in motion, and so developed a theory that maps the current, J, into the l-form A,

L:J—A (4.2)

The Lorentz map effectively makes statements about the gauge or one-dimensional
periods of A. To update the theory, consider a metrically based constitutive map,
X/Yy = /g(g"*g"" — g**¢"’), an idea which is an extension of that introduced
by some of the early proponents of the use of tensor analysis in physics. The
factor Yy represents the functional admittance of spacetime. Its use permits the
constitutive map, X, to be equated with the Hodge dualization operator, *, such
thatt H = Yy = F. This idea gives Lorentz’s classic wave-equation-with-source for
the currents and potentials, when the generalized differential form identity,

PA = (db6 + 6d)A = +J) Yy + dSA — xH dY, ] Yy, (4.3)

is constrained by the Lorentz gauge condition, now explicitly stated as a topolog-
ical requirement,

§A =0, (4.4)

and the additional requirement that the admittance, Y, be constant over the do-
main. Note that the Lorentz theory makes a statement about the one-dimensional
periods and the flux quanta. On a compact orientable manifold (23) requires by
the HodgedeRham decom-position theorem that A contain no exact part. In hy-
drodynamics, the Lorentz gauge is related to the isochoric condition, commonly
called (incorrectly) incompressibility .
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4.2. Closed, but nonexact gauges

Most of the early gauge theories were not concerned with quantization, and ig-
nored the latent possibilities associated with the periods of the gauge. Such a
state-ment is not applicable to the theory of London [8] which effectively analyzed
the theory of super conductivity and the flux quantum in terms of one-dimensional
periods and introduced the gauge condition,

f:J—A
where explicitly

f:A=—x(J/p). (4.5)

For p a constant, this gauge implies that

F=dA=—d(xJ/p), (4.6)

or for p equal to the London parameter, A,

B = curl (\J) (4.7)

and

E = +0(\J)/dt. (4.8)

A related and more modern development states that A and (xJ/p) are coho-
mologous; i. e ., let

f:A=—x(J/p)+db. (4.9)

As J is exact; it satisfies the equation of continuity,

dJ =0, (4.10)

with its usual local representation

Op/ot + divJ = 0. (4.11)

By defining ¥ = ,/pexp(if/h), the gauge condition and the equation of continuity
imply a complex root, [9]
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ihOW /0t = (1/2m)(—ihV — qA)*T 4 qp¥ = 0, (4.12)

which is Schrodinger’s equation for a charged particle moving in an electromag-
netic field given by the potential (A, ®). Remarkably, the phase function 6 of
quantum theory appears to be related to the concept of the co-homology function
between the 1-form A and the Hodge dual, *(J/p).

4.3. Specific parametrizations and gauge theories

A remarkable feature of the invariance of two-dimensional periods is noted if a
specific choice of parametrization of V is made to insure continuity. That is, choose
a mass density v such that vV has zero divergence on the space. Then, with
respect to this parametrized curve, the two-dimensional periods will be invariant

if
vi(V)J = d(Z), (4.13)

where Z is some (N- 3) form density. In Cartesian coordinates

(I = pV) =curl Z (4.14)

and

Y(JI x V) = grad¢ + 0Z /0t (4.15)

By letting Z — 0,0 — 0, the London gauge is retrieved, and by letting
curl Z =grad ¢, the Feynman gauge is obtained. It may be concluded that these
two gauge theories (and hence the Schrodinger quantum theory) are gauge the-
ories that leave invariant the two-dimensional periods of charge quanta, but not
necessarily in a reversible manner.

If in four dimensions the gauge field Z is taken to be proportional to the 1-form

—A(A), then

J=pV —(\/7)(0A /Ot + grad ¢) (4.16)
which is both of the Ohmic format

J =pV +0E, (4.17)

and related to the requirement that {V,1} be a characteristic vector field.
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Hence it is proved that Ohm’s law for the current preserves two-dimension
periods, but not reversibly. Ohmic dissipation does not involve topological vari-
ations of two-dimensional periods (but it is a dissipative mechanism that does
involve topological variation of one- and three-dimensional periods). It is to be
noted that only in four dimensions it is possible to use Z = —\A, for only in four
dimensions does Z, an (N- 3)-form density, have the vector space qualities (the
same dimension) of a 1-form, A.

