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PREFACE

Religions are known to become rigid and despotic when the icons of
religion are beginning to replace the teachings in order of importance. In a
similar manner some formulas and equations of physics have been
assuming an icon-like position for the physical sciences. It raises questions
whether there are mathematical icons that are now unduly dominating the
scene in physics with the possibility of holding back the exploratory spirit.
Since the latter has always been physics' badge of honor, this essay calls
on the help of history and philosophy to pinpoint possible onsets of early
rigidity  wherever they may have occurred.

Unfortunately, many physicists have been imbued with ideas that it is
exactly philosophy that is in need of such help. The origin of such
suspicion goes back millennia. Early philosophers had regrettably
misguided their contemporaries about the value of physical
experimentation. Ever since the discipline has paid for this attitude of early
arrogance

For a long time physics has been able to steer clear of a similar arro-
gance in their discipline until the beginning of this century. When quantum
physics came along, the pitfalls of 'exclusivism' became too numerous and
the shield of self defense assumed an unintended edge of arrogance.
Physicists began congregating in the legendary land of Hans Anderson
under the inspiring guidance Nils Bohr.

Rarely had scientists encountered so many new things in so short a
time. Faced with the daunting task of sorting out an inebriating avalanche
of new perspectives, they started giving known words new meanings in
physics. Examples are: nonclassical probability, absolute a priori uncer-
tainty, particle-wave duality etc.. Einstein supposedly was quoted as
having referred to their activity as an epistemological orgy.  If he really
said this, his sense of physical reality was superb as usual, even if the word
"epistemology" had been mildly misused.

The early phases of epistemology, to which Einstein presumably
referred, are now known as "ontologies." Mario Bunge calls it "the furni-
ture of the world." We know there is good and bad furniture and last, but
not least, furniture should harmonize with its intended environment.

 It is an irony of life that, as philosophy in the early days, now physics
stumbled into its own trap of arrogance. If physics made some
questionable ontological choices, this booklet may refer to them as rare
brands of very durable Copenhagen furniture, yet beautiful in their own
right. The problem has been more one of fitting rooms, tables and chairs
together and less one of discarding furniture items, because in a short time
the house of physics had been changing in a very dramatic fashion.

 To the extent possible, these pages attempt a 'nontechnical account' of
modern physics' facts and sins. In practice this means, there are very few
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formulas in this book to prevent icons from dominating the scene. If that is
a shortcoming, let a more extensive discussion of formalisms  make up for
it. The result is a subject presentation which, in an optimistic sense, might
be said to be  reaching from preschool to beyond university.

Since Kant's Critique of Pure Reason had philosophy confessing to its
sins, followed by a penance long ago, physics is now invited to do the
same by confessing to its arrogance. The court of public opinion has
sufficient grounds to consider charging the physics profession with:

(1) abandoning a royal road to quantization.
(2) inadequate consideration of alternatives to Copenhagen views.
(3) intimidating rather than convincing others of what are believed to

be right choices.
Since mathematics is a discipline without which much of physics

could not be, the last chapter discusses some parallel developments
between the two. A moderate measure of mathematical rigor and down-to-
earth philosophy go a long way in helping physics home in on common
corrective measures that can disentangle situations where physics may
have gone overboard amidst an abundance of too much new in too little
time.

Pondering the very valuable help rendered by Christine Brunak and
Ruth Jackson in the process of proofing the text, it still puzzles and
despairs me as to why this subject matter has either something akin to
pulling teeth or tends to bring people to the brink of nervous breakdown.

E J Post
Westchester CA, Sept. '97
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PREAMBLE ABOUT PHILOSOPHY

The average physicist is not known to have kind and warm feelings for
philosophy. Many of them feel that philosophy is not very relevant to their
discipline. If there is any relevance, it is one that comes after the facts. They
regard the philosophy of science as an occupation for those who are beyond their
creative years in science.

There is a reason for this rather disparaging attitude. It goes back all the way
to the ancient Greeks who thought that their pure rationalism could solve, if not
all, at least most problems of the world. Although there were other Greeks who
did not agree with such radicalism of pure reason, their voices did not weigh in
sufficiently to effectively open doors for alternatives. Mankind has always had a
streak for the bold and the radical.

It would take almost two millennia before Galileo Galilei (1564-1642) was
able to put a dent in the arrogant dominance of pure rationalism. Galilei taught his
fellow man how to observe nature in a more discerning manner; he re-initiated
conscious efforts to ask nature questions by doing experiments. It was a new
insight that fitted the renaissance era. While Galilei became known for new
insights in dynamics, his counterpart in the low countries Willebrord van Snel van
Royen (1580-1628), now referred to as "Snellius" or "Snell", established the law
of optical refraction. Snell's work became more widely known through Christiaan
Huygens (1629-1695); better telescopes & microscopes were the results.

Experimentation from then on became a sine qua non for just about all
physical developments that were to follow. Man had freed himself from a too-
puritanical confinement to rationalism; instead, he had learned a new way of
asking questions. In fact, he became better at it all the time and, in doing so,
opened up new worlds that made new and challenging demands on his earlier
capability for reasoning.  The evolution from Galilei's dropping objects from the
tower of Pisa to Millikan dropping charged oil droplets in order to measure
elementary electric charge, is a rather spectacular development in experimental
sophistication. Experimentation, earlier regarded by many of the old Greeks as a
futile pastime, had added dramatic new dimensions to man's capabilities for
observing nature. Rather than indulging in untestable speculations about the
nature of the world, man now had new ways of getting answers to his inquiries.

Radical rationalism so became to be regarded as a manifestation of arrogance.
The inclination to experiment testifies to a frame of mind willing to learn from
what nature has to say as something, over and above, of what pure reason can do.
The old Greek philosophers had been stymied by an attitude reminiscent of a child
telling us: I can do it alone. Granted, whatever we learn through own experience is
extremely valuable. However, as there is so much to learn, there would not be
enough time for each individual to go through the whole process of private
discovery. Through the process of experimentation, we find how nature already
solved problems long before we had the awareness for asking certain questions,
much less having even hinted at their solutions.
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Experimentation is an exercise in humility. It is asking nature about its earlier
experiences, perhaps going back to eras when the human species, as we now know
it, had not yet evolved. The art of experimentation began hesitantly in the early
17th Century and came to greater bloom in the 18th Century. The emergence of
steam engines had man think about the fundamentals of heat and thermodynamics.
In many ways, the Cavendish experiment, which established a value for the
Newtonian gravitational "constant," was one of the highlights of that period.
Regardless whether or not the gravitational constant is a real constant, the major
fact was that man had gained insights about a quantity that had something to say
about the whole universe.

The next century of experimentation might well be named after the great-
grandmaster of this art: Michael Faraday.  It is known that answers to questions
critically depend on how questions are asked. Faraday knew how to ask questions.
Contemporary physicists have been heard saying: Faraday had his own private
telephone line to God.

Continuing in the footsteps of their 19th Century predecessors, the 20th
Century experiments became bolder and bigger. When the first accelerator
machineries yielded precious new information about the constitution of matter,
the next idea was building more and bigger accelerators. Yet, mindful of the
diminishing returns of the radicalism of rationalism in ancient times, there is now
an awakening that "more and bigger" in experimentation has its own limit of
diminishing returns.

The great generators of insight in the latter part of the 20th Century seem to be
trading bigger for subtler. These changes have been partly the result of well-
considered human initiative; others have been brought about by serendipity, yet
requiring the watchful eye and alertness of an experimenter to recognize the im-
portance of an unexpected phenomenon. The Mössbauer and quantum Hall effects
are challenging new phenomena, yet they were unexpected on the basis of current
insights. The Josephson effects, though, were a result of a more premeditated
effort.

All of which goes to show that experimenters have now been facing their own
crisis of radicalism.  Suddenly they are at a road junction, requiring Solomon's
wisdom for making decisions not to let all traffic go in the directions of the
biggests noise. It is good to remember that nobody is safe from the trap of arro-
gance.  From the old Greek philosophers looking down on inquiries by doing silly
experiments, all the way to modern-time experimenters scoffing at the futility of
what philosophy can do for physics, it is always a measure of arrogance that is
holding back the potential for honest, open communication.

The objective of this preamble is to build a case for making more attempts at
opening up interdisciplinary channels of communication.  The idea is one of
making physicists more receptive to aspects of philosophy relevant to physics, and
familiarizing philosophers with physical developments fitting the patterns of the
modern theory of knowledge. Branches of philosophy  expected to have
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classifying function for physics are: empiricism, phenomenology, intuitionism,
ontology, and epistemology.

These conceptual subdivisions in philosophy were neither specifically created
for purposes of physics nor meant to please the world of physics. On quite general
grounds, they are to be considered as related to man's perception of his universe.
Hence, one may trust that this branch division of philosophy is not unduly tainted
by conceivable physical prejudices. If these subdivisions nevertheless are relevant
to physics then, all by itself, that fact is evidence of their measure of universality.
By the same token, an ensuing subdivision and classification of physical
disciplines in the perspective of these universal guidelines hold great instructive
virtue.

The present objective is an attempt at classifying physical disciplines in the
perspective of these subdivisions of philosophy. Yet, since the mentioned
subdivisions of philosophy may not be common knowledge in physics' circles, a
brief outline of philosophy structure and a definition of relevant terminology is
now in order.

Outline of Philosophy Branches
Originally philosophy was primarily concerned with man's ability to reason

about matters of human concern.  This statement is to be taken in the context of
the times of which we speak. It then stands to reason that ancient philosophers
were confronted with a world that was entirely different from our contemporary
society.  To accomplish the task of reasoning requires precision of argument and
word definition. The meaning of the Greek word philosophy in translation  ranges
from wisdom of language or love of language to wisdom of words.  Most western
languages have borrowed the word "philosophy" from the Greek language. Dutch
iss an exception in this respect; it uses a homegrown compound-noun wijs-
begeerte, which literally translated conveys desire for wisdom..

From these defining expressions we infer that philosophy conveys a sense of
purism about the language medium we use for communication.  This medium of
communication should remain well defined, lest we end up with a situation
resembling a confusion of tongues as referred to in the book of Genesis. Mindful
of the connection between philosophy and language, founding fathers of academia
had the wisdom of joining the study of art, letters and philosophy under a single
faculty heading.

In the course of time, the subject matter about which man desires to
communicate has grown dramatically. The experimenters, for one, have
dramatically expanded the realm of human perception.  This brings about
ramifications for processing information. The extended field of perception
invokes choices and decision-making as to what is to be recorded as scientific
information. Value judgments need to be made between recordings that appear to
be meaningless collections of arbitrary data versus those carrying interesting and
meaningful scientific structure. This quality-based process of phenomena
selection of scientific information is called empiricism. The Ptolemaic and
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Copernican systems of describing planetary motion are both valid empiric
descriptions of what is taking place. Today, Copernicus' picture is preferred as
closer to the true nature of things. It is closer to the reality of what is taking place.
The Copernican system is then regarded as an ontological improvement of the
Ptolemaic situation. To the extent that the Copernican view can be obtained
through logical reasoning, it could be called a phenomenological improvement of
the Ptolemaic view.

Since these concepts have a cardinal role in what follows, here is another
formulation that emphasizes their mutual relation. Starting from an empiric
selection of scientific phenomena, the application of pure logic may then lead to
additional phenomena.  One so establishes a phenomenological system of
interrelated manifestations. In physics, this is called a "theory." Since
mathematics is a major part of physical theorizing, phenomenology  tends to be
mathematical in nature.

Whereas phenomenology can be regarded as a hard-nosed application of logic,
an ontic element injects something new, say, an hypothesis.  If the injection is
successful in the sense that it permits a consistent treatment using rules of logic,
one may have an ontology. Such disciplines have a strong element of
inventiveness and an element of art; by the same token, it requires honesty and
courage to reject an ontic invention when it leads to contradictions and has been
proven to be unworkable. The notion of the subconscious in psychology is an
example of an ontic invention, which may well be regarded as successful.

The world has known many unsuccessful ontic propositions. Even if they did
not quite pan out, they served a goal before they could be abandoned. The moral
of the story is: don't beat a dead horse; give it a dignified burial with thanks for
services rendered. In life in general, and also in physics, recognizing limitations
and inadequacies of ontic propositions remains a difficult and trying experience.

In the course of these discussions, an epithet of quality was found to be
associated with ontic propositions. While the Ptolomaic and Copernican world
views are both recognized as ontic propositions permitting reliable predictions of
events, the contemporary convictions hold the Copernican view as closer to
physical reality than the Ptolomaic view.  This example illustrates a distinction
between two kinds of ontic propositions. The work-hypothesis is an ontic propo-
sition that leads to correct results, whereas a truth-hypothesis not only yields true
results; it over and above reflects additional elements of physical reality.  So a
truth-hypothesis is a work-hypothesis, yet, conversely, a work-hypothesis is not a
truth-hypothesis, unless it is proven to meet additional reality requirements. All
of which raises questions about how we know what we know. Philosophy has
created a discipline assigned the task of a quality grading of ontic propositions. In
modern times, it is being referred to as epistemology, which comes from the
Greek episteme  meaning "to know." These concepts are succinctly delineated by
Zerin.1

In a nutshell, we see here how philosophy creates its own language for a
precise communication that can deal with the wider realm of human awareness.
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The creation of these new words and compound words simplifies communication.
Let us complete the vocabulary by assigning adjective and noun qualities to these
words. For instance the adjective ontic refers to a proposition that may or may not
lead to a complete system description deserving of the name ontology. By the
same token, an epistemic exploration may or may not lead to a logically complete
description; only if it does, is it deserving of the name epistemology.

Let us inquire about more specifics of how ontologies and epistemology relate
to one another. The comparisons between Ptolomaic and Copernican world views
gave us already an inkling about which one is closest to an epistemology. Mario
Bunge2 has given an interesting metaphor by comparing ontologies to the
furniture of the world. While ontologies have already a measure of logical
completeness to be deserving of that name, the Bunge metaphor conveys the need
for an integration of the furniture into what may be regarded as a home.  By the
same token, homes and other buildings constitute a township and a conglomerate
of villages and towns brings out images of a society. In other words: an epistemic
view of a subject matter calls for a global integral view of its ontic compo-
nents.

Mathematics and associated parts of physics have been found to yield
perspectives bearing out the relevance of these processing subdivisions that have
been independently generated in philosophy. Some preliminary observations can
help in whetting an appetite for these matters.

Much of physics has been developed from a local point of view,  meaning
physical laws have been cast in the form of differential equations. In fact, the
Newtonian breakthrough would have been impossible without a simultaneous
creation of the calculus. Global aspects of such locally initiated activities are
solely obtained by solving differential equations and adapting solutions to initial
and/or boundary conditions. Not all global structure can be generated as if
originating from an infinitesimal local level.  Atomicity and quantization have
intrinsic global qualities. Yet manifestations of ensemble behavior of single
atomic entities lend themselves to being treated by differential equations with
boundary values.

Apart from mathematical technicalities referred to in the last paragraph,
processing information becomes a balance of compromise between the
rationalism of phenomenology and the intuitionism of ontology.

The here-following description of interrelations between physics and
philosophy is presented in an historic perspective. This has the advantage of
showing how, in the course of time, a greater diversity of philosophy's
subdisciplines become involved in the development of physics; irrespective of
whether this philosophy involvement is recognized or accepted by the physics
establishment. In the early phases of the development of physics, only the simplest
and most direct aspects of the theory of knowledge needed to be called upon.

Then gradually, when physicists become more inquisitive about nature, more
differentiated and sophisticated concepts in the arsenal of knowledge theory begin
to play a role.  Indeed, the history of physics can be rather clearly subdivided in an
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early era in which empiricism was the most dominant element. Made possible by
concurrent mathematical developments in the18th Century, phenomenological
deduction begins to have an increasingly important role. Conversely,
phenomenology and technology, in turn, refine the art of empiric inquiry, thus
leading to a new wave of phenomenology in the 19th Century. This new wave is
accompanied by new mathematical concepts and relationships. If calculus was a
prime mover of 18th century phenomenology, the theory of groups and the theory
of invariants and their repercussions for calculus and geometry were beginning to
make their influence felt in 19th Century physics.

Then in the 20th Century, ontology in the form of work-hypotheses is
becoming more and more effective. In fact, one of the most spectacular work-
hypotheses, the "action quantum concept," made its debut exactly at the beginning
of this century.

For mostly practical reasons mentioned in the sequel, no explicit technical use
will be made of mathematics in the form of derivations and calculations. There is
merely emphasis on basic concepts. In the course of these tentative explorations,
one may find that a joint conceptual development of key notions in physics and
philosophy are more of a help than an extra burden on the path of improving our
insight.  To further that cause, let us now illustrate the deductive relation between
the philosophy branches here encountered by placing them in a diagram showing
their logical interconnections.
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EMPIRICISM

Input from diverse 
information source 
which in physics is 
enhanced by the art 
of experimentation

Knowledge derivable 
from empirical sources 
using the single but full 
strength of rational 
argument, enhanced by 
the tool of mathematics.

Knowledge derivable 
from empirical sources 
hypothesis-enhanced   
using the full strength 
of rational argument  
plus mathematics.

Grading the ontologies and 
aiming at an encompassing 
basis of general knowledge. 
In a context of mathematics, 
it provides a bridge between 
local differential approach 
and a global integral view.

adding 
ontic 
type 
infor- 
mation

Input from diverse 
information sources 
for physics enriched 
by a refined art of  
experimentation. 

ONTOLOGIESPHENOMENOLOGIES

 EMPERICISM

EPISTEMOLOGY

      BRANCHES OF PHILOSOPHY RELEVANT TO PHYSICS
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  THE EMPIRIC SOURCES OF INFORMATION

Having delineated the principal branches of philosophy that constitute the
modern theory of knowledge, the ingredients are now available to attempt major
applications to physics. In the process of doing so, one can gradually develop
judgment as to what is valuable information versus information that has no
obvious scientific significance. The proof of the pudding is in the eating. There is
no point in giving abstract criteria for distinguishing information quality prior to
having at least some events from which to abstract.

Since there is a veritable abundance of material from which to choose, sketchy
references should suffice to refresh the memory about earlier encounters with the
subject matter. This has the advantage of showing the  discovery from an historic
perspective. Such an approach illustrates man's growing perceptiveness about the
world surrounding him.

Archimedes' Principle
Going back to the ancient times of an emerging flourishing trade and shipping

by sea routes in the Mediterranean, early naval architects of that time must have
given thought how to determine the cargo-carrying capacity of their vessels. Over
and above the general rule that bigger ships can carry bigger and heavier cargos,
people needed to be able to predict in advance how much certain ships could carry
in order to know how many ships or journeys would be necessary to transport a
given cargo.

It was Archimedes (287-212 BC) who helped solve the problem of buoyancy
of immersed objects. He somehow concluded that weight of ship and cargo had to
equal the weight of the displaced water. It is probably not exactly known what
type of argument he used to arrive at this result.  However, all later shipbuilders
lived by that rule. In the 17th Century, a Dutch physicist, Gravesande (1688-
1742), came up with a simple device by means of which the correctness of
Archimedes law could be tested with accuracy.

Consider hereto a cylindrical bucket and a solid metal cylinder that fits snugly
inside the bucket so that both have exactly the same volume. Now suspend bucket
and cylinder from a sensitive balance and bring the balance into equilibrium.
While hanging from the balance, immerse the metal cylinder in a water container.
The balance is now out of equilibrium, yet the equilibrium is restored by filling
the bucket with water. Since the weight of this water equals the water displaced by
the immersed cylinder, Gravesande's bucket experimentally proved Archimedes'
contention.

This law of Archimedes, also called Archimedes' principle, is one of the first
examples of a clearly stated quantitative law in physics. It goes back to the 3rd
century BC. Although numerous people applied this principle through the
centuries, an experimental proof came two millennia after its inception. A few
decades after Gravesande's experimental proof, Euler succeeded in reducing
Archimedes' principle to a special result of his fluid dynamics.
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The Ptolemaic-Copernican Evolution
The next major event in the empirical recording of natural phenomena is

certainly the transition from the Ptolemaic to the Copernican way of describing
planetary motion.  The earth-centered Ptolemaic description of planetary motion
originated in the 2nd century AD. It took thirteen centuries before it was replaced
by the much simpler sun-centered description of Copernicus (1473-1543). Here is
an example of a choice between two empiric options. It was the sun-centered
description that led, in the early part of the 17th Century, to vastly enhanced
empiric detail that is now known as the laws of Kepler (1571-1630). Newton's
derivation of those laws from his general principles of mechanics and gravity,
decades later, vividly illustrates the essential role played by the transition from
earth-centered to sun-centered description. The earth-centered description was
hardly suggestive as a basis for stellar dynamics. Here we see how the quality and
simplicity of empiricism can play a decisive role in later theorizing.

Snell's Law of Optical Refraction
The 17th Century saw great improvements in optical instrumentation. The

telescope opened up the world in the large, and the microscope opened up the
world in the small. This meant that the art of lens-making had improved steadily,
made possible by an understanding of the laws of light refraction. It had been
known for a long time that a light ray that enters an optical medium, say from air
into glass or water, changes direction. In everyday life, we experience this effect
as an apparent position change of objects under water. Snell  made measurements
in the early part of the 17th Century, which showed the ratio of the sine of the
angle of incidence (measured with respect to the normal on the interface) and the
sine of the angle of refraction (similarly measured) to be constant. It means the
ratio of the sines does not change for varying angle of incidence.

The fact that reflected light shows a reflection angle equal to the angle of
incidence may not be too surprising to most people, because it resembles
bouncing a ball from a hard surface. However, Snell's law of refraction is at first
sight surprising. It is an example of a perfectly recorded empiric law. It soon
became a centerpiece of all optical design, and still is today.

 The sine-ratio of refraction turned out to be a characteristic of the media
meeting at the interface. Late in the 17th Century, Huygens suggested a simple
explanation for the constant value of the sine-ratio of refraction. He indicated that
the sine-ratio might equal the ratio of the propagation velocities of light in the two
media.

Olaf Roemer's Finite Speed of Light
The idea that light might not travel arbitrarily fast between places has not been

a major preoccupation of mankind, because it simply was so fast that for all
practical purposes man would not have to worry about time delays caused by its
finite travel time.
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The Danish astronomer Olaf Roemer (1644-1710) was the first who proved
that light travels with a finite velocity. In 1667, he was measuring the periods of
revolution of the satellites of Jupiter. In the process, he found that the periods
changed, depending on the mutual motion of earth and Jupiter. Assuming a finite
velocity of light, he correctly inferred in that earth-motion towards Jupiter would
give an apparent shortening of the period of revolution, whereas an earth-motion
away from Jupiter would lengthen the observed periods of revolution. From the
data available to him, he decided on a speed of light of ± 220,000 KM per second,
which is not more than 30% off, compared to modern measurements.

 Unless a finite speed of light had already become a foregone conclusion
among experts, it is possible that Roemer's measurements, at the time, suggested
Huygens simple explanation of Snell's law of refraction. For all practical pur-
poses, Roemer's calculations resembled calculations later made by Doppler in the
19th century.

Empiric Ingredients of the Laws of Dynamics
The end of the 17th Century brings us close to the Newtonian laws. We

examine here which empiric observations have, in part, induced the formulation
of the three Newtonian laws of motion:

  I   Without forces acting on a body, it is either at rest or    
in uniform motion.
 II   Action equals reaction.
III Force equals mass times acceleration.

Law I, without question, was already anticipated by Galilei. Anybody making
that observation, of course, had to be aware that forces are a source of motion.
Stronger force causes more violent motion and big heavy bodies require stronger
forces to bring about motion. Ruling out air-resistance in free fall, Galilei was
aware of the fact that all bodies fall equally fast in the gravitational field of the
earth. The critical point missing in Galilei's appraisal of the situation was a
quantitative definition of motion differing from uniform motion. It was at this
very point where the calculus became an indispensable ingredient of physics.

There is evidence that people played around with specialized definitions of
acceleration. Centripetal forces and their relation to rate of rotation were, in
principle, measurable. They were known prior to Newton. Huygens, who carried
on a desperate struggle to make pendulum clocks work on seagoing vessels,
invoked many basic principles of dynamics. It was this conglomerate of earlier
experiences that is to be regarded as a diverse empirical input that led Newton to
the concise formulation of his three fundamental laws.

Kepler's laws of planetary motion became part of the empirical input after
Newton established inverse square behavior of gravitational attraction. The
second law balances the centrifugal orbital force of the third law with the force of
gravity here referred to as Newton's fourth law. A known moon orbit and
extrapolation of earth's surface gravity to the moon orbit may have revealed the
inverse square behavior of gravity.
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The Cavendish Experiment
In the century that followed, a veritable avalanche of phenomenological

explorations ensued from these four fundamental laws. There was so much work,
there hardly seemed time for new empirical input. Yet important information in
Newton's law of gravity was still uncertain. The inverse square behavior was well
established as was the proportionality with the masses involved; yet the constant
of proportionality that related masses and distance with force was not well known.

Henry Cavendish (1731-1810), a renowned experimenter for many years in the
University of Cambridge, decided at age 70 on an experiment that would permit
him to measure Newton's gravitational constant. In addition to the many other
experiments he had done in his lifetime, Cavendish, in his later years, did an
experiment that literally enabled man to weigh the world.  For this purpose he
used a torsion balance suspending large spherical weights, similarl to what
Coulomb had used earlier in measuring the inverse square law for electric charges.
Cavendish and Coulomb were acquainted, and the fact that Cavendish had been
born in Nice, France, may have helped their communication.

The Work-Heat Equivalent
Steam engines came on the scene more or less at the same time as the French

revolution.  Ever since, there has been no question that devices driven by heat can
do our heavy work. Conversely an American expatriate, Benjamin Thompson
(1753-1814) from Woburn Massachusetts, titled by the British as Count Rumford,
and later working for the Bavarian military, showed as early as 1798 that it was
possible to boil water with the heat generated by the work needed for boring gun
barrels. He made a preliminary determination of the work-heat equivalent. Yet it
would take another half-century before physics would become thoroughly
convinced about the existence of a unique equivalence between work and heat.
What were the reasons for this awareness delay about an empirical fact of life that
is now so easily taken  for granted?

The answer to that question is that the concept of total mechanical energy had
hardly been recognized as a conserved quantity in a purely mechanical context.
The component structure in terms of potential and kinetic energy prevented a
recognition of an energy totality. Therefore, the identification of an even less-
understood quantity such as heat, with a still incomplete conception of energy and
work, was at that time not as straightforward as we might now believe.

Robert Mayer is usually credited for having formulated in 1841 what is now
referred to as the first law of thermodynamics. Joule also made determination of
the work-heat equivalent. Heat was now definitely recognized as a new form of
energy. Count Rumford went on doing useful things. He became instrumental in
establishing the Royal Institution in London. Later he endowed a physics chair at
Harvard College in Massachusetts, so, interestingly remaining bad feelings about
not supporting the revolution had subsided.
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The Discovery of "Brownian" Motion
An empirical fact that in retrospect fits the extended saga of the recognition of

heat as an equivalent form of energy is certainly the discovery by Robert Brown
(1773-1838) of a microscopic motion of little particles suspended in air or a fluid.
His observations were a by-product of his work as a botanist exploring the flora of
Australia. His microscopic investigations of 1828 revealed that pollen particles
performed a never-ending random zigzag motion as if the small pollen particles
were being knocked about in a random fashion by projectiles that were not visible
to the microscope.

Significant for these observations was that the intensity of the observed
motion appeared to increase with the temperature. Here was a beginning
suggestion that heat had something to do with a random molecular motion, or
whatever it was of which matter consisted. The introspective 18th Century had
given way to a 19th Century suddenly bubbling with new empirical and
ontological discoveries concerning the existence of atoms and molecules. A
veritable quantitative theory of Brownian motion relating this diffusion dis-
placement to temperature, medium viscosity, and particle size had to wait until a
clearer picture of the structure of matter had been obtained. It was given by
Einstein in 1905.  The hypothesis feature places this subject matter outside the
realm of empiricism. It belongs, for that reason, under the heading of ontology.

The Observation of Crystal Symmetries
Through the ages, crystals have been admired as manifestations of nature with

intriguing qualities, which made them sought after as gems. In the course of time
of having such objects under close scrutiny, man's interest in these gemstones
began to transcend aspects of art and business. The crystal gained human attention
for its very structure. The angles subtended by its natural surfaces turned out to
have very specific values that seemed to be characteristic for a given type of
crystal.

Further scrutiny showed that almost all crystals have symmetry axes of
rotation, meaning ideally formed crystals appear the same after having been
rotated about an integer fraction k of 360 degrees; if k=2 , it is said to be a two-
fold axis, k=3 gives a three-fold axis, k=4 a fourfold axis etc.. Soon it was noted
that only 2-fold, 3-fold, 4-fold and 6-fold axes occur. These purely empirical
observations seemed somehow revealing about internal crystal structure.

After these initial observations, the geometric puzzlers got to work in order to
find out how different symmetry elements could be spatially combined into
"closed" groups of symmetry elements. From the empirical starting point of
observing symmetry elements, people were moving to complete the
phenomenological picture. Let it suffice to mention here the end result of those
considerations. Including mirror symmetries, there is a total of 32 distinct crystal
classes, not more and not less. Where, when, and by whom this conclusion was
first established has remained a somewhat vague point in the modern history of
physics.
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Crystals without mirror symmetry can crystallize in two mirror-symmetric
forms. This phenomenon is called enantiomorphism. Hence if a crystal has no
internal mirror symmetry, nature gives it a mirror companion. These two species
of one and the same crystal can frequently be told apart by their left- and right-
handed optical activities.

There is no question that the empiric facts of crystal symmetry carry strong
ontic suggestions related to the atomic and molecular structure of crystals. The
mere restriction to 2- ,3- ,4- , and 6-fold symmetry axes seems indicative of a
space-filling aspect. When seeking a floor covering, only tiles of 2- ,3- ,4- , and 6-
fold symmetry can be fit together; 5-fold symmetry does not work. However,
whereas crystals are restricted by the selection 2- ,3- ,4- ,6-  fold symmetries,
molecules are not!

Dalton, the Gas Laws and the New Chemistry
Sometimes the empiric and ontic facts of life are so closely interwoven that it

is next to impossible to separate the two. The gas law of Boyle-Mariotte emerged
in the second part of the 17th Century. Its statement that product of pressure and
volume for a given amount of gas are constant is still a reasonably straightforward
empiric observation. It would take another century for Joseph Louis Gay-Lussac
(1778-1850) to show how the product of pressure and volume was not constant
but dependent on temperature.  The next important empiric observation indicated
that all gases had, at least approximately, the same coefficient of thermal
expansion. This unexpected finding invited a convenient shift in the zero of the
temperature scale from centigrade's somewhat arbitrary zero to Kelvin's absolute
zero. The gas law now says the product of pressure P and volume V divided by
the Kelvin temperature scale T is a constant; PV/T= C is constant. Here we are
still close to empirics.

Now we make a transition to ontics. John Dalton (1766-1844) made the
observation that for a mixture of gases, the total and each component individually
obey the same gas law, by splitting the total pressure into a sum of partial
pressures and a corresponding split in C. Finally there is the famous hypothesis of
(1811) by Amadeo Avogadro (1778-1858): the constant C in the gas law is the
same for all gases of the same pressure, volume and temperature and is a measure
for the number of molecules in the volume of gas considered. It was not until the
middle of the 19th Century before Avogadro's hypothesis was generally accepted
as a fundamental law of nature.  It would become of invaluable importance for the
development of modern chemistry

Chemistry, as an alchemist-type of empiricism, had been around for a long
time. Similarly as astronomy changed its methods of recording after Copernicus'
empiric rearrangement, so did chemistry bloom into a new phase of exactness
after the work of Dalton and Avogadro. They were instrumental in guiding the
path from Democritus' atoms (±400 BC) to contemporary atoms and molecules as
undeniably existing constituents of matter. All through the 19th Century, new
chemical elements were discovered, and by the turn of the next century, it had
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become clear that all of nature, as we now know it, has a little less than hundred
atomic building blocks. Soon it would appear that these chemical building blocks,
or "elements" as they are called, are the same from galaxy to galaxy, covering all
of the visible universe. At this point, mankind had encountered a grant moment of
encompassing epistemic awareness.
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New Perspectives in Optics
Initiated by the famous double-slit experiment of Robert Young (1773-1829),

a series of experiments now became possible which seemed to confirm Huygens'
earlier contention that light would have to be considered a wave phenomenon.
The objective of these experiments was to observe the interference of waves of the
same wavelength coming from the same source, but from different directions. For
water surface waves, one can easily demonstrate the ensuing diffraction patterns
of "standing" waves. Young was able to demonstrate the existence of such
patterns for light waves coming from the same source. The color of light was now
identified as a matter of wavelength. The wavelength spectrum of visible light was
found to be between 4000 and 8000 atomic units of Angstrom = 10-8 of a cen-
timeter. The mindset at the time was very much an either/or proposition.  Light
was either a  stream of particles, as had been favored by Newton, or it was a wave
motion, leaving undetermined what would be moving. The latter, perhaps more
pragmatic, point of view had been favored by Huygens. The French school of
Fresnel (1788-1827) and Fizeau (1819-1896) was particularly active in pursuing
the empirics following from the ontic proposition that holds light to be a wave
motion.

Fundamental Empirics of Electromagnetism
It can be argued that modern electromagnetism is really determined by two

fundamental empiric observations. They are: (1) the conservation of electric
charge and (2) the law of induction.  In chronological order Faraday (1791-1867)
formulated his law of induction in 1831. This law quantifies the electric potential
generated in a loop conductor as proportional to the change in magnetic flux
linked by that loop conductor. As here formulated, this law calls on the two
concepts: electric potential and magnetic flux.

 In analogy with Newton's law of gravity and the later Cavendish experiment,
Coulomb's law and the Coulomb experiments establishing, in addition, charge
polarity and its relation to attraction and repulsion, an electric potential may be
said to represent the work to bring a unit of electric charge from a location of zero
potential to the location whose potential needs to be established. Rather than
fathoming such convoluted language, readers may be more pleased to know that a
familiar measure of electric potential is the "volt" delivered from house to house
by your power company at the level of ±110 volt.

The magnetic flux is defined as the field of magnetic induction integrated over
the surface, bounded by the loop in which the electric potential is being observed.
Assuming that the reader does not want to go through with more convoluted
definitions of a magnetic field and its surface integral, let it be known that
Faraday's induction law is one of the most frequently applied laws in our modern
civilization. The design of just about all electrical machinery invokes the Faraday
induction law.

The next task is one of delineating what is meant by the conservation of
electric charge. If current is defined as the amount of charge that passes a cross-
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section per unit time, then conservation of electric charge for any given volume
means that the change of total charge in that volume is solely determined by the
charge that goes through the boundary of that volume. In the course of time, there
have been numerous experiments indicating that electric charge is conserved in
this sense. Faraday's laws on the electrolytic deposits of metals by electric currents
may be regarded not only as a clear indication of charge conservation, it also
established the existence of a discreteness of elementary charge involved in
chemical reactions. Yet, it was the elaborate study of the behavior of electric
circuitry by Gustav Robert Kirchhoff (1824-1887) in 1845 that truly clinched the
charge conservation statement. Kirchhoff later became active in the spectral
analysis of chemical elements.

This powerful method of chemical analysis was based on the property of
chemical elements to emit or absorb, in the appropriate physical circumstances,
light of a very specific color-characteristic of that particular element. This method
became instrumental in establishing the universality of the new chemistry. It now
became clear that the existence of chemical elements as established here on earth
was of a truly fundamental importance, because it retained validity throughout the
universe known to man.

 Coming back to the conservation properties of electric charge, the 20th
Century provided a surprise in the form of charged pair creation. It should be
noted that the creation of electrons and protons in cosmic rays and acceleration
machinery remains compatible with the law of charge conservation, because, until
now, such charges have always been created in plus-minus pairs: electron-
positron, proton-antiproton.

Finally, a contact needs to be established with the laws of mechanics. A cur-
rent-carrying conductor suspended in a magnetic field experiences forces that
have been described in detail by Ampère (1775-1836). The force is at right angles
with the direction of the current, the direction of the field of magnetic induction
and proportional to their respective strengths. The force vanishes if current and
magnetic field are parallel, meaning it is also proportional to the sine of the angle
subtended. If Faraday's law is central to the design of electric generators,
Ampère's law is central to the design of electric motors.

The fact that conversely magnetic needles are deflected by electric currents
was discussed by Oersted (1777-1851). Ampère's set-up, however, led to a better
possibility for precise quantitative experimentation. The mutual sense of
directions of current, field and force are usually interrelated by left- or right-hand
rules, depending on how the order of the triplet is taken.

Finally, the reader should be aware that the initial similarity between
electricity and magnetism had led to two types of units. Weber (1804-1891)
established that the ratio between the two was related to the speed of light. This
fact was later borne out by Maxwell's theory.

Empirics of the Laws of Heat Radiation
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If we consider that life on earth is contingent on heat energy radiated by the
sun, it stands to reason that physics has made empiric attempts at  establishing
what kind of laws heat radiation obeys.  To get a clear idea of how much heat
energy reaches us by radiation, the radiation transport of heat has to be separated
from heat transport through contact, conduction and convection. Since the light
and heat of the sun reaches us through empty space, it rules out any of the other
mechanisms of heat transport. Carefully controlled experiments by Stefan (1835-
1893) established in 1879 that the radiation heat emitted from a hot body is pro-
portional to the fourth power of the Kelvin temperature of that body.  It was found
that the constant of proportionality of this law did not depend on the constituent
materials of the body. A copper sphere or an aluminum sphere would give the
same constant proportionality, provided the surfaces of the spheres had been
thoroughly blackened. In principle, a black surface and empty space inside (black-
body) should give the same result. So, Stefan had established a universal
empirical result in radiation.

Ten years later, Boltzmann (1844-1906), capitalizing on the black-body
concept, gave a very elegant derivation of this law by assuming that the hollow
black-body was filled with random electromagnetic radiation. This
thermodynamic derivation, though, belongs under a phenomenology heading.
Note, however, that the Boltzmann derivation critically depends on the material
independence of the law as indeed observed by Stefan.

The next phase in the understanding of heat radiation had to do with its
spectral composition. It was found that the spectral intensity approached zero at
the long and short wave length end, with a maximum in between, thus resulting in
a bell-shaped curve. The wave length ¬m , where the maximum intensity occurs,
becomes shorter and shorter for higher temperatures. Wilhelm Wien (1864-1928)
became the 1911 Nobel laureate for his work on the spectral properties of the
black body radiation.  He found the product ¬m T to be constant. The value of the
constant was determined by experiment, its value later made explicit Planck's
theory of heat radiation.