It is of physical interest to ask when two-dimensional periods are not topo-
logical invariants. In electromagnetism it is observed that friction (somehow)
produces two-dimensional periods, and bombardment of matter with v rays of
more than 1. 02 MeV produces two-dimensional periods. In hydrodynamics, the
notion of two-dimensional periods has yet to be experimentally identified, but it is
suspected that they are related to (non-steady) dissipative mechanisms. The dissi-
pative effects of radiation are associated with change of three-dimensional periods
(spin). The dissipative effects of non-adiabatic processes are related to the change
of one-dimensional periods (flux). These dissipative mechanisms intrinsically are
distinct from those changes of two-dimensional periods - changes which must rep-
resent other dissipative mechanisms (See Appendix E). The relationship between
forms, topology, and thermodynamics will appear elsewhere. Herein the pertinent
theme to be remembered is that dissipation implies noninvariant periods, which
in turn implies changing topology.

4.4. A HYDRODYNAMIC APPLICATION

The initial development of this theory of periods was in the language of electro-
magnetism for which it is well known that the desired 1-form is action per unit
eharge. It would seem natural for hydrodynamic systems to develop the theory
in terms of a fluid action per unit mass. Hence from the l-form,

A = udzx + vdy + wdz — hdt, (4.18)

it is possible to develop over spacetime the fundamental forms F, H, J, A" H, etc.,
and study the topological properties of such systems. Indeed, for a spatially Eu-
clidean metric it is possible to demonstrate [10] how the Navier-Stokes equations
take the form of a constraint relation:

L(7V)A = —dP/p + védA + db. (4.19)
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By action of the exterior derivative on (38), the basic Helmholtz equation for
vorticity becomes

Loy F = +dp"dP/p® + vdSF, (4.20)

and demonstrates the effect of viscosity and equation of state on the generation
of vorticity

. Every I-form may be adjusted by a gauge transformation (of the second kind)
to its cohomological equivalent, A — df. Furthermore, the dual of (A — df) is an
(N-1)-form which locally satisfies the conditions of integrability, hence admits an
integrating factor 8 such that the ”current, ”

Im = B(x(A — dF)), (4.21)

is closed. The following questions arise: Is there a global integrating factor? Can
the integrability of A be accomplished by the gauge transformation, df, alone
implying that 3 is a constant, or d3 is orthogonal to (A — df)? If J,, is closed,
is it exact? Is J,, a topological constraint such that, J,, = J = d x dA?

As a first example, consider the two-dimensional fluid (w = 0) on spacetime en-
dowed with a metric [1,1,1, —(c/n)?]. For simplicity, define Yon/c = € = (n?/uc?).
Assume that the specific Hamiltonian h is given by the formula

h = [c* — vd(In()/0t], (4.22)

where the {z,y,z} components oof the vorticity are given by the usual nota-
tion, curl V.= {&,n,(}. Now make the gauge transformation, based on the phase
function,

0 =ving, (4.23)

and use the z component of vorticity, (, as the integrating factor 3 to yield

Im = ({*[(u — 08/0x)dx + (v — 00/0y)dy|}. (4.24)

By assuming that n and c are constants, the closure of J,,, dJ,, = 0,yields

OC /Ot +udC /O + vA( /Oy + ((Ou/dx + Ov/Dy) = v(0°C/0z* + 0*C/Dy?), (4.25)

which is precisely the Navier-Stokes-Helmholtz equation for the vorticity of a two-
dimensional, compressible, viscous (barotropic) fluid, and demonstrates how the
topologically based gauge theory is applicable to hydrodynamics.
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It is to be noted that even for the three-dimensional case, if the phase function
6 is chosen to be such that

(n/c)*(h + 00/t) =1, (4.26)

then the closure of J,, is always an equation of continuity, such that the volume
measure ) = fdx"dy dz"dt is an invariant of the flow field given by

V =[u—09060/0x,v—00/0y,w—00/0z,1]. (4.27)

The density [ is defined as By/9 = B(ic/n). If the gauge is chosen such that V
is isochoric, then

V30 = divV (4.28)

but such a choice does not necessarily lead to the concept of incompressibility, for
the closure of J,, and the constraint given by (45) yield the result that

dB/dt = 0{1 — (n/c)*(h + 06/0t)}(Bc/n) /L. (4.29)

The density ”3” is incompressible only if d3/dt vanishes, which is not neces-
sarily true, even though the fluid is isochoric.