The here-given account of black-body radiation had been solidly established
before the end of the 19th Century.  Several attempts were made to come to a
deeper understanding of the black-body radiation.  Wien himself was responsible
for a high-frequency approximation of the spectral distribution and Raleigh-Jeans
produced a low- frequency approximation using theory concepts available at that
time. These efforts are, however, outside the realm of empiricism; they belong in
the realm of ontology. Yet for the record, let it be mentioned here that in 1900
Max Planck (1858-1947) showed that a synthesis of the two approaches was
possible by introducing a concept of quantized action. The action here referred to
by Planck (to be distinguished from Newton's action=reaction) is of the nature of a
momentum (mass x velocity) integrated over distance.

This work earned Planck the 1918 Nobel prize. The resulting law not only
accounts quantitatively for the Wien displacement constant, by integration over
the whole spectrum from zero to infinity, it also produces a correct value for the
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proportionality constant of the Stefan-Boltzmann law of total black-body
radiation.

A Survey of Twentieth Century Empiricism
A scrutiny of the preceding description of empirical experiences shows an

increasing difficulty of separating empiric observations from ontic injections. The
fact is that once certain ontic elements have become accepted as established parts
of physics, the strategy of empirics adapts to this new situation by incorporating
those elements as essential features of the physical world we know.

A perhaps striking example is the observation of the photo-electric effect
made at the end of the 19th Century. The experiments confronted physics of that
time with the enigma that photo emission manifested an unexplained cutoff, if the
wavelength of the radiation was increased. This cutoff happened to be quite sharp
and the effect could not be undone by increasing the intensity of the radiation of
that longer wavelength.

An answer to this enigma was given by Einstein (1879-1956) in the same year
(1905), when he published his papers on Brownian motion and the special theory
of relativity. Einstein showed that the answer to the emission cutoff was a
consequence of Planck's hypothesis about the quantization of action. In fact, it
could be used to measure an accurate value of Planck's action quantum h in good
agreement with the values that could be inferred from the measurements on black-
body radiation.

Another case invoking the same action quantum was the observation of the
Balmer spectral series of hydrogen and the 1913 quantitative account given by
Bohr (1885-1962) invoking the same action quantum.

The experiments and the corresponding ontic injections made by the theories
of Planck, Einstein and Bohr straddled the transition from 19th to 20th Century.
They started off a new "quantum" era.

From that time on, almost all fundamental empirics had either directly or
indirectly something to do with the "phenomenon of quantization," as it was now
called. There is an extensive literature dealing with quantization and its
consequences.  Here an attempt is made to select mostly those contributions that
have opened up new avenues in that part of empirics that is somehow related to
quantization. Here follow brief descriptions referred to by their year of publication
or recognition.

*****
1908  Rutherford (1877-1937) received the Nobel Prize for chemistry in

recognition of the total outcome of his scattering experiments. His work would
simultaneously open up atomic as well as nuclear physics.

1911 The discovery by Kamerlingh Onnes that certain metals become
superconducting at very low temperature.  The zero resistance seemed total,
because currents have been observed that go unabated for hours, days, and longer.
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1912 Father and son Bragg show that X-ray diffraction patterns can be
produced by having crystal lattices act as diffraction gratings. In 1916, Debye-
Scherrer showed how similar results could be obtained with powdered crystals.

1913 Moseley (1887-1915) publishes his work on X-ray spectra of atoms. He
established how nuclear charge (atomic number) rather than atomic weight
determines chemical properties, which led to the concept of isotopes as elements
of same atomic number, but different atomic weight. His work very much helped
to complete Mendeleev's systematic table of chemical elements and made it
possible to predict where new elements were to be expected, bringing the total
number to 92. Several new ones have now been added, most of which though are
unstable .

1914 Following Bohr's work on hydrogen's stationary states, Franck and Hertz
devised an experiment by means of which stationary states of gaseous substances
could be demonstrated to exist, and last but not least, their energy levels could be
measured.

1927 Davisson-Germer and Thomson show that electron beams of uniform
velocity are capable of producing diffraction patterns similar as those observed by
the Braggs and Debye-Scherrer. These experiments confirm a quantum relation
earlier postulated by de Broglie.

1933  Meissner and Ochsenfeld show that, in superconductors, not only the
electric field vanishes, but also the field of magnetic induction is expelled from
the superconductor. This simultaneous expulsion becomes understandable from a
point of view of spacetime description.

1957  Mössbauer observes that nuclear resonances in the realm of X-rays can
become extremely sharp at low temperatures. The phenomenon is explained as the
result of a recoilless emission; instead of a single nucleus the joint nuclei of the
whole crystal lattice take up the recoil impact. This phenomenon introduces a new
era of precision measurements.

1960 German (Doll et al) and US teams (Fairbank et al) confirm the existence
of flux quanta at half the value earlier anticipated by Fritz London. The flux
quantum is found to equal h/2e, i.e., Planck's quantum divided by twice the
electronic charge.

1962 Brian Josephson conducts a number of experiments demonstrating the
tunneling capabilities of superconducting electrons through thin insulating layers.
This new effect leads to interesting new measuring  devices.  One of them, the
Josephson ac effect, permits measurements of the h/e ratio with unparalleled
precision.

1980 Von Klitzing and fellow workers experimenting with two-dimensional
semiconductor samples at low temperatures and high magnetic fields discover that
the ratio of Hall voltage divided by sample current assumes constant values h/i e2
in which i is either an integer or, as later discovered, a rational fraction.

Josephson and quantum Hall effects together provide to date the most accurate
e and h values approaching ten significant decimal points.
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1989 The experiments by Tonomura et al show how diffraction patterns result
from a statistical build-up of individual particle incidences. This experiment may
well establish a landmark event, because after all those years it finally indicates
that  the mystic Newton may have been closer to the true nature of light than the
pragmatist Huygens.  Yet, as long as there are enough particles, they may be easier
handled by waves.

*****
The account of work covering the Twentieth Century does not end here. A

massive amount of empiric reconnaissance work has been performed in the
nuclear realm. A tremendous number of particles have been generated by the
accelerator machines. Most of these particles are unstable and fall apart until the
remains are stable. Empiric rules have been established for particle interactions.
Particles have been assigned numbers such as Lepton- and Baryon number in such
a manner that charge, lepton, and baryon numbers are conserved in certain
interaction processes. Only electric charge ties in with an earlier existing concept.
The others are purely empiric additions.  There are other assigned properties such
as parity, spin, isospin, hypercharge and helicity. Some are universally conserved;
for others it depends on the type of interaction. The latter are subdivided in strong,
weak, or electromagnetic interactions.

Properties of these elementary particles such as charge, mass, and spin are
inferred from trajectory behavior and interactions. Let us cite here the most
dominant particles that occur in collision interactions of nuclei. There are charged
particle-antiparticle pairs: ± electrons,± m-mesons, ±pions, ±protons. Neutral
particles occurring in pairs of particle anti-particle are neutrons, neutrinos; their
pairing is not determined by charge, but may, perhaps, be thought of as a form of
enantiomorphism as encountered in crystals. Finally, there are the neutral pion and
the photon, which are considered to be their own anti-particle.

TABLE OF ELEMENTARY PARTICLE PROPERTIES

  name    charge    mass   spin magn. moment
-electron          - e                  m    ¡/2    -(e/m)¡/2
+electron          +e                  m     ¡/2     (e/m)¡/2
+µ meson         +e               3am    ¡/2     (e/3am)¡/2
- µ meson              - e     3am    ¡/2    -(e/3am)¡/2
+pion             +e     4am     O            O
- pion             - e     4am       O            O
neutral pion             0     4am      O            O
+proton                 +e    27am  ¡/2 there  are no simple
-anti proton    - e    27am  ¡/2  theoretical expres-
neutron            O    27am  ¡/2 sions for these
anti neutron      O    27am   ¡/2 magnetic moments
neutrino          O      O   ¡/2       O
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anti-neutrino    O              O   ¡/2        O

Table I: The purely empiric value a=68 gives, within a percent, cited masses and
magnetic moment data. The magnetic moment expressions are according to the
theory of Dirac.
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PHENOMENOLOGY

If the 17th Century, so to say, opened up the empiric inquiry into the laws of
nature, the 18th century could be called the era in which the phenomenologists
became active and ruled supreme for some time. They took the legacy of Newton
and examined the possibilities of what they could do by further developing the
mathematical principles of the calculus.  It is of interest to note that 18th Century
physicists were mostly leading mathematicians, and most 18th Century
mathematicians were extremely accomplished physicists.

Lagrange, Euler, d'Alembert and the Bernouillis were the people who brought
Newtonian mechanics to full bloom by applying the full force of mathematical
rationalism. Had they practiced the same type of professional chauvinism as, at
times, has been seen in the 20th Century between physics and mathematics, they
might not have gotten anywhere.  All of which goes to show that, regardless of
how much we may depend on good specialists, 'specialism' all by itself is not to be
taken as an object of a life's dedication, because, at any time, a specialization may
become obsolete.  An "evil" generalist will come along and show an easier and
better way.  In so doing, he turns the triumph of a life dedicated to specialism into
the tragedy of mastering an art no longer needed.

The explosion of mathematical ability in the 18th Century, as triggered by the
calculus and Newton's laws, was accomplished by people who at all times retained
a good overview of the situation. Since mathematics played a major role in these
developments, the question arises: how do we explain and talk about these matters
without getting into the details of mathematical development?  Probably the best
way of accomplishing this is by giving a description of how Newtonian mechanics
branched out into a number of disciplines.  To appreciate the creation of these
branches, we need to be aware of some inherent limitations of Newtonian
mechanics.

The major triumph of Newton's laws was a derivation of the planetary
trajectories. If we know how small the planets are as compared to the immense
size of their trajectories, we may realize that Newton's laws, as formulated, apply
merely to mass-points.  Newton was well aware of this limitation.  In fact, any
time we speak of a trajectory, we can only think of that trajectory as traced out by
a point.  So, presented with a finite body, what is the location of the point to be
taken as representative of the trajectory motion?

In addition to the trajectory motion, the object can be rotating. So, taking any
peripheral point of the body, we would get a trajectory with a superimposed
wiggle . There is, however, a point inside the body that is at rest with respect to
the rotation. It is known as the center of gravity. Newton's mass-points are
therefore abstractions of finite bodies that have all their mass concentrated in the
center of gravity.

How do we get from laws of mechanics that apply to point-masses to the
behavior of finite bodies, or the behavior of fluid media such as gases and liquids,
and last, but not least, elastic media?  Could all these potential branches be
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completely determined by Newton's laws of point-mechanics? It seemed a rather
daunting task to work from the specialized Newtonian statements to the more
encompassing fields of what are now known as rigid body dynamics and fluid-dy-
namics.

There still are today pending questions as to whether mechanical behavior in
the large can be completely governed by the behavior in the small, as cited in
Newton's laws. It seems easier and more convincing to work from the general (in
the large) to the special (in the small). As will be discussed later, the latter
procedure is indeed possible for electrodynamics. Yet, notwithstanding gallant
efforts known as Hamiltonian procedures, it has not been possible to escape the
conceptual grip of a locally centered understanding of mechanics. The Newtonian
breakthrough was made possible only by starting with a point-centered
description.

Following roughly a chronological procedure, we now discuss new branches
of mechanics and how they relate to contemporary life.

Rigid Body Dynamics
Although some knowledge of rigid-body dynamics was already around in the

days of Newton, the complete laws of rigid-body dynamics were formulated by
Leonard Euler (1707-1783). For the purpose of bringing out similarities with
Newton's second law (force=mass times acceleration), let us reformulate the latter
as force=change of momentum per unit of time, in which momentum is defined as
mass times velocity.

The fundamental law of rigid body dynamics is a similar type of relationship.
It says: torque = change of angular momentum per unit of time. The concept of
torque is defined as force times its arm of leverage. Similarly, angular momentum
is momentum times its arm of leverage.

It follows from this law that zero torque means the angular momentum vector
is constant in time, hence angular momentum retains a fixed direction in space
and its modulus is constant. Having devices retaining known fixed directions in
space, one does not need stars to navigate on the seven seas. In 1957 the
submarine "Nautilus"  crossed the polar basin underneath the icecap using such
inertial guidance systems. The trick is how to suspend spinning tops so that they
are not subject to even the smallest external torques. These technical problems
were satisfactorily solved by the Draper Laboratory in Cambridge, Massachusetts.

Euler's derived law of rigid-body dynamics has great similarity to Newton's
first and third laws. Without external force, a body is either at rest or in uniform
motion.  Analogously, without an external torque, a top is either at rest or
spinning uniformly.

Yet, while momentum is simply the product of mass and velocity, angular
momentum is not simply the product of two things. It is instead the result of a so-
called tensor operation on angular velocity.  This tensor  is known as the moment
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of inertia; it is mass related to the square of its lever-arm with respect to a body's
gravity center.  A tensor, strictly speaking, is a mathematical object. Tensors ac-
quire a role of great importance in the study of anisotropic media, relativity, and
noneuclidean geometry.

Every solid body thus has a moment of inertia characteristic of that body. It is
shown that a rigid body has three mutually perpencicular principal directions of
inertia for which angular momentum and angular velocity have the same direction.
The car mechanic who does your wheel balancing, is, or should be, expert in
aligning the wheel's principal axis with the direction of angular rotation.

While Euler did not have to worry about balancing the wheels of his car, he
could quantitatively explain a number down-to-earth things such as the precession
of a spinning top on a smooth floor, as well as less mundane things as precession
of the earth's axis of rotation.  In a contemporary context, Euler's equations help to
design the spin cycle in your washing machine; in short, they helped in the design
of the smooth vibration-free operation of numerous pieces of machinery. Who
says old stuff is not worth knowing?

Fluid Mechanics
Euler not only gave us the fundamental equations of rigid-body dynamics, he

also transcribed the Newton laws to serve a purpose in the study of fluid behavior.
It is believed that Euler had pangs of conscience before he decided on a final
formulation of the equations that are now known as the "Euler equations of fluid
dynamics." They are partial differential equations that give, at any time and at any
point in the fluid, a balance between inertia forces and forces due to gradients in
static and dynamic pressure. Euler assumed that, for many practical purposes, the
fluid could be taken to be frictionless.

There is a remarkable change in Euler's point of view in the process of tran-
scribing Newton's laws. Writing down Newton's equations of motion, one writes
down a balance of forces while moving along with the object under consideration.
Euler, by contrast, assumes a stationary position with respect to which the fluid is
in motion.

It is of interest to know that Lagrange (1736-1813) formulated a similar set of
equations by giving a balance of forces while moving along with the fluid. One
then finds that the kinetic pressure term in the Lagrange equations is missing. Yet,
the two formulations are found to be compatible by taking into account mass
conservation and the added (indirect) time change due to fluid motion.  Euler,
almost thirty years older than Lagrange, recommended him for a position at the
Berlin academy. It thus seems likely that these two pioneers may have exchanged
views about this subject matter.

 As mentioned earlier, Euler's equations account for Archimedes' law of
buoyancy, and they also account for an hydrodynamic result earlier found by
Daniel Bernouilli (1700-1782). Theory and experiment illustrate the reality of the
kinematic pressure and its force components.  Even today, the Euler equations of
fluid dynamics are called upon to account for the lift of airfoils. The force
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accounts for the propulsion of a strange "sailing" vessel with rotating vertical
cylinders sticking out of its deck, as well as the "curve" balls in a variety of sports.
All this holds reasonably well, as long as internal fluid friction can be ignored.

The equations of Navier (1822) and Stokes (1845) are attempts at modifying
the Euler equations by accounting for viscosity.  Stokes gave exact solutions for
spheres and cylinders moving in viscous fluids. The ensuing quantitative relations
have been used to measure viscosity coefficients of fluids and have given results
in good agreement with other methods of measurement not critically dependent on
a full scale use of the Navier-Slokes equations. The conspicuous Stokes result for
spheres was later used by Einstein in his theory of Brownian motion and in
Milikan's famous oil-drop experiment.

Elastic Media
Gases, liquids, and solid media are capable of supporting waves. The

component of kinematic stress can be neglected for this purpose, because there is
no appreciable flow. The design of musical instruments,  during the 18th Century,
owes a great deal of insight to the mathematicians and physicists of its days. They
provided wave equations and solutions for strings, membranes, air columns: in or-
gans, trumpets, horns, trombones and woodwinds. The existence of a wave
equation and the discovery of its solutions go back to that time.  D'Alembert
(1717-1783) and last, but not least, the Bernouillis were instrumental in these
matters.

Cauchy (1789-1857) extended the derivation and use of wave equations to the
elasticity of crystals. He established that, for every direction of propagation there
are, in general, three distinct velocities of propagation. In isotropic media, this
number reduces to two distinct velocities of propagation. The latter are
longitudinal and transverse modes of propagation. By measuring the propagation
velocities, one can measure the two elastic constants that characterize an isotropic
solid; they are either cited as Young's modulus and Poisson contraction, or they
are cited as bulk moduli. Media that have direction-dependent properties are
called anisotropic. They have many more elastic parameters: their measurement is
a much more tedious process. For instance, while isotropic media have two
independent elastic constants, quartz crystals have as many as six independent
elastic constants.

Lagrangean and Hamiltonian Methods
Apart from creating his version of the equations of fluid dynamics, Lagrange

became known for his very incisive work in transcribing Newtonian mechanics.
His very mathematical methodology greatly improved the invariance structure of
mechanics. At the same time, he delineated in different ways the physical content
of the laws concerned.

While the Newtonian formulation of mechanics had been closely tied to the
use of orthogonal Cartesian frames of reference, the Lagrangean approach
liberated mechanics from this apparently unnecessary restriction. The underlying
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idea was that the laws of nature should not be unduly biased by subjective
individual decisions favoring specific frames of reference. Here we are confronted
with a first attempt at formulating laws of nature independent of specific frames
of reference.

In mathematical language, this means one seeks a formulation that is invariant
(remains unchanged) under the widest group of transformations that interrelate
frames of reference.  Later, this was found to be a wise decision because it
facilitated transitions to continuum mechanics as well as relativity and quantum
mechanics. To appreciate these methods, it is necessary to develop a feel for
invariant mathematical expressions, plus knowledge under what group of
transformation such invariance features will be retained. Ensuing improvements
are found to be contingent upon rather fundamental changes in the starting point
of law formulation.

Since the Newtonian formulation demands a balance of forces, explicit frames
of reference are needed to delineate force components. The Lagrangean
formulation first introduced the concept of kinetic energy* and subsequently
introduced the concept of generalized forces. A more complete frame-
independence was accomplished with the introduction of the notion of potential
energy.  The latter is the work done against the external forces; only if that work is
independent of the path has it acquired a unique meaning and can it be called a
"potential energy."

At this point, there are two energy-like components: the kinetic energy T and
the potential energy P.   The sum of the two became recognized as total energy
E=T+P. The difference of the two is now referred to as the  Lagrangean action
L=T-P. It appears from these considerations that the notion of energy was by no
means a well-defined concept in Newtonian days. Bits and pieces of energy
components really arose from solving Newton's equations. Energy was first
known as a mere integral of these equations, it also was distinguished as having
invariant properties. While this awareness was around at the end of the 18th
Century, it would take another four decades before the notion of energy would
receive the wider recognition it received in the first law of thermodynamics. It was
a great variety of empiric inputs, their rational and ontic processing that finally
brought out a much wider range of energy manifestations encompassing electric-
magnetic-, heat- and nuclear-energy.

However, prior to the era of thermodynamics, Lagrange recognized that the
action function L would take a central place in his formulation of particle
dynamics. Subsequently, Hamilton (1805-1865) considered  L as the integrand of
an integration over time. Examining the extremum features,  of that integration,
according to a procedure developed by Euler, the Lagrangean equations are found
to be exactly the condition for an optimum value of this integral. It has become
known as "Hamilton's action principle for particle dynamics." It also led to
equivalent formulations known as "Hamilton's equations of motion" as well as a

                                                
* Earlier used by Leibniz under the name "living force."
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"Hamilton-Jacobi equation," which is a partial differential equation whose
characteristic equation are the Hamilton equations.

Another remark in order here has to do with geodetic (shortest) lines in
Riemannian geometry. The Lagrangean equations, when written in terms of the
metric coefficients, assume the form of so-called geodetic equations. This
structural resemblance would later play an important role in the general theory of
relativity: objects exposed only to inertia and gravity follow a geodetic path in the
Riemannian spacetime continuum.

The Hamilton principle for particle dynamics has been successfully extended
to continua. The time integral then becomes a spacetime integration of a
Lagrangean density which is the difference between kinetic and potential energy
densities or, if you will, the difference between magnetic and electric energy
densities. The word density refers to the fact that energy components are defined
per unit volume. Here is an early invitation to consider spacetime formulations
instead of purely spatial formulations with time as a parameter telling us how
things evolve.

It should be mentioned that Maupertuis (1698-1759) had earlier forms of an
action principle. It appears that the Hamilton principle emerged as the result of
finally recognizing the very gradual evolution of the energy concept. There are
principles and concepts that take a long time before they can be seen in the full
context of their ramifications. They are examples of initially narrow and
preliminary knowledge acquiring a wider scope in the process of reaching for their
epistemic goal. It illustrates the drawn-out transitions from phenomenology and
ontology to epistemology.

The Science of Thermodynamics
Thermodynamics deals with the many ways in which heat and mechanical

energy can interact. It developed, so to say, in the wake of the industrial revolution
brought about by the steam engine. As such, it has become one of the beautiful
examples of how systematic pursuit, starting from empirical facts, can lead to a
grand phenomenological structure with widespread ramifications in physics,
chemistry, and technology.

Once the Mayer work-heat equivalence of 1848 had become fully accepted, it
became known as the first law of thermodynamics. The second law of
thermodynamics was a recognition of the need and existence of an additional
thermodynamic description parameter. This unknown entity would have to be
complementary to temperature, say, similarly as pressure is complementary to
volume, and potential is complementary to charge. This new thermodynamic
variable was given the name entropy, meaning "referring to a state of change."

It was understood that heat and temperature could not function as a duo of
variables for this purpose; their product had the wrong dimension. It had to be
temperature and this newly created variable; together they made up heat. The
entropy concept is one of the very subtle inventions of 19th Century
phenomenology. It opened windows to new horizons. In mathematical terms, it
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meant entropy had a priori integrable qualities, heat as an energy component did
not have that quality. The integrability of entropy is now frequently referred to as
the first part of the second law of thermodynamics.

The second part of the second law of thermodynamics claims that entropy can
only increase; it cannot decrease. The latter statement is equivalent to the
statement that heat can flow only from higher to lower temperature. It was pointed
out by Maxwell that intelligent tiny creatures (Maxwell devils) capable of
separating fast and slow molecules could violate the second part of the second
law.  Without those smart creatures the universe would be destined to die the
death of an ever-increasing entropy. Later, entropy was found to be a measure of
disorder.

The two laws of thermodynamics here discussed much improved the un-
derstanding and the limitations of all thermal engines. The maximum obtainable
efficiency of the steam engine was shown to be governed by the differential
between input and output temperatures. The heat process in chemical reactions
became better understood through thermodynamics, as well as the coexistence of
gaseous and liquid phases.

Boltzmann made a spectacular applications of the laws of thermodynamics
with his derivation of the Stefan law of heat radiation.   

The Emergence of Spacetime Descriptions
Spacetime descriptions are usually associated with the relativity era, the truth

of the matter is, however, some of it emerged prior to relativity. The fact is that
the more dramatic aspects emerged during the development of relativity. A good
plea can be made that if not Lagrange, it was Hamilton who, at least indirectly,
called attention to spacetime description features.  Here is a possible view of the
situation, provided a little mathematical detour is permitted.

Consider hereto Hamilton's action principle. Assume the equations of motion
are met, the remaining contributions to the integral occur at the spacetime
beginning and end of the spacetime trajectory. This boundary contribution
assumes the form of a spacetime displacement with coefficients that are found to
be energy-like, as a coefficient of the time displacement, and three momentum-
like components as coefficients of the spatial displacements. In modern lingo, this
linear expression is said to define a differential one-form in the four dimensions of
spacetime. Its conditions of integrability are the Hamilton equations of motion,
which happen to be equivalent to the Lagrange equations. This transcription from
Lagrangean L to the action one-form of energy and momentum is known as a
Legendre (1752-1833) transformation.

The more spectacular examples of invitations for entering into  spacetime
description occur in Hamilton-based descriptions of the continuum realms of elec-
tromagnetism, elasticity and, despite claims to the contrary, quantization.

The name Minkowski (1864-1909) is perhaps most indelibly connected with
the introduction of spacetime description. Yet, simultaneously, also Hargreaves
had been making similar observations. Whereas from the beginning, Minkowski
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considered a spacetime metric, Hargreaves' work seemed more oriented towards a
perception of spacetime as merely a differentiable manifold.

Without Minkowski's metric spacetime manifold, there might be some real
doubt whether Einstein could have developed the General Theory of Relativity as
we know it today.  The basic idea of spacetime description is really a connotative
evolution in the time concept. Whereas Newton had insisted on a connotation of
the time as a parameter that was said to be absolute, Minkowski added the feature
of a coordinate quality that could not be absolute, but had to admit a frame
contingency.

A number of mental exercises related to the so called "Doppler effect" and its
connection to the phase invariance of wave propagation had long ago invited an
option of attributing time with a coordinate quality. Waldemar Voigt of crystal
physics fame, was one of the first to consider that angle. In so doing, he ended up
with a spacetime transformation that today would be referred to as a first order
Lorentz transformation. Inversion of that transformation leads to asymmetry that
would contradict "Galilean"  relativity.  An exercise in symmetrization can now
be shown to lead from the asymmetric Voigt transformation to the actual Lorentz
transformation, which is symmetric under inversion.

Once the Lorentz transformations are known and we consider the many ways
in which they can be derived, one wonders whether a thorough assessment and
comparison of these varied approaches can bring us closer to an improved
epistemics of these transformations.   

The Phenomenology of Electricity and Magnetism
In collecting the empiric input material for a phenomenological theory of

electricity and magnetism, it was noted that basic information was obtained
through experimentation involving globally complete systems. There was no need
to extrapolate observation made on finite bodies to point-like objects such as
Newtonian mass-points. An exception seemed Coulomb's law dealing with the
polar nature of point charges The Cavendish gravitation experiment was
patterned after Coulomb's experiment. Its sources of gravitational force were
rather large heavy spheres. Newton, however, had already confronted this
predicament by mathematically showing that those spheres could be replaced by
mass-points.

 Faraday's induction law should be mentioned as a unique example of a global
observational input. The collective information culminating in Kirchhoff's charge
conservation has more of an inferred character. Then there is Gauss' global law of
electrostatics as an alternative of sorts to Coulomb's force law. Finally there is the
Ampère force law that leads to a cyclic integral measuring current. Since current
is charge per unit time. Ampère and Gauss laws become united under the heading
of spacetime description..

The current and charge aspects of the Ampère-Gauss law establish contact
with the mechanical world of forces. In continuum mechanics, Lavoisier's
(approximate) law of mass conservation may only be regarded as a law statement
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that is nearly global in nature.  Major questions are associated with the
implications of the mathematical machinery used in making transitions from local
mass-point events to events requiring a global characterizations.

The phenomenology of mechanics has taught us how to work from the local
observation to a globally encompassing point of view.  There were two stages in
that development. First, a transition had to be made from the Newtonian particle-
based formulation to Euler, Navier-Stokes and Cauchy equations governing the
local behavior of continua. The next step in the single particle as well as the
continuum case is the integration of the differential equations that are said to
govern those situations.

In electrodynamics it is the other way around; experimentally we start off with
a global integral result and from there we work our way around towards a local
equivalent in terms of differential equations.  The latter program was most
completely achieved by James Clerk Maxwell (1831-1879). There are reasons to
assume that local happenings don't uniquely determine what happens in the large
and, conversely, knowing what happens in the large has more of a chance
determining what happens in the small. So our problem is to convey the essence
of these mathematical techniques without getting involved with all the techni-
calities of the calculus.

It should be a source of hope that Faraday, notwithstanding his limited training
in calculus, became a prime force in discovering one of the most fundamental
global laws of nature. He was  instrumental in creating the concepts that made
Maxwell's mathematization possible. Faraday, with his lines of force and tubes of
force, became one of the  eloquent creators and supporters of a field concept out-
side of matter. In continuum mechanics, we saw already the emergence of a field
concept in matter.

The Newton gravity and Coulomb's electrostatic laws initiated vacuum fields.
These laws were cast in integral form by Gauss (1777-1855). Later, Ampère, but
especially Faraday, extended these field concepts to magnetism.  Faraday enriched
the field concept with geometric illustrations of his tubes and lines of force. They
were called "fields" or more specifically "vector fields." In fact Faraday
distinguished four mathematically distinct vector fields in space, and so did
Maxwell! There were line vectors (parallel elements of surface) and surface
vectors (tubes), each of which could be given directive (arrow) or circular
orientation.* The electric field E is a line vector with arrow, the magnetic field H
is a line vector with circulation direction. The dielectric displacement D is a tube
with arrow, and the magnetic induction B is a tube with inner circulation.

The great simplifiers of modern times have done away with Faraday's
mathematical inventions and Maxwell's substantiation thereof, by boldly replacing
the four Faraday species by one mathematical vector-type. This identification is

                                                
* The inverse distance of the parallel surface elements is measure of field strength ( e.g., gradient
field) of a line vector, whereas the inverse cross section of a tube-type vector measures field
strength.
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permitted within the orientation preserving orthogonal group. As a result, attempts
at using more general coordinates require the erection of local orthogonal frames
to retain the now generally accepted vector identifications. A text by Schouten has
preserved Faraday's field inventions and his physically important field distinctions
by putting these features in the mathematical perspective for which Maxwell had
been reaching. Although this text has been around for almost half a century, there,
so far, are no real signs in the general text book literature of keeping Faraday's
discerning judgment alive. Only ad hoc tidbits appear in those branches of physics
where such distinctions are essential.

 All of this brings us to some major mathematical developments that became
instrumental in dealing with these fields. They have to be delineated prior to a
more encompassing discussion of global integral situations and their relations to a
local differential point of view.

 The Theorems of Local-Global Field Relations
The subject matter to be discussed in this section is one of those structural

developments in mathematics that took a long time before most of the ins-and-
outs had come to a level of mature awareness.  Pioneering in this realm goes back
to Gauss' divergence theorem of integral calculus, which was then followed by
Stokes (1819-1903) theorem, which said something similar, yet seemingly using
altogether different attributes. Where Gauss was using a differential operation
known as "divergence", Stokes was using a differential operation known as "curl".
These structurally very different-looking differential operations have played an
important role in the early development of the mathematical (field) theory that
was to be erected on Faraday's field concept. Yet, by the same token, their
seemingly different appearance obscured a perspective that would become rele-
vant later in future developments.

For the sake of simplicity, the early preachers of the Maxwell gospel reduced
Faraday's four distinct vector species into one species that was to serve all pur-
poses of electromagnetism and all purposes of physics: period!  Faraday and
Maxwell might have had second thoughts about these decisions, because the
earlier mentioned distinctions of several vector species had been rather in-
strumental in Faraday's thinking. After all, this type of thinking led to the very
fundamental induction law.

Here is one of those instances where the originator of a law had the epistemic
perspective to bring in the correct ingredients, yet followers felt they could
dispense with those ingredients. Hence followers took out elements that remind us
where they came from . In so doing  they forced a good epistemic result into a
state of ontic isolation. Therefore, in speaking about these matters, it is better to
describe the concepts without use of standard mathematical symbols and for-
malisms, because they bring back some  old habits we wish to avoid here.

Let us now briefly sketch how the Gauss-Stokes initiatives have fared later in
the 19th Century and thereafter. In the 19th Century, Cauchy made an important
application of Stokes' theorem for his residue theorem of Complex Analysis.
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Then, in the course of time, a number of authors extended the awareness of a
diversity of features of these integral theorems.  Poincaré (1854-1912) and
Brouwer (1882-1966) gave outlines of dimensional generalizations. Cartan (1869-
1951) and Schouten (1882-1971) stressed conditions for which these theorems
exhibit properties of frame- as well as metric-independence. De Rham, capital-
izing on these extended invariance features, then realized their potential for pur-
poses of topology. In so doing, he reactivated a feature Gauss must have sensed
already, in witness of what in physics is known as Gauss' theorem of electrostat-
ics: i.e., the prototype of a period or residue integral.

So, in the course of time, people have become increasingly perceptive about
the Gauss and Stokes theorems. It should now be remarked that these laws are
generalizations of the principal theorem of the integral calculus, in which
boundary values of the integral function equals a one-dimensional line integral
between those boundary points. The derivative thus appears as the inverse of inte-
gration. In the general Gauss-Stokes case, a cyclic integration has a uniquely
defined inverse operation that is called exterior derivation.

In the middle of the 19th Century, mathematicians became interested in
geometries of higher dimensions than three. These geometries don't have to be
metric or Riemannian.* So let it be known that the fundamental theorem of the
integral calculus is not tied in with a metric specification either, it therefore stands
to reason that neither Stokes' nor Gauss' versions of such theorems tie in with
metric structure.  Unfortunately  textbooks used for the purposes of physics do not
bring out these metric-independent features. The reader may now sense some
remarkable generalizations. Let us give this general formulation, normally referred
to as "Stokes' generalized theorem" in a "nontechnical" language as much as
possible.

Given an n-dimensional differential manifold with a p-dimensional  scalar- or
pseudo scalar-valued integral over a closed (cyclic) p-dimensional domain (0<
p< n). This p-integral equals an (p+1)-integral taken over a (p+1)-domain
bounded by the cyclic p-domain. The integrand of the (p+1)-integral obtains from
the integrand of the p-integral through the process of exterior derivation.

For the case p=0, it is the principal theorem of the integral calculus depicting a
line integral of the exterior derivative, the latter is here a gradient of a scalar
function in an n-manifold. This makes the line integral only dependent on the end
points of integration, independent of the path between the two points.

                                                
* Riemannian manifolds are metric, but they are commonly understood to have positive definite
metrics.  The metric of spacetime is said to be indefinite.  It is important that both theorems hold
regardless of whether a metric exists or has been defined;  manifolds without metric are  referred to
as differential manifolds indicating that differentiability is retained.
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For n=3 and  p=2, it is Gauss' theorem, the exterior derivative becomes the
divergence of standard vector analysis.*

For n=3 and p=1, it is Stokes theorem, the exterior derivative becomes the curl
of standard vector analysis.

Note that for n=3 and p=1, the 2-dimensional surface bounded by the one-
dimensional integration loop is not unique. An infinity of surfaces is bounded by
that loop and all these integrals over distinct surfaces are equal, because they
equate to the same line integral.

Now consider the case n and p=n-1, or specifically for ordinary space  n=3 and
p=2. In this case there are only two domains bounded by the closed surface in
space. In a Euclidian n=3, we say there is an inner and an outer domain. (Compare
footnote)

In Euclidian space, mathematical conscience dictates assumptions to the effect
that there is a behavior at infinity to make integrals over the outer domain vanish.
Such assumptions are permissible when concentrating solely on what exists in the
inner domain. Yet a sustained ignoring of things in the outer domain would be an
arbitrary act of convenience to study only things close at hand. It is now important
to consider here that Gauss' law for electric charge has residue polarity, whereas
gravity is nonpolar, their ramifications for the outer domain become vastly
different.

A Euclidian outer-domain is a rather unmanageable thing, because its
extension is unlimited. A compact closed manifold is more manageable; let it be
visualized as equivalent to a three-dimensional sphere. A two-dimensional sphere
imbedded in a three-sphere gives a Jordan-Brouwer separation between two
domains, similarly as a circle on a sphere separates two domains. Now the
question arises: what is outer- and what is inner-domain. Just having it depend on
the mutual size would not be an absolute distinction that is usable in this
mathematical context.

Assuming the surface normal is pointing out of what is originally meant to be
the inner domain, then that same normal points into the outer domain.  Hence,
according to the generalized Stokes recipe, Gauss' theorem in a compact closed
three-dimensional manifold leads to the difference between the two contributions
of inner and outer domains respectively.* So in a purely spatial context we have:

An integral of a (surface) vector field taken over a 2-boundary in a compact
closed 3-space equals a volume integral over the interior minus a volume integral

                                                
* In the traditional 3-manifold that is Euclidian, the outer domain is normally ignored as "empty."
For a compact and closed 3-space, it becomes necessary to become specific about inner and outer
domain.
* Gauss' law extended to a compact physical space permits a remarkable application to
Mach's principle: see hereto E J Post and M Berg, Epistemics of Local and Global in
Mathematics and Physics (p.324 of the Proc.of the Sept. 1996 London Conference on
Physical Interpretations of Relativity theory, British Society for the Philosophy of Science.



39

over the exterior. Whatever is interior or exterior is solely determined by what is
defined to be the normal direction.

A similar theorem holds for p=n-1 in an n-dimensional closed manifold.
Unlike a past that has shown itself blind to orientability distinctions, in modern
physics it is now mandatory to discriminate between pseudo-scalar-valued
integrals (e.g., Gauss' law of electrostatics) and scalar-valued integrals (Gauss' law
for gravity).

Formalism Choices for Global Assessment
A promise was given to avoid undue technical expositions of mathematical

matters related to the phenomenological build-up of physics. Yet, if some details
are at variance with sound principles, it is mandatory to be alerted to inadequacies
in contemporary mathematical processing of physical laws. A detailed technical
account using contemporary notations would exactly obscure the points that are
worth making. So, rather than obscuring those details, a way has to be found to
delineate alternatives, and that is exactly what is being attempted here.

Resurrecting in modern garb the lost Faraday details can be achieved by
calling on Cartan's frame-independent mathematical discipline of differential
forms. Much of the work shown in this vein has been paying lip- service to
something that is said to be better, while carrying on with old identifications of
the past, or worse. Violations against the clean mathematical spirit injected by
Faraday are simply not mentioned. Such are token efforts of using something new,
merely for the sake of newness.  In lacking the proper physical motivation, such
efforts cannot take full advantage of perspectives created by the differential form
discipline of Cartan (1869-1951).

Let us summarize what these full advantages imply. They are frame-in-
dependent and for the most part metric-independent.  It should be mentioned that
the Gauss-Stokes, or as they now say, the generalized Stokes theorem* is totally
frame- and metric-independent. The implication of metric-independence is at first
puzzling from an angle of physics. A stereotype objection suggests that features of
metric-independence can hardly have any physical meaning at all, because all
measurements in physics are tied in with units of length and time.