Again focus attention on a two-dimensional fluid, and ask the question: Is J,,
integrable? The answer, subject to (45), is always yes in two dimensions, which
admits the concept of a stream function, ¢). Consider the 2-form density

—G/(ic/n) = (1/2)({zdy dz — ydz"dz} — dt"dz). (4.30)
The exterior derivative of G yields the 3-form density (for constant ¢/n)
—dG = (ic/n)(dx"dy dz + Oy /O0xdx"dz"dt + O /Oydy"dz"dt). (4.31)
Direct comparison to (A — df) yields the standard representations,
u = +00/0x+ 0¢/0y (4.32)
v = +00/0y— oY/0x

for the velocity components in terms of the ”potential” function 8 and the ”stream”
function 1. Note that
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divV = V20, (4.33)

and

¢ = (curlV), = —V*. (4.34)

The remarkable feature of two dimensions is that the viscosity of the fluid
and its associated dissipative features may be transformed away by means of
a dilitation [compare (42) and (52b)]. This effect has been observed in other
(mechanical) dissipative systems.[11] (Consider the simple example as given by
the damped harmonic oscillator, followed by a transformation to a space whose
coordinates are exponentially shrinking with time. In the shrinking coordinate
system, the equation of motion is that of an undamped oscillator. )

The two-dimensional stream function permits the evaluation F:

F =dA =d(A—df) = —V*)(dx"dy) + (0% /0ydt)dt"dz + (—0*/0zdt)dt" dy.

(4.35)
which allows the z component of vorticity, ¢ = —V?1, to be compared with the
z component of the electromagnetic B field. The dual of F'is the 2-form density,
H:

H=YyxF =i(1/u)(=V*))dz"dt — e(0*)/0ydt)dy dz — €(0*/0xdt)dz" da
(4.36)
from which the electromagnetic” current density 3-form J, can be derived (for
constant velocity, €, and p) in terms of a Hamiltonian format built on a function,
X, equal to the result of the application of the wave operator on 1.
That is, define
X = V3 — (n/c)*0*)/ot* (4.37)
then

J = —(i/n)(0x/0ydy dz"dt + O /Oxdx"dz"dt) = —(i/p)dx "dz"dt.  (4.38)

Note that the free charge density p vanishes identically.
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If x is proportional to v such that (55) becomes the KleinGordon equation,
then (56) indicates that the electromagnetic current is proportional to the ”ro-
tational” components of the velocity. Therefore, it is to be observed that the
topological constraint J,, = J is related to the constraint that the stream func-
tion, 1, satisfies the Klein-Gordon equation.

For all cases, the form F'"H equals

F H =i[(1/u)(V*)? — e{ (0% /0ydt)? + (0% /0x0t)?}da " dy dz"dt.  (4.39)

Except for very rapid variations of the stream function, the energy density of the
fluid tends to be magneticlike. That is, the fluid field energy density is dominated
by the vorticity and not by the fluid accelerations. Therefore, there exist Lorentz
transformations which can eliminate the accelerations (E fields) entirely. A critical
point in the fluid flow is reached when the energy density becomes electriclike.

The topological periods of one, two and three dimensions are determined by
the forms A, H,and A" H. The periods of A are determined entirely by the stream
function, v, as are the periods of H. However, the periods of A" H depend upon
the choice of the gauge function 6 as well.

It is readily observed that if the fluid is steady there do not exist any timelike
(dt =0) two-dimensional periods of H or three-dimensional periods of A" H. The
one-dimensional periods are related to nonzero values of the circulation integral
which can exist for steady (streamline) flows. Timelike two- and three-dimensional
periods require that the flow be nonsteady.