Metric-independence became a discovery of temporary interest in the
Twenties and Thirties, but was then abandoned for what seemed to be a lack of
realistic physical perspectives. Yet, during the late Thirties in articles, and then in
the Fifties in a monograph, de Rham shows how exactly these metric-free features
of the Stokes theorem make it an ideal tool for topological investigation.
Topology isolates structure that is preserved under deformations and for that
reason should not depend on metric size.

                                                
* For unknown reasons Gauss' name in this context has been dropped in the recent
literature.
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Now suddenly it is time to remember our good old friend Carl Friedrich
Gauss, who left us his law of electrostatics. This law says: a closed surface inte-
gral of the dielectric displacement D equals the net charge enclosed by its
integration surface. In the perspective of present experimental
knowledge, all charges are multiples of an elementary charge. Hence Gauss'
integral of electrostatics is seen to count net charge. Counting should not de-
pend on whether we have or whether we use units of length and time.  Suddenly
old work on metric-free physics does not look all that silly.

Here we see the importance of not going into technical details, because had we
done so, some finer points would have been totally missed. Hundreds of textbooks
have discussed Gauss' law of electrostatics, yet none call on metric-independent
features.  All of which goes to show how effectively the mathematical techniques
used in physics, throughout the past century, have made those nonmetric virtues
invisible.

There is another intriguing aspect associated with metric-free laws of physics.
To the best of presently available knowledge, metric references are the only ones
that can tell us whether physical objects are large or small in terms of human
judgment. So what is a possible implication if certain physical laws are found to
be metric-independent?  The answer is that there is a good chance that such laws
are applicable in the macro- as well as in the micro-domain. Please note, it says:
"There is a good chance! It does not necessarily follow."  Yet, by the same token,
it is hard to find a metric-free law that applies in the macro- and not in the micro-
domain.

Ever since the birth of quantum mechanics, it has been hammered into the
heads of impressionable young students that the laws of physics in the large
cannot be simply extrapolated to the micro-domain. Large scale Newtonian
mechanics had to make place for quantum mechanics. The latter is taken to
assume special validity in the atomic and subatomic realm.  The question is now
whether these words of wisdom of our old quantum teachers are really compatible
with the earlier observations made about Gauss' laws of electrostatics. This
metric-independent law has been found to be a counter of microscopic net charge
quanta!

Contemporary quantum teaching seemingly implies that laws about "charge
quanta" may have micro- and macro-applicability, yet it is not so sure about laws
invoking "action quanta." Here is a lack of equal treatment, perhaps because
Schroedinger's equation looks so different from Newton's equations; in fact, it
does not even come close to the Hamilton-Jacobi equation. The latter can claim an
equivalence with the Newton equations of motion. We do know, however,
Schroedinger did use the Hamilton-Jacobi equation to obtain his wave equation.

Fortunately there is a structural equivalent of the Gauss integral, it is known as
the Aharonov-Bohm integral. The latter counts flux units h/2e. Also this quanta
counter can be shown to be metric-independent; how else could it have become a
quanta counter? Under the heading empiricism, it was mentioned that these flux
units were observed by Doll and Fairbank and their fellow workers. The action



41

quantum ±h appears here jointly with the charge quantum ±e. In the meantime,
numerous experiments have become known that confirm the existence of these
quanta. In fact, it was mentioned that, together, flux quanta and quantum Hall
effect impedance quanta have yielded the most accurate data (9 decimal places) of
e and h presently available. These are facts of observation that should be weighed
when assessing fundamental aspects.

In the course of a nontechnical exposition, as promised earlier, it became
necessary to develop a critical eye for details of the sundry technical potential
associated with different procedures available.  This puts us in the seemingly
awkward position of assessing technical potential in a nontechnical way.  A
simple example shows that one does not have to be a specialist in all the
competing techniques to decide which one is better and which is the best.

For instance, when buying an automobile it is possible to compare car perfor-
mance without getting into detail how one make succeeds in burning less fuel than
the other, while going the same speed over the same distance. The choice would
not be difficult if the vehicles are of comparable size and durability.

Students of electrodynamics are in a similar position when making decisions
how to study the subject. Say, one formalism gives you an overview of a major
part of the discipline, but another formalism gives a wider and encompassing
view. You might opt for the wider view, even if it is more difficult, because it
avoids greater difficulties later on in the game.

We can now become specific about the choice in question. It is the choice
between learning the mathematical discipline of vector analysis, which was
developed in the second part of the 19th Century as a shorthand compromise for
physicists, versus the method of differential forms such as developed by Cartan in
the Twenties. Yet, to bring an added perspectives in focus, it will be necessary to
cover part of what is known as "de Rham cohomology." The latter is a branch of
topology developed during the Thirties in which cyclic integrals are used to probe
topological structure.  The second choice invokes more mathematics, yet, unlike
vector analysis, these new Cartan-de Rham skills are not restricted by
compromise.

In the past, vector analysis used to be taught by mathematicians who mostly
had a feel for physics.  Today, vector-analysis is mostly taught by physicists as
part of a physics course. Few physics lecturers are able or inclined to teach
physics using methods of differential forms. The simple excuse for not taking
such an initiative is that a majority of students and colleagues would have no un-
derstanding of what would be going on. All the journal articles appear in vector-
analytic garb.

Any prospective student, convinced that the wider perspective of the form
language is bound to pay off in the long run, will have to shop around at
mathematics departments if any such course is available. Several mathematics
departments may be able to offer such possibilities, but without much of a chance
that such lectures are going to accommodate a commensurately adapted physics
point of view. An effective adaptation of the material to the needs of physics,
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however, is a sine qua non. Exaggerated specialism in mathematics has created
reluctance to take on such involvement.

De Rham's original work reveals much inducement from concepts of
electrodynamics. Unfortunately this tradition has not been continued.  For
instance, for the purposes of physics, de Rham made a very essential distinction
between two different types of differential forms: those that change sign under in-
version, and those that don't. This feature is essential to deal with the differences
between magnetic fields and fields of electric polarity. Mathematical follow-ups
of de Rham Cohomology have abandoned this distinction. Modern mathematics
texts restrict their forms to those that don't change sign under inversion.  So here
again a mutilated version is presented as a mathematical aid to physicists. All of
which goes to show how mathematics is guilty of omissions comparable to those
in physics. The moral of the story: not the discipline is at fault, but rather petty
chauvinist specialism within the disciplines.

At first sight, all of this may sound discouraging to those who seek en-
lightenment in these matters. On the other hand, it also means there is work to be
done and chances are that the wider panorama of a quanta counting formalism
will be a rewarding extension of the traditional teachings of Maxwell theory.
Therefore, do not despair. Just keep in mind how Gauss' traditional theorem of
electrostatics already reflects all the principal ingredients of cohomology
procedures; de Rham's generalizations of that process will then come quite
naturally.

Right from the beginning, it seems, Gauss sensed the full potential of what his
theorem could do. The closed-surface integral assumed the role of a sensor that
can tell what is inside the surface. After the discovery of the discrete unit of
elementary charge, this integral became a counter of net elementary charge.

Now knowing that Gauss' theorem is just a special case of the generalized
Stokes theorem, one may now expect generalizations of Gauss' law of
electrostatics in the following manner: Since Gauss' law of electrostatics pertains
to a 2-dimensional closed (i.e., cyclic) integral, the question arises whether there
are 1- and 3-dimensional cyclic integrals that have a bearing on physics? The
answer is: yes, there are!

The 1-dimensional cyclic integral is known as the Aharonov-Bohm integral, it
is known to count quantum units of flux h/2e. A 3-dimensional companion has
been suggested by R M Kiehn as a product structure of the previous two; it counts
units of action h. Action can manifest itself as angle integrated spin or angular
momentum along with the Bohr-Sommerfeld integrals.  These  integrals are called
period- or residue-integrals (e.g., Complex Analysis).

Similarly as the Cauchy theorem of complex analysis shows how the analytic
domains of a function can tell what kind of nonanalytic domains are inside, the
here cited three residue integrals in physical spacetime reveal what kind of
quantum residues are inside. Here they are once again:

 I Aharonov-Bohm's 1-dimensional cyclic integral counts residues that
are flux quanta h/2e.
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   II Gauss-Ampère 2-dimensional cyclic integral counts net charge quanta
±e, either at rest or in synchronous motion.
  III Kiehn's 3-dimensional "cyclic" integral counts units of action ±h that
can be perceived as angle-integrated spin, angular momentum or a cyclic
time-integrated energy.

Since the here delineated matters call for incisive changes in existing customs,
an alternate exposition of these subjects is presented in the last chapter for the
purpose of getting an historic mathematical perspective on these topics.

During the time when Maxwell codified what is now generally known as
Maxwell theory, Cauchy and Navier-Stokes gave finishing touches to continuum
mechanics. The laws of mechanics had been successfully reduced to the art of
solving differential equations. The available laws of electrodynamics, by contrast,
favored an integral rather than a differential rendition. Yet, the experience of the
day resided in the realm of differential equations, so work got underway to
translate the integral relations in a set of differential equations. The names of
Laplace (1749-1827) and Poisson (1781-1840) come to mind, because each had a
differential equation named after him that seemed to fit in a more extensive plan.

It was Maxwell who gave the complete transcription of the global integral
laws of electrodynamics in differential form. In the process of doing so, he had to
add a term to secure mutual consistency. This term is known as the "Maxwell
displacement current" and the final equations, eight in total, are now known as the
Maxwell equations.

Maxwell's work resulted in one of the most perfect phenomenologies of
physics. Through the years, the theory did not really need corrections nor
additions. In fact through the years, people discovered new facets of the theory.
Right from the start Maxwell theory complied with requirements of relativity.
Maxwell had used the Stokes and Gauss laws to create his eight differential
equations.  The knowledge gained in the 18th Century in solving differential equa-
tions could now be used to full advantage.

All of this shows how Maxwell gained information by working from the
global integral point of view towards the local differential point of view. The local
approach led to the discovery of the immense spectrum of electromagnetic
radiation from radio waves to X-rays. At the time, the frame of mind was solely
focused on local pursuits. The results achieved by this most perfect theory of
physics were enormous. The development of vector analysis had brought this part
of the theory at the finger tips of physicist and engineer both.

The global emipiric law statements that had spawned all this local beauty of
Maxwell theory would temporarily recede in the background. Even if global
applications of electrodynamics were amply supported through their usefulness in
the design of electric machinery, the last century gave no inkling that an integral
superstructure could be of relevance to quantum theory. There were at the time
indications that gave evidence of the existence of a charge quantum, yet that was
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not seen as sufficient reason to elevate Gauss' law of electrostatics to the level of a
quantum law.

A mixture of theoretical and experimental evidence then focused attention on
the one-dimensional integral of the vector potential. First London in the Thirties
and subsequently Aharonov-Bohm in 1964 showed that said integral could sense
magnetic flux going through the interior of its integration loop; say similarly as
the Ampère law senses current going through its integration loop.

Aharonov and Bohm effectively demonstrated experimentally the residue
(period) status of the loop integral of the vector potential, it is now commonly
referred to as Aharonov-Bohm integral. While Aharonov-Bohm focused on
electron beam phase changes brought about by intensity changes in a linked flux
loop, London, as early as the Thirties, suggested the possible existence of a flux
quanta.

Actual flux quanta were first observed in 1961 by Fairbank et al and Doll et
al. They turned out to be half the size of London's prediction. The discrepancy
with London's prediction was later traced back to the electron pairing in
superconducting samples used for their experiments. A year later, the Josephson
ac effect reaffirmed its close relation to flux quantization.

So, all in all, the possibility of a quantum superstructure of standard Maxwell
theory was gaining ground. This superstructure counts flux units, charge units and
action units. The counting feature requires these integrals to be completely frame-
and metric independent; in the jargon of mathematics it is said they are metric-
independent, Diffeo-4 scalar- or pseudo scalar-valued integrals. The latter
property is in perfect harmony with the metric-free general invariance of the
Maxwell equation discovered by Kottler, Cartan and van Dantzig (KCD) in the
Twenties and the Thirties.

The vector analytic formalism, as presently used, can neither be adapted
to requirements of general invariance nor made capable of dealing with
pseudo scalars changing sign under orientation changes of the frame of
reference. An ad hoc dealing with all these features, which have now
acquired very specific physical meaning, has been proven too tedious and
cumbersome.

Therefore once more, a plea is in order to change from vector-analysis to
a de Rham style differential form language as the appropriate vehicle of
mathematical communication in physics. In order to keep available a need
for local frame-related work, a form of tensor analysis is essential that
permits a one-one correspondence with differential forms as defined by de
Rham. Presently only the Schouten version of tensor analysis appears
capable of providing a tensor equivalent of de Rham's pair and impair
differential forms.

Classification of Crystals, the Point Groups      
Under the heading of empiricism it was noted that regularities of crystal

structures had not escaped the attention of early observers. The singular
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occurrences of 1-,2-,3-,4-, and 6-fold symmetry axes, and no others, gave rise to a
suspicion of space-filling options with different types of molecules. The number 1
here is added as the identity operation for the purpose of mathematical complete-
ness.

In the course of time, people wondered in how many different ways 1-,2-,3-,4-
and 6-fold axes can be combined in space so as to exhibit the group property of
closure.  The word symmetry implies that the object under consideration
physically appears the same after a symmetry operation. So. it should be the same
after any sequence of symmetry operations for which it individually remains
unaltered. This property is called the closure  of a combination of symmetry
elements and the totality of all symmetry elements that can be so generated is
called a symmetry group. This group is a uniquely determining characterization of
the crystal class.

The next question is  how many of those closed (group) combinations can be
constructed out of he basic set 1-,2-,3-,4-,6-. The answer is that there are 11 such
groups. First there are the five isolated cases 1,2,3,4,6. Next four of those can be
combined with 2-fold axes at right angles, thus accounting for a total of nine
distinct symmetry groups. The two remaining  are the tetrahedral and octahedral
groups, which permit new spatially oriented arrangements of symmetry axes; i.e.,
angles _ ¹/2.

The 11 distinct pure rotation groups combined with the inversion group
creates another set of 11 groups of crystals that have a center of symmetry.
Finally 10 crystal groups have been counted that have mirror symmetry combined
with rotation symmetry but no inversion symmetry. So the total of crystal
symmetry classes is found to be 11+11+10=32 crystal groups consisting of
rotation, inversion and mirror symmetry elements. All crystals can indeed be
placed in a one of these 32 enumerated mathematical possibilities.  It has also
been found that crystal classes that have pure rotation symmetry elements (i.e.,
neither mirror nor inversion symmetry) can occur, and mostly do occur, in two
modifications that are mirror images of one another. This phenomenon is called
enantiomorphism. Through enantiomorphism Nature uses up options of
symmetry manifestation. Nature also has a preference for groups with many,
rather than few symmetry elements. Triclinic crystallizations seem relatively rare.

In the earlier discussions of phenomenology, a major item of concern surfaced
in relation to the question whether the compromise vehicle of mathematical
communication, called "vector-analysis", will be adequate to meet future
demands. It is perhaps not a coincidence that the beautiful phenomenology of
crystal symmetry is, for all practical purposes, absent in contemporary physics
textbooks. Of course, textbooks on crystallography and crystal physics can not
avoid these issues; they have to make ad hoc adaptations. In the long run such
stop gap methods can be expected to have their limitations, raising again
questions about a transition to a methodology of differential forms
accommodating inversions and mirror operations.
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The differential-form pilot-projects, that did occur, have consistently failed to
discuss matters of metric-independence and orientability. So, they cannot
accommodate enantiomorphism and options related to the counting laws of
modern physics. Bad habits of the past are blocking a complete transition.

For purposes of local work, as frequently required in technology, transitions to
coordinate language are mandatory. Whatever is available in that respect is, of
course, laced with the bad identification habits of the past. To avoid falling back
into old identification habits, tensor procedures, called upon in making transitions,
should remain equivalent to the (Cartan)-de Rham language (see Schouten)

Crystal Physics
Most physical media are assumed to have properties that are the same for all

directions.  As an electromagnetic medium, free space manifests the best-known
approximation to such properties.  Similarly air, gases and liquids are assumed to
have propagation properties of sound that don't depend on direction. Physical
media of this kind are said to be isotropic. In mathematical language it means, the
properties of the medium remain unchanged (invariant) under the group of
rotations.

As early as in the days of Huygens, it was observed that certain crystals can
have properties that cannot be produced by isotropic media. A famous example is
Icelandic Spar. A single ray of light does not stay single after refraction; the single
ray splits into two light rays, each with their own index of refraction. The medium
is said to be double-refractive. Huygens correctly inferred that the two resulting
light rays had different  velocities of propagation.

The example of double refraction shows that crystals can manifest a physical
behavior that is more complicated than that of isotropic media. Since a crystal
exhibits a symmetry that is reduced with respect to that of an isotropic medium,
the manifestation of double refraction seemed related to the reduced symmetry of
the Icelandic Spar crystal with respect to an isotropic medium.* Pierre Curie
(1859-1906) used to say: "it is the asymmetry that creates the effect."

So the next question was: What other kind of effects can be expected that
might exist in some crystals and not in isotropic media. The most familiar effect
with which the world became acquainted through crystals is probably the piezo-
electric effect. This effect is absent in isotropic media. In fact, piezo-electricity
cannot exist in media that have a center of symmetry.  As the name says, if you
squeeze certain crystals, they develop an electric field, and conversely, if you
submit them to an electric field, the crystal undergoes an elastic deformation.
Keep in mind that the intensity of this effect is highly direction dependent.

Quartz crystal elements are today the piezo-electric heart of modern clocks
and watches. These crystal elements are made to vibrate at very high frequencies
with the help of an electric driving circuit.  Electrical circuitry then divides the

                                                
* In mathematical language the crystal group is always a subgroup of the isotropy group
of all proper and improper rotations.
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vibration rate into seconds, minutes, and hours.  These elements are cut from
quartz crystals in such a manner that their frequency of vibration is almost in-
dependent of the ambient temperature. So far it has been impossible to make
electric resonance systems of comparable stability, temperature independence and
with the small size of a crystal element.

There are many other effects occur in crystals which cannot occur in isotropic
media. Once the relation between effect and symmetry (Curie) is established, the
next question is: How can we predict in a systematic manner which crystal
exhibits what effects? This monumental task was performed, almost in its entirety,
by Waldemar Voigt. To do this, he had to establish carefully the transformation
properties of the arrays of coefficients that describe the effects for which one is
looking. In mathematics, these arrays of coefficients are known as tensors. The
procedure for Crystal Physics is then the following:

The effect tensors are subjected to the symmetry operations permitted by a
given crystal symmetry group to find out what arrays of coefficients remains in-
variant under those operations. If no coefficients are left, the effect cannot exist in
a crystal of that symmetry. If some coefficients remain, then the remaining array is
said to be invariant under the operation of that crystal group. The effect can now
exist according to that reduced array.

Voigt performed the enormous task of checking many conceivable crystal
effects for the 32 crystal classes. In addition, he measured the coefficients of many
of the effects that were so investigated for a considerable number of substances.

To go about the task of establishing the reduced tensor arrays, Voigt had to
make many mathematical adaptations to undo vector identifications commonly
made in physics. These adaptations were absolutely mandatory, because standard
traditions leave behavior under inversions unspecified. In crystal physics,
inversions become distinguishing operations describing medium properties.

Since here-mentioned matters tie-in with presently neglected distinctions
between pair and impair differential forms, sooner or later (perhaps better sooner)
decisions will have to become necessary to drop the old method of vector
analysis, which has a built-in feature of ignoring inversions.  Compare hereto
what has been said in previous sections.

One of the reasons why standard physics texts don't discuss the 32 crystal
classes and their consequences for crystal physics is undoubtedly the inadequacy
of the standard methods of mathematical communication in contemporary
physics. The specialists, i.e., those directly concerned with crystal physics, know
how to accommodate these inadequacies by appropriate specifications.  So, it can
be done!  Yet, special needs of crystal physics are deemed insufficiently pressing
to be made part and parcel of everyday physics.

Previous sections have mentioned how very fundamental issues about local
and global are also involved in the methods of mathematical communication. All
these things together make it desirable to incorporate these distinctions as
permanent features of physics description. In teaching new generations, it will, in
the long run, be too cumbersome postponing those essentials for later specialism.
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Voigt's procedures are brought in alignment with the general procedures of a
universal tensor calculus in the earlier mentioned Schouten text (see notes &
refs.). Hence well tested procedures are available, it may well be a matter of
departmental policy decisions whether these things become standard curriculum
items.

Cause and Effect Relations
Crystal physics places an unusual focus on the nature of physical

interactions in different types of physical media. The interactions,
whatever their nature, when regarded from a spatially local point of view,
are taken to be instantaneous. This assumption is no longer true if internal
mechanisms in the medium, whatever their nature, are causing a time
delay of response: i.e., nonlocal behavior in time. Such delays clearly
happen if the causing disturbance has to travel over some distance in
space. Yet, over and above, it is the internal mechanisms in the medium
that plays a role.

Causality simply demands that the response cannot precede the
onset of the initiating disturbance. How would one cast this causality
condition in a mathematical form valid for all passively responding media,
independent of the shape of the effect-initiating disturbance?

Kramers, taking a rest from the ontics of early quantum mechanics,
took on this task of pure phenomenology in the mid-twenties. He found
that the modification of phase and amplitude of any response system has
to obey a set of integral transforms. At about the same time, Kronig and
later Bode in communication engineering, arrived at a similar conclusion
on the basis of analyticity considerations, without Kramers' explicit appeal
to causality.  The integral transforms now known as the K-K relations have
found wide applications ranging from high energy particle physics to
communication engineering.

Since matters of cause and effect relate to very basic human
experiences, one would have thought that causality might have played an
earlier role in the general description of physics; say in the 18th Century,
which saw so many highlights of phenomenology.  An understanding of
this apparent omission of the classic workers goes back to the strictly local
nature of early physical descriptions. In fact, this preoccupation with local
methodology even extends into the contemporary realm. It was given to
Kramers to assume a global point of view in he time domain, and in doing
so he overcame the barrier of identifying implications of causality for
modern physics.

ONTOLOGIES
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If the 19th Century was the great era of phenomenology, the 20th Century may
well be called the century of ontologies. Some of the ontological victories already
started in the last part of the 19th Century.  So let us summarize some of the
happenings, it makes it easier to retain an overview of what has been taking place.

The emergence of the kinetic theory of gases pioneered by Maxwell and
Boltzmann showed what the molecular hypothesis could do in understanding the
gas laws. Van der Waals added hypothetical extensions by assuming a finite
molecular volume plus a general volume-based interaction between molecules.
The resulting van der Waals equation of state would play a key role in the subse-
quent experimental programs that led to the liquification of gases.

Statistical mechanics greatly helped a deeper understanding of
thermodynamics. The work of Gibbs solidified the conviction that the second law
of thermodynamics reflected a statistical behavior of nature.  Boltzmann further
helped these insights by showing how molecular collisions could assume the role
of a mechanism that would contribute to entropy increase.

The emergence of the quantum at the turn of the century would lead to a string
of ontic propositions that interestingly were mostly related to prescriptions of how
to work with it; its nature was regarded as something weird and off limits.  The
idea of first trying to know how to work with quanta is well taken.  Philosophizing
about its nature was regarded as premature, at least for the time being.  From that
time onwards, physicists became hard-nosed ontologists. Their motto:  Tell me
how it works and what it does and don't give me philosophy. I don't care where it
comes from, i.e., for the time being at least!

All of this shows how the realm of ontologies can cover the whole gamut from
hard-nosed pragmatism to over-idealistic romantic idealism. Quantum mechanics
has gone overboard in either direction. The Copenhagen interpretation represents
a good deal of idealistic belief that quantum mechanics, as presently known, is
nature's last word to man. Others, on the other hand, can be heard voicing opin-
ions that none of that interpretive stuff is essential to successfully use those tools.

From Democritus' Atoms to Dalton's and Avogadro's New Chemistry
One of the most striking ontic inventions of antiquity was certainly the idea of

atoms by  Democritus (460-370 BC?).  Rarely had a good idea to wait this long to
witness a measure of verification. The founders of the new chemistry Dalton and
Avogadro substantiated the reality of the concepts of atoms and molecules around
the time of the French revolution. Atoms and molecules, so to say, became a work
hypothesis that did very well, although nobody had seen atoms or molecules. For
some people the edifice of chemistry was enough to believe in their reality. The
kinetic theory of gases and the Einstein theory of Brownian motion then made
these concepts from a physical point of view even more realistic.

Yet, notwithstanding these triumphs of chemistry, even at the beginning of the
20th Century there were still physicists who said they were not at all convinced
about the reality of atoms and molecules. Ernst Mach supposedly was one of the
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nonbelievers.  If we realize that Boltzmann was Mach's successor at the
University of Vienna, one wonders whether Mach was just doing his best to give
poor Boltzmann a hard time. Or perhaps, mindful that adversity might breed
stronger conviction, Mach was just trying to bring out the best in Boltzmann.*

The depicted situation casts an unusual light on the personalities of Mach and
Boltzmann. It illustrates epitome attitudes in phenomenology and ontology.
Boltzmann's thermodynamic derivation of the Stefan law of radiation shows him
as an ontologist adept in phenomenology. Mach may have been more of a single-
minded phenomenologist. Einstein much admired Mach's consistency in these
matters, yet his work on Brownian motion showed him to be an accomplished
ontologist as well.

Mach supposedly was not comfortable with the direction in which Einstein
had taken some of his thinking. If these human interactions make us aware how
important people have been battling with fundamental ideas, it may help as a
reminder never to go blind by siding up with one "ism."  Finding niches for "isms"
is what is being attempted here. Do not despair if your particular "ism" has not
been mentioned here; there may always be a place for another little niche,
provided the vehicle of communication is not too restrictive.

An Avalanche of Quantum Propositions
These are just reminders that unlike phenomenology, the world of ontology is

full of controversy. Nowhere has that been more conspicuous than in the realm of
the theory of quanta. The action quantum was originally introduced by Planck in
1900 as a necessary concession to common sense; a need to interpolate between
the low- and the high-temperature end of the spectral distribution of the black
body radiation.

In the beginning, Planck's proposition was most likely received as an ad hoc
thing that just happened to lead to the right result.  From an angle of philosophy
one might argue good ontology, but perhaps at that time without too much of a
promise for a successful tie-in with epistemics.

Then five years later, Einstein identified the essential role of the same
quantum of action in the photo-electric effect. The very sharp and characteristic
wavelength threshold for releasing electrons out of metals revealed the action
quantum as more than just an ad hoc proposition.

 After the photo-electric effect, the quantum of action had become respectful.
It would take another half decade before Bohr was to make the proposition that
the angular momentum of orbitally circulating electrons should equal a multiple of
h. On the basis of that proposition Bohr was able to calculate the stationary states
for hydrogen. The spectral observation of hydrogen again confirmed the same
value of h as earlier obtained through the photo-electric effect and black-body
radiation. Physics was now homing on a real universal constant that was anything
but ad hoc, even if it had been discovered in a slightly ad hoc fashion.

                                                
* An assesment of this controversy by L Tisza is forthcoming.
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At this point there seemingly were two disconnected applications of the action
quantum: the energy quantum played a role in the black body radiation and in the
photo-electric effect, versus the angular momentum application in the Bohr atom.
Physics was here confronted with two separate and seemingly independent ontic
propositions. A next train of thoughts explored inquiries as to whether these two
ontic propositions could be somehow united into a more encompassing principle.

A possible solution to this question was anticipated by Sommerfeld (1868-
1951) and Wilson. They proposed in 1915 a royal road to quanta as Sommerfeld
called it. The action integrals of analytic dynamics might only assume values that
were multiples of the action quantum, instead of the arbitrary values permitted
under the rules of standard classical mechanics. It appeared a smooth and most in-
conspicuous transition to incorporate quantum features. In fact, in the perspective
of relativity, the Bohr-Sommerfeld relations, as they are now known, assumed the
form of cyclic spacetime integrals of the four-vector known as energy-momentum;
cyclic in time relates here to a periodicity of the system under consideration,
cyclic in space to an orbital periodicity.

This new encompassing quantum formulation was successfully applied by
Schwarzschild (1873-1916) and Epstein to a splitting of spectral lines by electric
fields discovered by Stark (1874-1957). Sommerfeld himself showed that an
application of the B-S relations to hydrogen, taking into account relativity effects,
would account for an indeed observed fine structure of Hydrogen and ionic
Helium. In a now mostly forgotten paper, Einstein showed the following year that
the Bohr-Sommerfeld relations had a topological connotation for the orbitals that
were being selected by these conditions. So towards the end of the war-torn Tens,
the description of quantum phenomena seemed in good shape.  This peace of
mind was not meant to last for a long time.

Applications to the Stark effect were followed by applications to the Zeeman
effect. There were no problems accounting for the normal Zeeman effect, as
Lorentz had already done by a different line of reasoning.  However, the
anomalous Zeeman effect remained a challenge for any of the approaches that
were around at that time. Efforts to disentangle spectral multiplet structures, as
exhibited by more complicated atoms, also yielded marginal results. The new the-
oretical extensions of standard mechanics had done nice things, it was, however,
by no means a last word in a new atomic mechanics. Mindful that many body
problems had been haunting Newtonian mechanics for a long time, there was no
reason to assume that atomic analogues of the planetary situations would be any
easier to solve.

In the beginning of the Twenties, some differences surfaced that did not quite
have an analogue in terms of celestial mechanics. Unlike planetary bodies, the
bodies of atomic mechanics were electrically charged and their orbital motion had
to be expected to generate magnetic fields. Compton in 1921 and Kronig*

                                                
* At the time Kronig worked with Pauli in Vienna, his spin proposition was less than enthusiasti-
cally received by Pauli, whereas Uhlenbeck and  Goudsmit received positive support from
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experimented with the idea that electrons might have a spin and a magnetic mo-
ment of their own. In 1925 Uhlenbeck and Goudsmit brought this spin hypothesis
in a form that was accepted as a possibility for sorting out the anomalous Zeeman
effect.

In the same year Heisenberg proposed a new basic quantum procedure and in
1926 Schroedinger made a similar proposal that in retrospect turned out to be
equivalent to the Heisenberg proposal. Yet neither one dealt with a possible
electron spin. Then in 1927 Dirac reconciled in his way the Schroedinger
approach with principles of relativity and behold the solutions confirmed the
electron spin propositions of Uhlenbeck and Goudsmit. The Twenties were just
loaded with ontic propositions. It was a slight abuse of language, when Einstein
called it an epistemological orgy;  today, we would say an ontological orgy. The
latter is in better accord with definitions given by Bunge and Zerin cited in the
preamble.

This was not all. More things had happened between 1920 and 1925 that had
helped trigger the work of Schroedinger. In 1923 de Broglie and Duane came up,
more or less simultaneously, with a proposition that was very closely related to de
Bohr-Sommerfeld relations. In fact Duane sort of derived it from the B-S relations
and de Broglie postulated the relation as an extension of the original Planck postu-
late, as suggested by relativity. De Broglie's relation is, in fact, a proportionality
between two 4-vectors: i.e., the energy-momentum 4-vector and the frequency-
wave 4-vector with the quantum of action ¡ as the constant of proportionality. This
relation was to have a major role in implementing the Schroedinger wave
equation; the latter and matrix mechanics set off the second quantum revolution.

However, before getting involved in the 1925 quantum revolution, let us first
discuss what seemed to be a last triumph of the Bohr-Sommerfeld relations.
Duane was concerned about the particle-like behavior of X-rays as registered by
Geiger-Müller counters. He, therefore, wondered whether a wave description of
X-rays, as used by father and son Bragg, might really  be appropriate for hard X-
rays. He made an attempt at a particle description using Bohr-Sommerfeld
conditions to calculate a discrete momentum exchange between particle and
crystal lattice. By identifying his particle diffraction, so calculated, with the wave
diffraction of Bragg, Duane obtained the same relation between momentum and
wavelength as de Broglie. Even if Duane, in principle, did his analysis for
photons, there is, in retrospect, no difficulty extending the same to massive ob-
jects, slower than the speed of light. One thus confirms de Broglie's proposition as
a Bohr-Sommerfeld contingency.

The Duane argument is now all but forgotten, which is somewhat sad and
inconsistent. If we realize that the photo-electric effect cannot be argued without
being explicit about a discrete exchange of energy; so why not a discrete exchange
of momentum?   

                                                                                                                                    
Ehrenfest in Leiden.  When, many years later, Pauli was interviewed by Uhlenbeck about his lack
of support for Kronig, Pauli answered: "I was so dumb when I was young."
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Then, in the middle of this bewildering avalanche of ontic propositions, a new
ontic proposition emerged, it is known as the Schroedinger equation. This
equation, and Dirac's relativity counterpart, became to be regarded as the basis for
the mid-Twenties quantum revolution. They were presumed to supersede all
earlier ontic propositions. In fact, some of the earlier ontics was conveniently
placed in a category of approximations. Such was the case for the Bohr-
Sommerfeld conditions, which had rendered such good services just before the
anomalous Zeeman effect came around to prove their limitations. Even
Sommerfeld himself, an originator of a royal road to quantization, became an
ardent supporter of the wave equation cult now emanating from Copenhagen.

It will take some philosophical calm to create order in this overwhelming array
of ontic material. It gives a feeling of discomfort if one ontic recipe is prematurely
lifted above others, before it even had been established as to what the old recipe
meant. Now, after three quarter century, the Copenhagen view of Schroedinger's
equation is still cause of dispute and disagreement.

The never ending objections and alternate propositions, generated by
Copenhagen, testify that physics is still faced with a situation swamped by too
much ontic diversity. There is presently not enough of an epistemic lead to make
reliable decisions. Yet, many of these ontic propositions hold sufficient promise
of truth to justify more epistemic  scrutiny.

To create some order in this over-abundance of well-intended creative
suggestions, it pays to look for a common denominator that almost all
propositions have in common. It appears that past interpretations of the 1925
quantum mechanics have been focusing on primarily one picture of physical
reality: i.e., the single system, whereas a very small minority has been favoring
ensembles of systems.

These two options have been silently coexisting for sixty years. Neither one
explicitly excludes the other as inadmissible; it has been mostly "either one or the
other" and sometimes "one and the other." This unresolved situation deserves
further examination.

Ensemble Implications of Schroedinger's Recipe
Since the Schroedinger equation became one of the most frequently used tools

of physics, it makes Schroedinger's rationale for obtaining this result one of the
most famous ontic recipes of physics. The factual ingredients that went into this
recipe were de Broglie's proportionality of energy-momentum and frequency-
wave vectors* and the Hamilton-Jacobi equation of particle dynamics.

The dependent variable S of the Hamilton-Jacobi equation is an action
function that relates to the phase of something that has the mathematical
appearance of a wave, say, of amplitude ×.  The ensuing logarithmic relation
between S and × is used to change the dependent variable from S to ×. The

                                                
* Without an intended effort on their part, de Broglie's relation was strikingly confirmed by the
Davisson-Germer experiment of 1927.
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resulting expression is taken as a Lagrangean integrand of a Hamilton principle.
Extremizing this integral yields as condition for optimization the "Euler-
Lagrangean differential equation."  This Euler-Lagrangean became one of the
most effective quantum tools of the century; it happens to be the Schroedinger
equation!

For conservative systems, its application in physics becomes an eigenvalue
equation. Schroedinger made the solutions subject to conditions of single
valuedness and square integrability, which can only be met for discrete energy
states (eigenvalues) and corresponding eigen functions. Results of the first
applications mostly coincided with earlier Bohr-Sommerfeld work, yet there were
some remarkable differences.

For the harmonic oscillator, a so-called zero-point energy had to be added to
the original Planck energy states. Yet, unbeknown to many authors of con-
temporary quantum texts, a concept of zero-point energy had been introduced by
Planck in 1912. Planck, at that time, had shown how an ensemble of harmonic
oscillators has to retain a zero-point energy if it is to retain a state of phase
randomness.

For quantum rotators, Schroedinger's equation brought another change in
quantum number.  The Bohr number n appeared replaced by n(n+1) ; the latter
was found to fit better spectral results.  In the early Sixties, Kompaneyets reported
about a calculation that shows how starting from quantum states 1,2,3,...n, a
randomly oriented ensemble of rotators ends up with a statistically averaged
quantum number n(n+1)  for the modulus of angular momentum. The Feynman
Lectures later presented the same ensemble-based derivation of the angular
momentum quantum number. Since the Schroedinger equation full-automatically
produces this statistical result, it should have generated some suspicion that the
equation launched by Schroedinger might possibly be an ensemble tool.

The two examples of zero-point energy and angular momentum quantum
number together present compelling evidence of Schroedinger's equation
describing ensembles that are in appropriate random states.  This state of
affairs excludes Copenhagen's single-system interpretation, unless the ensemble is
taken to be a Gibbs ensemble of conceivable manifestations of one and the same
system. Neither Kompaneyets nor Feynman cite their ensemble averaging as
contradicting Copenhagen's dictum of nonclassical statistics, nor do they cite a
possible violation of Copenhagen single-system precepts. Hence only an abstract
Gibbs ensemble can be a saving grace for continued support of Copenhagen
single-system now obeying a classical statistics. Now we see how Copenhagen
got the idea of the fuzzy nonclassical orbits.

Planck did his zero-point work well before the birth of the 1925 quantum
revolution; he had no obligation to reconcile his work with  Copenhagen's view of
the Schroedinger equation. There is little doubt that Planck had in mind a real
ensemble not a Gibbs abstraction. Neither Kompaneyets nor Feynman may have
been aware of Planck's zero-point ensemble, because had they been aware it
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should have initiated right then and there a revolt against Copenhagen's single-
system views and ensuing nonclassical madness.

The choice between abstract and real ensemble becomes once more a serious
obstacle on the road to quantum electrodynamics. Neither Feynman and co-
authors nor Kompaneyets have submitted the here cited predicament as an ontic
alarm for theory development. So it must be assumed they approved of the
abstract ensemble as representing a single-system. This reading of the results
indeed gibes with Copenhagen's picture of blurred washed out orbits.  Remember
how in those early days, and presumably still today, we were told: it is a fallacy to
think of true and precise orbits of atomic systems!   Individual orbits are to be
seen merely in terms of a probability presence.

The point is well taken; in a real ensemble, there is a perfectly classical orbital
randomness of phase and orientation between the single-systems in the ensemble.
Modern physics owes Planck an apology.