Note, however, that for a fluid governed by the NavierStokes equations [set
0 = L+ v6A in (38)], the choice of parametrization v = p reduces the intrinsic
equations of motion to the statement,

L(pV)A = —d(pL - P) + l/(d5 + 5d)A (440)

For the inviscid fluid this (common) choice of parametrization implies that the
one-dimensional periods are invariant w. r. t. the flow pV, for all V. In the
atmosphere where the dominant mechanism for vorticity creation is due to a
nonbarotropic equation of state (and where viscosity is often neglected) this result
implies that the one-dimensional periods are invariant along the flow lines of the
momentum flux pV (which, of course, are different from the flow lines of V). Only
viscosity effects can change the vorticity, or the one-dimensional periods, of the
fluid along the flow lines of pV, the momentum flux.
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5. SUMMARY

This article demonstrates that topological concepts of periods on manifolds may
be put into correspondence (55) with the quantized concepts of flux, charge, and
spin, each in an independent manner and without direct utilization of a quan-
tum hypothesis. Physically important information is contained in the potentials
in that the specification of a gauge selects an equivalence class in the topologi-
cal sense. Physical theories of matter can be put into correspondence to various
gauge theories relating or defining the one-, two-, and three-dimensional periods
supported by spacetime. Processes without dissipation leave the topological peri-
ods invariant. Schrodinger’s quantum theory can be interpreted as a gauge theory
that leaves the two-dimensional periods invariant. Hamiltonian theories leave the
one- dimensional periods invariant. On the other hand, there must exist three
(independent) modes of dissipation depending upon whether or not the process
individually modifies the one-, two-, or three-dimensional periods of the system.
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7. APPENDIX A:

7.1. THE BROUWER DEGREE OF A MAP THEOREM

Several proofs of the Brouwer theorem may be found in texts [2] on topology.
The purpose of this appendix is to demonstrate its use in spacetime situations.
Consider an initial space M of coordinates z# and a final space N of coordinates
y*, with a transitional map ¢ from M to N that need not be a homemorphism.
Suppose A = A,dy" is a l-form on N which may be retrodicted to M by the
pullback, ¢*A. Now suppose a closed curve C (one-dimensional manifold) may be
immersed into M by ) and another closed curve C' may be immersed into N by
1. Then a map f between C and C will have a degree such that one-dimensional
integrals are related by Brouwer’s theorem

L7 @ —ae s [ v (71)
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and deg f is an integer. If the image of C' in M encircles a number of holes in M
different from the number of holes encircles by C'in N, then that information will
appear in the degree of the map, f. The two curves C and C' are not homotopic
in a space of the same dimension, but may be homotopic in spaces of higher
dimension . Now it is not necessary to think of the topological holes as literal
holes in the space. A physical example of the holes may appear as regions of
closed and open sets in the field built over spacetime. Consider a fluid stream in
which there exist zones which are curl free and zones which are not. It is possible
to visualize the zones which are rotational as "holes” in the field. As the fluid
flows from an initial to a final configuration, the number of rotational zones can
change. The first Betti number of field space then must not be an invariant.
The flow cannot (by Cartan’s theorem) be described by Hamilton’s equations of
motion. The changing topology will be exhibited by a nondiabatic dissipation.
Figure 1 portrays the situation which is described by Brouwer’s theorem. It is
most remarkable that dissipative, radiative transitions from initial to final states
take place in discrete increments in this topological analysis. These ideas are in
agreement with a quantum theory point of view, but did not invoke a quantum
hypothesis.

7.2. APPENDIX B: KURATOWSKI CLOSURE AND DIFFEREN-
TIAL FORMS

The theory of exterior differential forms should not be considered as just another
formalism of fancy. It should be considered as a theory that contains both geomet-
rical information (as does classical tensor analysis) and topological information.
Consider a system ) of forms and their exterior derivatives specified on some
space. Then note that the operator

K=1&d (7.2)

where I is the identity map and d is the exterior derivative, when operating on
subsets of the system of forms, obeys the following rules:

1. KO=0,
2. KADA
3. K"A= KA,
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4. K(AUB)=KAUKB

These rules permit K to be identified as a Kuratowski closure operation.[12]
Hence the specification of the system ) defines a topology.

The most amazing property of differential forms is that with respect to maps
which need not be invertible, and which may not have invertible Jacobians, the
differential form is always retrodictable (but not necessarily predictable). The
physicist should adopt the viewpoint that the most primitive field problem is:
Given the final state, what was the initial state from which it came? This retrod-
ictive question is more fundamental [13] than the usual predictive version: Given
the initial state, what is the final state? With respect to nonhomeomorphic maps
the retrodictive question is often deterministic, while the predictive question is
not.