Quantum Electro-Dynamics QED
After the early Thirties had proclaimed the Schroedinger and Dirac equations

to be the exact tools for quantization of mechanical systems, the interest shifted to
quantization of electrodynamic systems. The first developments of this discipline
showed a structure plagued by infinities. This type of QED could not really  be
applied anywhere.

In the meantime, the development of microwave technology made it possible
to refine the art of spectral observations. It was found that there were two electron
levels in hydrogen that were supposed to be the same according to the Dirac
theory, yet they did not quite coincide. The level difference could be measured
with the help of micro-wave methods and it became known as the Lamb shift after
its discoverer.

The Lamb shift was a little bit of a blow for the Dirac theory, which had until
then had a rather sacrosanct reputation. It was felt that the deviation had
something to do with hydrogen states of zero angular momentum. Subsequently a
small anomaly of the electron's magnetic moment was suspected as another cause
of deviations. It meant that the Dirac theory prediction of the electron's magnetic
moment might not be exact. Independent spin flip measurements of electrons in
strong magnetic field indeed confirmed the existence of an anomaly of about one
in thousand.  The anomalies for electron and muon were found to be almost the
same but not quite. Again microwave measurements saved the day for measuring
even such tiny differences in electron and muon anomalies.

The next question was whether the infinity-plagued discipline of QED could
shed light on these experimental observations. Bethe first showed that a Lamb
shift could be calculated by performing a balancing act with the infinities.
Subsequently Feynman, Schwinger and Tomonaga reconstructed QED to deal
with these new challenges. Schwinger first indicated a value for the magnetic
moment anomaly, which initially appeared to be the same for electron and muon.
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The fact that finite answers could be extracted from a discipline that from the
onset had been beset with infinities was nothing less than an achievement of pure
ontological magic. Yet, despite such heroic results, people want to know: are
infinities necessary?

In retrospect, the infinities are a consequence of Copenhagen's single system
premise, because it provides every individual harmonic oscillator in the vacuum
of free-space with an ever present and indelible zero-point energy.  The real
physical ensemble of harmonic oscillators, as considered by Planck, has no
trouble accommodating a zero-point energy as a statistical average of the the
lowest ensemble energy state compatible with random phase between the
oscillators. So the choice of a Gibbs ensemble as an ensemble of states for one
harmonic oscillator must be the culprit responsible for the QED infinities.
The simple reason is that every oscillator has been assigned a zero-point energy,
which integrated over a free-space spectrum is divergent.

Brownian Motion
Faced with the spectacle of an extremely light particle bouncing around on the

surface of a liquid, how would one build a theory about that? That is exactly what
Einstein did early this century. It goes to show that his ontic talents matched his
phenomenological talents called upon in developing relativity. The theory of
Brownian motion is a striking example of penetrating into the micro-physical
domain with the help of some straightforward ontic propositions concerning
microscopic observations.  While the molecule itself is too small to be seen, the
small particle being bounced around can be seen. So, looking at displacements
suffered by that visible particle through the bombardment in time by molecules,
one assumes to have a measure for inferring something about the molecular
constituents of the medium that is doing the bombarding.

The result of these considerations led to a conclusion that the square of the
displacement average is proportional to the time of observation, the temperature
as measured in degrees Kelvin, and inversely proportional to the fluid viscosity
and the radius of the observed particle. Since particle radius, temperature, and
viscosity are measurable, the factor of proportionality can be determined. This
leads to information about Avogadro's number* and Boltzmann's constant. These
results have been cross-checked against results from the kinetic gas theory; they
have shown good compatibility.  So the array of microscopic ontic propositions
that go into this sort of theorizing seem reasonably well justified to give even
Ernst Mach peace of mind about the existence of atoms and molecules.

Unlike his work on the general theory of relativity in which Einstein stood
largely alone, work on Brownian motion, especially the experimental
observations, has been pursued by several others. Smoluchowski pursued
comparable objectives and arrived at similar results about Brownian motion.

                                                
* The number of molecules in a gram molecule of any substance.



57

Crystal Classification, The Space Groups
The symmetry properties earlier considered are merely rotations, inversions,

and mirror operations that don't combine into inversions. The groups determined
by this conglomerate of symmetry operations are called the point-groups of crystal
symmetry. They are the result of a purely phenomenological development, directly
deducible from  observed symmetry elements. Although these symmetries are
understood to be implied by the lattice structure of crystals, it is not absolutely
necessary to make the lattice hypothesis.

Making a lattice hypothesis brings us into the realm of ontology.  Let us just
briefly ask the question how the lattice idea affects the earlier discussed 32 crystal
groups. It means over and above the 32 point-groups,  there are now also
translation operations that transform the actual lattice into itself. In 1848 Bravais
(1811-1863) concluded on a total of 14 basic lattice configurations, each with
their own translation group. The next horrendous task was sorting out what
different type of translation groups combine with point-groups to form new
groups. In 1892, Schönflies (1852-1928) and von Fedorov enumerated the total of
combinations of point and translation groups to be 230; they are called space-
groups.

For many years now, X-ray examinations of crystals have gone hand-in-hand
with the here-cited conclusions about crystal classification. There have been
recent attempts at extending these classification schemes to include physical
features related to magnetism.  There remain questions, though, whether the
ensuing extensions are as fundamental as the ones derived by Schönflies and
Fedorov.  The 32 point-groups and the 230 space-groups constitute what appear to
be the first, and most successful, applications of the mathematical discipline of
group theory to classification problems in physics.

If it had not been for the lattice hypothesis, the classification of crystals into
point- and space-groups would have been a purely phenomenological
achievement. So, formally speaking the crystal classification is an example of a
successful ontology. Yet, its work hypothesis appeared to be so close to the reality
of observation that it might by now have been argued as almost the equivalent of
an empiric implication. In this respect the classification of crystals by Bravais,
Schönflies and Fedorov could be regarded as a worthy conclusion of the century
of phenomenology.

As classifications go, the crystal classification is up to this point probably one
of the best physics has offered. It seems closer to physical reality than the group
classification for elementary particles. The reasons are clear, in elementary
particle theory we miss something as tangible and simple as the lattice hypothesis.

Remaining Ontologies
Shortly after Maxwell theory reached the world of physics, Lorentz saw a

chance of capitalizing on the structural similarity of the Maxwell equations in free
space and the equations in matter.  Free- and bound electrons were found to be
responsible for many of the electric properties of matter ranging from conduction
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to dielectric permittivity and magnetic permeability. In the course of time, this
initial Lorentz theory of electrons went through many changes to accommodate
findings in the quantum behavior of matter. The ensuing work has mushroomed
under the heading of what is now called solid state physics.

Other developments, where the contact between ontics and epistemics still
remains weak are the quarks of Quantum Chromo-Dynamics (QCD) and perhaps,
in a much more distant way, Strings. These disciplines have become mixtures of
empiricism, phenomenology, and ontology that are hard to disentangle. It  shows
when in despair, try everything.  One may assume when the time has come, also
here a measure of order is bound to prevail.(Compare next chapter)

     
EPISTEMOLOGY

The end of the preamble  has a diagram of logic interconnections that are an
attempt at imparting a strong suggestion that all of man's deductive and inductive
efforts ideally should come together under the heading of epistemology. This has
been posed as a conceivable ideal, as something for which one strives and hopes.
Clearly, mathematics comes closer to that ideal than physics. Let us examine for
either discipline in more detail the possibilities of living up to that goal.

The mathematics about which most physicists have knowledge comes about
by a deductive process of reasoning. Yet, occasionally mathematics uses an
inductive argument, but if that is done, it is preferably restricted to what is called
complete induction. Without the completeness, the inductive process retains a
question mark that mathematics can ill afford. So, in mathematics an inductive ar-
gument starts out with a conjecture, or hypothesis, but it remains on the intuitive
level unless the conjecture can be proven. The completeness of induction is part of
such proof.

In physics, much of the time we are inclined to be content with less.  We must
be, if we want to push forward. Moreover, whenever a conjecture becomes solid
knowledge, meaning the conjecture is regarded as a truth statement, it is never
with the degree of absoluteness that one likes to see in mathematics.  In physics,
we got accustomed to being satisfied with less.  It is the very reason why some
mathematicians see physics as an endeavor that is hazardous to their peace of
mind.

There is some justification for this attitude. In the course of these discussions,
several instances have been mentioned. Ironically a major example with which we
have been concerned holds for both: i.e., physics and mathematics. It is the
neglect of the pair versus impair distinction of differential forms. Here physicists
and mathematicians are both at fault for ignoring the pair-impair feature originally
introduced by de Rham.

This tacit removal of an essential characteristic has interfered with  several at-
tempts at mathematical modernization in physics. It has reduced these efforts to a
sort of lip-service to new principles, without really adapting those principles to the
physical reality from which they came. Keep in mind that de Rham's work, in
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many ways, derives from a then already-existing description of electromagnetic
fields. The pair-impair difference comes from basic distinctions between
electricity and magnetism. It is the polarity of electric charge versus the absence of
a similar polarity for a conceivable magnetic source. The next chapter argues why
a so-called magnetic charge and the observed magnetic flux quantization are
mutually exclusive!

The expectation and hope is that epistemology will be forthcoming in putting
such things in perspective, so that mathematicians as well as physicists and
philosophers can be pleased. Mindful that philosophy, as the wisdom of language,
is engaged in defining and redefining words, we now need to evaluate or
reevaluate what has been achieved at this point.

The new realms of physical experiences opened up by a sophisticated art of
experimentation has been widening our empirical experiences. Those empirically
well established new experiences have created new avenues for a deductively
strong phenomenology.  The latter, combined with a forever fertile ontic
imagination of physicists, provides a sea of information from which high points
can be lifted for value judgment.

Some Epistemic High Points
One of the high points of epistemic glory is undoubtedly Maxwell's synthesis

of the laws of electrodynamics and the subsequent verification of electromagnetic
waves by H. Hertz (1857-1894). Contingent on these discoveries was the
extension of the electromagnetic spectrum reaching from radio waves, heat waves,
infra red waves, light waves, all the way to ultraviolet waves, X-rays, and hard X-
rays.

Prior to Maxwell, optics had been a successful isolated ontology operating on
Huygens' premise of wave motion. At the time, radio waves and X-rays were still
unknown and there was no clear realization whether heat and light waves could be
possibly related.

The Planck theory of black-body radiation subsequently became a crowning
glory of the electromagnetic spectral interpretation. Its integration over the whole
spectrum from zero to infinity produced, as it should, not only the  already known
Stefan law of heat radiation but also the correct value for its constant of
proportionality.

The Stefan law itself had already been made a subject of interesting theorizing
by Boltzmann. Combining the Maxwell theory of radiation pressure with the laws
of thermodynamics, he obtained the Stefan radiation law with a proportionality
factor as an undetermined constant of integration.  The latter was later correctly
reduced to other physical constants through the integration of Planck's radiation
law: i.e., Planck constant, speed of light and Boltzmann's constant. The latter is a
close relative of Avogadro's constant and the (ideal) gas constant.

It cannot be denied that the turn of the century from 19th to 20th was an era of
unexpected enlightenment for the physical sciences. A multitude of previously
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disconnected or poorly connected realms of physics suddenly permitted a unified
deductive picture. That is what epistemics is about.

The here-depicted situations show a beautiful blending of ontic and
phenomenological principles.  One could say pure phenomenology is almost
epistemology.  Yet if pure phenomenology cannot always exist in wider contexts,
then, by the same token, pure epistemology is the thing to which to aspire. In the
preceding discussions the word "epistemic" has, for that reason, been favored over
the more pretentious "epistemology."

The cases here discussed have given insight in some unusual epistemic beauty,
yet much is overshadowed by a strange duality, which, for many people, mars the
ideal of what an epistemology should be. It is the duality of particle and wave.

The Epistemic Puzzle of Particle and Wave
The above picture seems contingent on an ontic proposition that light is a

wave phenomenon. Many people may not be inclined to call this an ontic
proposition, because diffraction and interference seem to leave no doubt about
Huygens' wave proposition. Finally, Maxwell theory itself comes up quite
naturally with wave equations for the propagation of electromagnetic
disturbances. The cards seem stacked against Newton's original idea of light
particles by favoring Huygens' position of waves. The evidence seems so abso-
lutely overwhelming that many people are unwilling to consider alternatives.

The first experimental evidence pleading against the universal wave
proposition was the photo-electric effect. Releasing photo electrons from a
cathode appeared to be controlled by the wavelength of light rather than by
intensity. Above a certain wavelength, no electrons could be released regardless of
intensity. Einstein's explanation of this effect was based on a proposition that light
could only give off energy parcels that were ruled by Planck's constant.  For years,
and still today, though, this feature may have disturbed the teachings of wave-
monism. Yet, it has not discouraged the use of the wave paradigm, because the
amount of evidence for which this works so well is simply too overwhelming.

In recent times, Tonomura et al have done experiments in which electron
diffraction patterns are shown to come about by single electron incidences. Now,
similarly, optical experiments have been done showing how light diffraction
comes about as a result of single photon absorption events. Even before the
Tonomura experiments, the interpreters of quantum mechanics have confronted
this issue with the proposition of a particle-wave duality. This proposition is of
the nature of a work recommendation by stipulating, depending on the problem at
hand, either particle or wave picture applies, but never both at the same time. This
Copenhagen work-suggestion had a temporary effectiveness in dealing with the
photo-electric effect, yet Tonomura-type experiments are presenting a new
confrontation challenging the tenability of this duality .

How do we explore a way out of this obvious predicament? First of all there is
no such thing as a single wave. Every wave known to man consists of numerous
Fourier components. These components have a rather abstract meaning. They
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have been invented by our mathematical brethren. Yet the argument suffices to
convey an impression that the wave concept, known to us, has an inherent plural-
ity connotation.

By contrast, there is such a thing as a single particle. It now follows that the
Copenhagen wave-particle duality suffers from an inconsistency. It compares a
single object with a plurality object. The presented predicament can at least be
partially resolved by replacing the (single) particle-wave duality by a many
particle-wave duality.

It shows the Copenhageners as over-preoccupied with single systems. Later, it
will appear that the Heisenberg exchange forces reveal a rather schizophrenic
feature of Schroedinger's "wave solution." They cover an interesting hybrid aspect
of joint single system and ensemble behavior. So, Copenhageners were right, at
least in part.

Assessing Phenomenological Pathways
A good phenomenology based on solid physical observation is the closest we

can come to a good epistemology. In fact, such phenomenology may be said the
practical equivalent of epistemology.

Taking a general look at the developments underlying the present state of
knowledge about mechanics and electrodynamics, one immediately sees two
diametrically opposed procedures.

The branches of mechanics have been developed from the small towards the
large, or using another form of presently customary language it said: from the
local towards the global. Anyway, that is how nature has revealed itself to us in
the ream of mechanics. There are ab initio global law statements in the form of
Hamilton's principle, yet the ingredients going into the Lagrangean of the
Hamilton integral have been conceptually developed from the local point of view.
We know building from the inward to the outward is no simple matter. It has been
a matter of deep concern to Euler who did much of this work.

On the other hand, the fundamental laws of electrodynamics, as initially
formulated by Faraday, Ampère and Kirchhoff, by contrast, were all observations
tying in with global observations. That is how nature revealed itself to man in the
realm of electrodynamics, or perhaps that is how man was able to see nature.

In electrodynamics, it was not so much a building inwards, but rather an
exploring inwards. Who opened up the outward‘inward process in electro-
dynamics? Faraday's tubes and lines of force were instrumental in developing the
field images of current electromagnetism. Maxwell's codification ties in
consistently with the images developed by Faraday and the subsequent application
of the Gauss-Stokes theorems. Let it be said that Maxwell was keenly aware of the
importance of maintaining those Faraday distinctions.

What Maxwell did, mathematically speaking, was defining integrands for
scalar- and pseudo-scalar-valued integrals.  All this ties in directly with de Rham's
definitions of pair and impair differential forms with properties of either exactness
or closedness. De Rham theory makes the exploring inwards a better defined



62

mathematical process, which in turn specifies its physical nature through the
physical character of the defining scalar- and pseudo scalar valued-integrals. Note
hereby that the physical dimensions of all the integrals occurring here are given by
the units (e) of "electric charge" and units (h/e) of "flux".  The latter, i.e., flux, is
measured by action (h) units over charge (e) units; all of these are good global
spacetime general, metric-independent, invariants. The ensuing physical field
dimensions are then uniquely determined through length (l) and time (t) as
integration variables.*

Now compare this outward‘inward process of electrodynamics with the
inward‘outward process used by Euler, when he created the branches of
mechanics.  Euler did not have available to him the equivalent of invariant
integral expressions that are so very characteristic of electrodynamics. Regardless
of whether or not a clean global‘local process here exists, the fact is: so far the
empirics of mechanics has not revealed it to us.  So, the procedure followed by
Euler became one of smearing out point-masses leading to a definition of mass
density plus velocity and acceleration fields for that mass density.

There is no denying that the outward‘inward process, Maxwell was able to
use, is conceptually superior to the procedures that Euler had to follow.  Euler was
well aware of an unavoidable measure of conceptual looseness of his development
of continuum mechanics.

Now let us see what Maxwell did with his translations of Faraday, Ampère
and Kirchhoff in integral form. Mindful of the earlier d'Alembert and Bernouilli
experiences in solving partial differential equations he proceeded to obtain
differential equations. Using the Gauss and Stokes integral theorems he converted
his global integral law statements into local statements. The results were the
Maxwell equations and from the Maxwell equations and the constitutive prop-
erties of the medium under consideration he obtained d'Alembertians describing
the wave propagating features of his fields. Keep in mind precious information
can get lost in the conversion global‘local.

Yet, notwithstanding this loss of information, the development of Maxwell
theory was spectacular, and above all it was rigorous compared to the earlier
developments in continuum mechanics.  Maxwell had lifted out the at-that-time
still somewhat isolated observations of Faraday, Ampère and Kirchhoff and joined
them into an encompassing structure that has been the standby for technology and
physics for well over a century.

Well-meaning pedagogues, spreading the new gospel, soon began looking for
a mathematically more perspicuous form of the theory. This led to a shorthand
now known as "vector analysis."

Some of the original vector distinctions made by Faraday and Maxwell now
became mostly invisible by the compromise of vector identification on which vec-
tor analysis is based.  Yet the compromise worked wonders, many more people

                                                
* see notes and references, mathematical sources: texts by Schouten and Post.
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were now able to take advantage of the new insights. At that time, the local
insights were dominant and more important than the global aspects. The latter had
not as yet received the needed observational evidence for which an integral point
of view would assume a role of preeminence.

The quantum-counting properties of cyclic integrals now change all that. The
Ampère-Gauss, the Aharonov-Bohm integrals, and the integral proposed by Kiehn
testify to the existence of a quantum superstructure of standard Maxwell theory.
Information lost in the global‘local reduction has so been retrieved and can now
help us confront a new quantum reality of physics!

Two of these integrals have been around for a long time. The third is of more
recent vintage in the sense that it has been around for two decades. Kiehn's
integral was introduced as an action quanta counter with all the metric-
independent, generally invariant features that go with counting. The Aharonov-
Bohm integral acquired operational significance as a phase-shifter in the Sixties.
Yet, in the Thirties it had already been identified as a potential flux quanta
counter. Its capabilities for that function were confirmed in the early Sixties. The
Gauss-Ampère integrals has been around longer than any of the others. Their
combined specifics as legitimate charge quanta counters were emphasized and
verified in the Eighties.