7.3. APPENDIX C: AN EXAMPLE OF A NONEXACT GAUGE FIELD
Consider the vector field,

A = (iy —jo)/ (=" +y7), (7.3)

on the space E£3 — {0}, which has a hole. Now curlA = 0, everywhere; therefore,
the field A is a gauge field. The closed integral of Aodl about the hole may be
evaluated by means of the coordinate transformation z = rcos@,y = rsinf. The
circulation integral about a loop encircling the origin is given by the expression

f A= 7{ Aodl = 7{ {ydz — xdy}/(z* + v?). (7.4)

Substitution of dz and dy in terms of r and 6 yields

fA:/O%dezgw (7.5)

As the circulation is not zero, A cannot be globally represented by the gradient of
a single potential function and represents a gauge field. Under the transformation
the closed loop in (x,y) space becomes an open curve in (r,0) space.

21



7.4. APPENDIX D: PARAMETRIZATION, ORIENTATION AND OTHER
TOPOLOGICAL IDEAS

It appears that the continuity of the parametrization function +y is related to the
topological concept of orientability. When v is continuous (and by convention
chosen to be positive), then it is possible to mechanically identify v with the
mass density p and a choice of orientation. On the other hand, the identifica-
tion of a v which satisfies (12) with the charge density p is a notion associated
with a nonorientable manifold that supports both positive and negative measures.
An elementary geometric example of such phenomena is given by two separated
spherical surfaces, one with an outward normal field and the other with an inward
normal field. First, because the sets are disconnected they cannot be represented
by a single immersion, for immersions have a unique range. The questions arises,
can two spherical surfaces be represented by a submersion?, and the answer to
the question is yes, if the spheres were oriented. The implicit equation

(x—a)* +y*+2° — (a/2)?] x [(z+a)* +y* +2° — (a/2)*] =0

yields a closed set of two components representing two spheres of radii a/2 sep-
arated by 2a. The implicit representation, however, guarantees that the surfaces
are closed and oriented. The normal (gradient) field is outbound on both spheres.
If one of the factors is multiplied by minus one, then the implicit representation
gives an inbound normal field on both spheres. The nonorientable two component
spheres with one normal inbound and one normal out-bound cannot be given an
implicit representation. Nature states this idea by demonstrating charge pairs
with the field lines ”existing” from the positive charge regions and ”entering” the
negative charge regions. Mass on the other hand is oriented, with field lines only
existing from regions of (positive) mass.

A few remarks about the topological question of separability of the integration
chains is of related physical significance. Some closed chains separate, others do
not. For example the closed curves on a torus which yield cycles do not separate
the space, but the shrinkable closed curves do. Sometimes a cut can be made that
will separate and sometimes not. A cut along the closed ”diametrical” curve on
a Mobius band does not separate the space, but actually produces from a spin-2
representation a spin-2 representation, [14] which then may be folded into a double
layered spin-2 representation again (fermions to gravitons to fermions??). On the
other hand a cut along the nonshrinkable closed curve of a cylinder separates
the space. In the physics of electromagnetic materials such phenomena often is
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observed. A conductor placed in an electric field is polarized. If the conductor
is then cut in two, the charge is separated. On the other hand, a cut through a
dielectric does not separate the charge.

Amperian magnetic needles when cut do not separate the flux quanta, which
imply that such cuts do not separate and do not produce flux monopoles. The
concept of a magnetic monopole has to be put in correspondence with the topo-
logical theory that there exists a one-dimensional cut which can separate the flux
quanta, and yet divB = 0 on the manifold. The existence of these cuts is an open
question, but it is to be observed that this possible topological property of the
theory does not require a source term to be appended to the 1st Maxwell set of
equations (dF = ddA = 0;not dF = J,,). Flux quantization is permissable, with
free flux quanta (monopoles) permissible, if separable cuts exist.

7.5. APPENDIX E: GAUGE INVARIANCE AND HAMILTONIAN
THEORIES

The relationship of gauge and nonintegrability was introduced to the physics com-
munity by Weyl.[15] A most informative picture can be obtained by propagating a
vector about some closed loop where infinitesimally the vector is kept ”parallel” to
itself. When the vector returns to its starting point, Weyl pointed out that there
is no obvious reason why the length of the vector should be the same as it was
when it started. The vector length happens to be length, or gauge, invariant with
respect to parallel transport on Euclidean spaces, but it need not be invariant on
other spaces.

A more general viewpoint notes that upon return to the starting point the final
vector may be of different length, and also it may have a line of action not parallel
to the initial vector. The decrement vector betwen this initial and final state may
have a component in the ”plane” of the curves and the initial vector, and perhaps
a component out of the initial plane. ” The decrement angle out of the plane
is related to the torsion of the space, and the decrement angle in the plane is
related to the curvature of the space. If the closed loop is defined by segments
of vector fields, the propagated vector may or may not be algebraically closed
with respect to these vectors. If the propagated vector, upon being transported
around the loop, is not closed with respect to the vector generators of the loop,
but in a sense points out of the plane of the loop, then the space has torsion.
Immersed spaces do not have torsion; submersed spaces can have torsion. Now
a great emphasis is placed on the gauge invariance of physical theories, some of
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it in an almost mystical sense. However, according to the ideas expressed in this
text the notion of gauge invariance relates to a concept of topological invariance,
and this concept must be extended also to two and three-dimen-sional gauges. It
is to be noted that if the one-dimensional gauges (one-dimensional periods) are
to be invariant with respect to a dynamical transformation generated by the field
V, for any parametrization ~y, then

Ly A=0 (7.6)
1 cycle
However, such a requirement leads to the necessary and sufficient conditions (Car-
tan’s theorem) that the equations of motion are described by Hamilton’s partial
differential equations.[12]

A necessary and sufficient condition for a theory to be one-dimensionally
gauge invariant (for any =) is then that the theory be a Hamiltonian theory. It
would appear that the predilection for gauge invariance possibly can be related
to the demand for a quantum theory, which requires a Hamiltonian basis for
quantization in the Dirac sense.

It should be recognized that a gauge invariant theory cannot explain the details
of nonadiabatic phenomena, for dissipation implies that gauge is not invariant.
As was mentioned in the text, the invariance of the one-dimensional gauges does
not guarantee the invariance of the two- and three-dimensional periods, unless
further constraints are put on the system. Hence, there may be dissipative effects
in a physical system if the two-dimensional and three-dimensional periods are
not in-variant. A Hamiltonian theory may still be dissipative in the sense that
the two- and three-dimensional periods may not be invariant, even though the
one-dimensional periods are invariant. For those topological systems where the
p and (N-p) dimensional periods are dualistically related (flux dual to angular
momentum) then a Hamiltonian analysis implies both conservation of flux and
angular momentum, but still does not guarantee conservation of two-dimensional
periods (charge pairs can be created in an independent dissipative manner).

For hydrodynamic systems where the unit source is mass (not charge) the
integer relations of the one-dimensional periods have been experimentally ob-
served, and the quantum of vortices in superfluids is h/m (not h/e). Physically,
what the two-dimensional periods are for systems with mass as the source (grav-
ity) is not known. Neither is there experimental evidence available at this time
for three-dimensional periods in a hydrodynamic system. The relationship be-
tween creation of nonzero periods and instability concepts leads to the conjec-
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ture that these effects are to be observed in the turbulent state. (However see
http://www.uh.edu/ rkiehn 1997)

7.6. APPENDIX F: DUALITY AND PERIODS

It is known that topological periods are related to Betti numbers and that for
certain spaces the Betti numbers obey the PoincareAlexander duality principle;
that B, = By_p, on compact oriented spaces.[16] The idea of duality can be used
to explain the apparent paradox between the Bohr Sommerfeld quantization rule,

%pydq“ =nh (7.7)

which implies that mechanical action is related to a one-dimensional period, and
the electromagnetic concept that action is related to a three-dimensional period
[see Eq. (6)]. To resolve the paradox, consider those systems where the factoriza-
tion of Eq. (19) is admissible; then the three-dimensional period of action becomes
proportional to the one-dimensional period of flux mod the two-dimensional pe-
riod of charge. Classically this result is expressed by the statement that the
electromagnetic momentum is () times the vector potential. Topologically, the
concept is a duality constraint on the periods of dimension p=1and N —p =3
for fixed values of (), and states that the flux periods are proportional to the
action periods. Under this topological constraint the three-dimensional period, or
integral, of action may be reduced to a one-dimensional period, or integral, in the
Bohr-Sommerfeld case.

In mechanics, a similar paradox arises when the Lagrangian approach is com-
pared to the Hamiltonian action theory. The question asked is: When is the La-
grange integrand, Ldt, equivalent to the Hamiltonian action, A = p,dg¢* — Hdt?
If the equivalence is to be globally valid, then it follows that A"dA = 0.; i.e.,
the Hamiltonian action must be integrable. Such special cases imply that the
momentum vector either has zero curl, or that the curl of p be perpendicular to
p. Many physical systems admit such descriptions, but others do not. A fluid
with vorticity is a classic counter example to the exact case, and a fluid with a
twisted secondary flow yields an example for the nonintegrable case.

The resolution to the paradox of LaGrange-Hamiltonian action equivalence is
not only related to the duality principle, but also sheds some light on the ergodic
problem of when phase averages are equivalent to time averages. In the duality
sense, the Lagrange function is interpreted not as the coefficient of a 1-form, but
as the decomposed coefficient of a 2N density in 2N + 1 space:
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L = L(p,q,t)dg""...dp (7.8)

All 2N forms are decomposable, but they do not necessarily represent 2N volumes.
The above format suggests that the Lagrange density approach appears to be
associated with phase averages. For each 2N form in 2N + 1 space there exists a
metric dual which is a 1-form, A. That is,

L = A, (7.9)

by means of the Hodge dualization operator *. The question may now be asked:
Does the dual of £ admit a single parameter (time) representation? If true, then
there exists an ergodic equivalence between [ --- [ £ as a phase average and [ A
as a time average. The equivalence of the two methods requires again that the
Hamiltonian action, A, be integrable:

A"dA=0= (xL£)"d(xL) (7.10)

The Hamiltonian-Lagrange equivalence subsumes the ergodic principle.

The reverse question is somewhat different: Suppose there exists an integrable
1-form, " L”dr = A. Is the metrically related dual xA = \/ﬁgo”qulA..quA...Ade
divergence free? (In order words is the "phase volume” closed?) The answer is
yes if \/gL is an integrating factor for the time like component of the metric g".

A somewhat more general view considers the duality constraints between Sp
and A in terms of a cohomology theory, and compares the closed one-dimensional
integrals and the closed 2N+1 dimensional integrals on a state space of 2N + 1
variables p, ¢,t. In a preliminary way, assume that the single-dimensional integral
implies the existence of a I-form A = p,dg" — Hdt on state space, and a one-
parameter map ¢ : T — p, q, t, such that the pullback of the integral of the 1-form

exists as a function on 7; i. e.,
QS*/A:/LdT. (7.11)

In the second situation, consider a map v : q,p — q,p,t such that the 2N di-
mensional form S = pdq'”...dg" "dp,”...dpy — J'dt dq'"...dg" "dp,"...dpy..... has
a pullback image,

w/-.-/5;»/---/5(5,@@11.@N (7.12)
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Time averages are equal to phase averages when it is possible to equate (dually)
the forms of action L to action density S. As the ergodic hypothesis asserts that
the open integrals are equivalent, it follows that a similar question may be posed
about the closed integrals; but then the question becomes when are the one-
dimensional periods equivalent to the (N- 1)-dimensional periods. That is, assert
dA =0 and dL = 0 so that the question becomes

7{,1:/---/‘? (7.13)

2n cycle

but this question is similar to the notion that the flux quanta are equivalently
related to the action quanta. The basic idea of importance here is the notion
that the periods of A and the periods of S are dually related in ergodic systems.
If the one-dimensional periods of A are quantized flux and if the periods of S
are quantized angular momentum, then they are individually in the ratio of the
integers by Brouwer’s Theorem and directly related to one another (that is, dually
equivalent) if B, = B,,_p, e. g., if the space is compact and orientable. As not all
spaces have B,, = B,,_,, the flux and action quanta are not always dually related,
and not all systems are ergodic.
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8.1. CAPTIONS

Figure 1 Brower’s degree of a map theorem applied to hydrodynamic dissipa-
tive systems.
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