These are just reminders that there are three cyclic integrals of 1,2, and 3
dimensions that meet all the requirements of being able to function as counters of
quanta of flux, charge and action. These integrals constitute a quantum
superstructure of contemporary local Maxwell theory.  Yet, to make these
characteristics explicit, the vehicle of vector analysis is less than inviting, because
it obscures the very features that are crucial to verify those characteristics.

Without a formalism that stresses the metric-independent features, it is
difficult to appreciate macro- as well as micro-applicability of those integrals.
People familiar with some of those integrals through standard vector procedures
are naturally inclined to question micro-applicability. Applications envisioned by
Aharonov and Bohm reflect a macro-realm.

PROPOSITION: The global superstructure of quanta counters constitutes a
valid epistemic extension of traditional Maxwell theory and has macro- as
well as micro-applicability.

Applications to quantum Hall effects and the electron's anomalous moment
illustrate an applicability of these global laws to macro- meso-micro-scopic and
sub-microscopic situations. The anomalous moment application avoids the
infinities of standard QED.

Questions now arise how these three integrals relate to Schroedinger  results
and last, but not least, how do these integrals relate to the famous Bohr-
Sommerfeld integral that had rendered such excellent services in the earlier days
of quantum mechanics? At this point it is necessary to recall that the
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Copenhageners had reduced the status of the Bohr-Sommerfeld integrals to mere
approximations of the presumed "exact" Schroedinger results.

All of a sudden there are too many questions deserving a better answer. The
problem is that physics has  at least in part been driving in a wrong direction. It
has exhausted itself in finding reasons to believe that the wrong direction is the
right direction. This has led to an accumulation of invalid doctrine. All these
teachings have to be undone, one by one. Here is at least a preliminary overview.

First of all, the Bohr-Sommerfeld conditions follow from the Kiehn integral
by assuming point-charges. Since the three field integrals as quanta counters have
a measure of unsurpassed exactness, it follows that the Bohr-Sommerfeld
conditions share some of that exactness. The familiar investigations by Wentzel-
Brillouin and Kramers thus reveal a mathematical rather than a physical asymp-
totics between results of Schroedinger and Bohr-Sommerfeld.

Copenhagen has circulated the unsubstantiated claim that the results of
Schroedinger were exact and the Bohr-Sommerfeld results were approximate.
This conclusion tacitly assumes the two methods address the same physical
situation. So, an apparent conflict is precipitated by the undocumented
Copenhagen insistence that the Schroedinger equation would be describing a
single physical system.

Since the flux quantization experiments indicate single-system relevance for
the quanta counters, it follows that the Bohr-Sommerfeld integrals have a single
system connotation. So the asymptotic relation between Bohr-Sommerfeld
conditions and Schroedinger equation leaves open the option that the latter de-
scribes an ensemble of identical systems and not a single-system. These
conclusions are strongly supported by a more detailed study of their statistical
interrelation.       

Copenhagen   
Almost all of the predicaments associated with Copenhagen views of quantum

mechanics can be resolved by admitting to the ensemble nature of the
Schroedinger approach. There are no known disadvantages associated  with this
change of venue, and it may be said that it protects users from making wrong and
unpromising applications of the Schroedinger method. One will find that the
Schroedinger equation has been written down many times for physical situations
that really are not suitable for a Schroedinger treatment. Writing down this
equation is believed the thing to do in any quantum situation.  Most of the time,
one can rest assured of at least getting an asymptotically close result.

Given the asymptotic closeness, it will be very hard to change those old habits.
Using the old stuff, one can't go too wrong, because approximate correctness
seems assured. So, why bother and do something else? The point is well taken,
provided we don't complain about being bothered by Copenhagen contradictions
or something  else not right in the state of Denmark.  Is physics just a means to do
something successfully or do we also want to understand what we are doing?



65

Human effort at understanding should not be smothered by a widening stream of
interpretative difficulties.

Let us repeat grounds earlier-given as to why the Schroedinger process is
suited for ensembles, whereas methods based on three cyclic integrals are better
suited for assessing ordered single systems; the cyclic integrals include Bohr-
Sommerfeld as a special case of the Kiehn integral.

Experimentally, the Aharonov-Bohm and the Ampère-Gauss integrals have
unmistakable single-system connotations. Since the Kiehn integral is an exterior
product formation of the differential forms of these two, it shares in those single-
system connotation.

A claim that these integral law statements must be approximate is no longer
valid, because quantum Hall effect and Josephson ac effect directly relate to
applications of these integrals. These two effects have produced today the best
reproducible (to 9 decimal places) measurements of the elementary quanta of
charge e and action h. None of the e and h determinations obtained solely through
the use of either Schroedinger-Dirac or/and QED results come even close to that
reproducibility. These are facts of observations. They should put to rest much, if
not all, undocumented talk about as to what is exact and what is not. (see footnote
p.99)

Extremely low-temperature conditions and high magnetic fields create states
of single-system order for the quantum Hall effect. In the plateau states all Landau
states are presumed to be operating in phase order, thus forming a synchronous
joint lattice of those states.  The single-system situation for the Josephson effect is
perhaps most evident from the experimental set-up and end result.

Having established a single-system and exactness status for results obtainable
through cyclic integral applications, a previously unasked question now presents
itself: Can the Copenhagen claim be correct that the Schroedinger equation would
also be describing a single-system feature? The answer is: yes, in an approximate
manner!  Unfortunately this question has never been adequately confronted. There
is evidence, that Slater expressed such opinions to Bohr, which led to an
unfortunate distantiation between the two.  We shall see later that Heisenberg
exchange forces are a case in point where Schroedinger gives in addition a
statistic-type information about internal single system structure.

The Schroedinger equation thus leaves a convoluted trail of attempts at
understanding. The new situation shows Schroedinger's equation as describing an
unordered ensemble of single systems in which the latter can still have a measure
of internal chaos.

Ironically a partial proof of the ensemble connotations of the Schroedinger
equation is spelled out in the Feynman lectures (Vol.II as well as Vol.III). It is a
statistical derivation of the typical angular momentum quantum number n(n+1) .
This Schroedinger angular momentum is the result of averaging a randomly
oriented ensemble of identical single-system quantum rotators in quantum state
nh.
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It is another and even greater irony that the other part of that proof was given
by Planck more than a decade prior to the 1925 quantum revolution.  Planck
showed how, per system, an average zero-point energy ¡ø/2 has to exist in a
randomly phased ensemble of harmonic oscillators. Hence, zero-point energy is
not a single-system manifestation and neither is uncertainty. The single
system aspect was an unsubstantiated Copenhagen invention. Also, the source of
QED infinities is due to the same impermissible single-system extrapolation of the
Copenhageners.

The question is: (why) would these matters have escaped Feynman and co-
authors? The, at-the-time, heavy investments in QED procedures may have been a
factor, why there was reluctance to cite this as a beginning of a (counter)
revolution. Another factor is that they may have been unaware of Planck's
ensemble-based introduction of the concept of zero-point energy. One of the
surviving authors of the Feynman Lectures might be able to cast light on this
enigma.

So, Copenhagen's nonclassical primordial single system state of phase and
orientation randomness, continued in washing out the reality of actual orbits,
which, in turn, led to zero-point infinities and the concept of single system
quantum uncertainty. All this nonclassical stuff can be replaced by a much less
nonclassical primordial ensemble of random phase and orientation.  Its zero-point
energy is a minimal condition holding off phase and orientation ordering such as
happens in the plateau states of the quantum Hall effect. It is now a natural ontic
proposition to identify quantum uncertainty as an inherent manifestation of
the zero-point ensemble.

Modern physics is confronted with a choice between Heisenberg's   a priori
single system-uncertainty versus a rather more natural uncertainty of phase-and
orientation randomness of Planck's primordial ensemble.  At that time, the
absence of contrary evidence still permitted Copenhageners to focus on the
paradigm of a Gibbs ensemble of conceivable manifestations of one-and-the-same
single-system. They were lured by a wishful romantic desire to see the
Schroedinger-Dirac process as a last word for an all encompassing single-system
solution. Even so, at the time, voices were heard not to go overboard in having
such unwarranted expectations.

It was a matter of weighing respective relevances of two ontic options. The
vast majority went for a decision of romanticism versus an option needing fewer
nonclassical escapes to make matters work.  Not altogether unexpected, through
the centuries, mankind has had a track-record of taking recourse to magic
romantic solutions. Mythology so testifies. Also the quest for scientific reality
itself can fall victim to the lure of magic. It is easier to overcome marginal
scientific opinions than religiously held magic convictions, because the latter
cannot admit to any vulnerability.

Contemporary physics is rather unanimous in its opinion that quantum
mechanics is among the most effective tools available.  This   prowess of its
practical potential stands in flagrant contrast with the prevailing ideas about its
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inner workings. The latter are  shrouded in pure magic.  So, we have here a
wonderful instrument, but we don't really know why it does what it does.

The situation manifests a superficial similarity with contemporary life. In
every day activities we quite effectively use electronic devices without knowing
how they work. The difference is that some people designed those devices and
they do know how they work.

By contrast, in physics nature "has" the answers and man sets the problems in
his perennial quest for self-awareness. Man tries to find out what nature knows
and, as part of nature, man has been making tools to explore nature's reality.  In
the past most tools that were developed had a direct rational relations to
empirically observed facts. In time, the relations between facts and tools became
stretched: e.g.,  in the Bohr-Sommerfeld case as well as in the Schroedinger-Dirac
methodology. It calls for justifying the means by the end product they deliver. If
the latter amazingly is of an unexpected relevance, it would be a sin to reject the
results it gives, because the tools were obtained via some stretched ontic leaps of
faith. Instead, one should attempt integrating these ontic propositions in a wider
epistemology.

Notwithstanding ardent searches, seven decades of quantum history have not
led to a consensus of epistemic unity.  Those not concerned with  details of tool
design can afford assuming the pragmatic attitude of leaving things as they are.
Yet, those concerned with tool design need to give thought why tools do what
they do.

In these discussions experimental results have been emphasized as setting the
tone to minimize distracting ontic infusions.  The extremely reproducible
Josephson- and quantum Hall effects indeed conspicuously contrast with the
virtual ineffectiveness of the statistical Schroedinger procedure to predict or even
explain and justify, in retrospect, the utterly nonstatistical precision of the simple
relations obeyed by these effects. It just adds  to a staggering evidence now fa-
voring a two-tier approach to quantum mechanics: Schroedinger-Dirac for
ensembles and cyclic integrals for the simpler single systems.

It should be understood that ensemble views of Schroedinger solutions have
been considered since the early Thirties. The ensemble and single system have
been sort of coexisting ever since. The truly classical statistical options
engendered by the × function have not been part and parcel of these two groups
that have now been tolerating one another for sixty years. Nonclassical statistics
still rules supreme in the textbook literature, despite classical counter examples
mentioned in that very same literature (e.g., Feynman).

All these years classical statistical options have been available to serve single
system- and ensemble view both. It is, however, the single system zero-point
energy that does Copenhagen's single system point of view in. So, in retrospect, it
ironically appears that the most popular view of quantum mechanics is the least
viable from a point of view of physical reality.

Copenhagen's point-particle with its probability presence ingeniously
circumvents the obvious predicaments of Schroedinger's smeared-out particle
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model. Yet, in the long run Schroedinger's and Copenhagen's  single system
interpretations both are untenable. It only took so much longer to come to that
realization for Copenhagen's point-particle.  Both procedures presume far too
much about what × functions can do. In retrospect, it is unrealistic to expect
detailed single system structural and behavioral implications from a × function
process that has limited built-in capability to serve that purpose.  The magic of
Schroedinger's recipe made the monumental Hilbert legacy of eigenvalue
procedures available to problem solving in quantum mechanics. This
overwhelming windfall experience was bound to create an atmosphere of
endowing × with magic capabilities, way beyond its potential for delivery.

As an alternative to such overambitious × function dreams, which in some
theories include ×'s for the world and even the universe, one may now consider
more modest aspirations for × as mostly an ensemble tool. This possibility can be
assessed as a perhaps inadvertent consequence of Schroedinger's very own recipe
that led to his wave equation, because this recipe optimizes, in essence, the
solution manifold of the Hamilton-Jacobi equation.

Once alerted to these options, it is not all that hard to show that phase and
orientation emerge as statistical parameters of an averaging process of solutions.
This solution manifold, for given energy and angular momentum, represents in
effect an ensemble of randomly phased & -oriented solutions. This leaves exactly
two interpretive options: (1) The Copenhagen choice, which is now an ensemble
in the sense of Gibbs, in which solutions are taken to be conceivable
manifestations of one and the same single system or (2) The solutions individually
correspond to the identical single system elements of an ensemble.

Option (2) is by far the more realistic choice. It avoids the ultra-violet
catastrophe precipitated by spectral integration of individual zero-point energies.
Option (2) also allows interaction between ensemble elements; the Copenhagen
option (1) does not! Here we see how close Copenhagen's choice was to a
physically  realistic option. Let it provide understanding for the many decades it
took to come to this realization. In retrospect, one could say, it had to be that way;
how else could the results have been so close to a physical reality we knew about
all along? The Schroedinger equation thus remained an object of perennial
questioning, because not knowing its limitations, one can't quite know its defects.

The Delusion of A Priori Absolute Uncertainty
The rejection of single systems as a sufficiently realistic object of

Schroedinger-Dirac description creates a two-tier situation in the approach to
quantum mechanics.  On the one-hand, an evolution in cyclic integration methods
permits an exploration of single system topology, on the other-hand, phase and
orientation, pertaining to ensemble elements, permit order-disorder exploration
casting light on phase changes of matter.

The situation resembles the two-tier situation of Newtonian mechanics and
traditional statistical mechanics. Slater, at one time, made suggestions to this
effect to Bohr; they were not well received. There is a difference though:
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traditional ensemble parameters are dynamic; they relate to thermal states. By
contrast, Schroedinger-type descriptions pertain to a statistical state governed by
orientation and phase. The latter are not dynamic by themselves, but set the stage
for the dynamics of thermal behavior.

Planck has considered harmonic oscillator phase as an order-disorder
parameter in ensembles thereof. These mutual position variables hold a key to
understanding  transitional states of matter between solid, liquid and gas.  Mindful
of the stationary temperatures during such transitions, order parameters are
regarded as setting the stage for subsequent intervals of thermal change.
Knowledge about modification changes in condensed states of matter is still full
of open questions.

Remarkable about the zero-point energy state, as introduced by Planck, is its
primordial nature as a first transition state in the temperature run going upwards
from the absolute zero. The transition between quantum Hall plateaus and normal
Hall effect states are indicative of an order-disorder transitions in which zero-
point energy is instrumental. Further inquiry raises many more questions about
other near zero-point transitions in which zero-point energy has a determining
role.

The inherent ensemble nature of zero-point energy immediately raises
questions whether the closely related concept of quantum mechanical uncertainty
can be a single system attribute. Its postulated a priori nature has prevented a
development of detailed pictures of single system structure. Traditional
Heisenberg uncertainty shrouds micro objects from further inquiry, thus limiting
man's knowledge about these matters.

These traditional uncertainty conclusions are all contingent on their presumed
but mistaken single system association. They are no longer compelling for the
ensemble. An early ensemble point of view, pursued by a small minority* since
the Thirties, has unfortunately been unable to forge ahead, because they were
hesitant to reject Copenhagen's nonclassical statistics that goes with the single
system thesis. They did accept single-system Heisenberg uncertainty, which
impeded further ambitions to independently explore single system structure. It
shows the overwhelming impact of uncertainty in the Heisenberg vein. It seemed,
the Gods were reminding man of his limitations; this sentiment did gibe favorably
with the times of collective guilt following the era  WW I.

Heisenberg's 1927 uncertainty paper transcribed an imprecision due to
truncating Fourier expansions. To understand its relation to Heisenberg matrix
mechanics, consider how the latter invokes products of Fourier expansions, in
which Cauchy's rule for product series translates into matrix multiplication. The
fact is truncating Fourier expansions is an act of man, the question to be asked is
whether a multiplication with Planck's constant makes it an act of God?

                                                
* After Slater's first attempted revolt, Popper, Kemble and Groenewold acquired prominence in
this minority. Popper received conditional support from Einstein. During that time Russia also had
an active school of ensemble supporters.
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In the same year, Kennard confirmed a near identical uncertainty restriction as
a valid consequence of Schroedinger's formalism. This  clinched the famous
relation, not Heisenberg's interpretation. An ensemble view marks uncertainty as
a manifestation of a primordial ensemble disorder. The latter sits easier with our
sense of reality.

The ensemble movement, started by Popper, Kemble and others in the mid-
Thirties, somehow bought into the idea of Copenhagen's nonclassical statistics. In
doing so, they sacrificed single system inquiry and placed themselves in a no-win
situation. Copenhageners could tolerate such ensemble pursuits, because the
conflict was merely a formal one between a real- ensemble (Popper-Kemble) or a
Gibbs ensemble (Copenhagen).

Identifying uncertainty as a manifestation of Planck's primordial ensemble
eliminates uncertainty as a single system phenomenon. It reopens single systems
to the semi-new tools of cyclic integration. The latter invite  topological
modelling. This quantum cohomology is in its initial phases. In a give and take of
some of the presently distorted measures of physical reality, the reader may
consider whether Quantum Reprogramming (see notes), in its account of quantum
cohomology presents alternatives with less of a premium on accepting magic
solutions.

The moral of the story is that in the mid-Twenties physics became confronted
with some wonderful new tools that did not quite permit an ab initio justification
by derivation.  Perhaps more than ever before, tools had to be justified in
retrospect, by showing what they could do. Add to this the potentially misleading
asymptotic proximity between single system and ensemble results and the stage is
set for gullibility in theory.

At the time, an avalanche of strikingly new results invited commentaries
gushing with praise for the wonders of the new nonclassical physics. Yet the
history of Heisenberg uncertainty is living testimony that even the best could not
escape measures of flawed and careless reasoning. It shows too well how hiding
behind the label nonclassical  can be used not to face reality.

There is a physics consensus floating on the belief: If magic worked once, it
may work again! It gets harder and harder to judge how much of the contemporary
production falls in that category.  To make sure, let us check what other reasons
Heisenberg could have had to favor a single system aspect for his new quantum
mechanics.

Helium Spectrum and Heisenberg Exchange Force
It was Bohr's monumental step forward to provide a theoretical justification of

the Hydrogen spectrum, which offered promising perspectives beyond the
discoveries of Planck and Einstein. When during world-war I, Kramers came to
work with Bohr in Copenhagen, one of his first assignments was an attempt at a
similar delineation of the intricacies of the spectrum of the next chemical element
of the periodic chart: i.e., helium.  It soon became clear that the early tools, which
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had accounted for the hydrogen spectrum as well as its fine structure, were no
match for problems presented by the helium spectrum.

A series of new discoveries were necessary before a new attempt could be
made at delineating the peculiarities of the helium spectrum. In fact, an altogether
new quantum methodology had to be developed before anything could be done in
this direction.

Almost a decade later, Heisenberg (Kramers' successor) initiated the first steps
that led Born and Jordan to matrix mechanics. The ensuing algorithm was
superseded the next year by the equivalent Schroedinger method. In the meantime,
Pauli added the exclusion principle as an independent proposition. Then the
anomalous Zeeman effect spawned the electron's spin and magnetic moment.
Armed with these new tools, Heisenberg reexamined the helium spectrum.

In approaching this problem, Heisenberg abandoned the matrix methods, he
had helped to initiate. He right away availed himself of Schroedinger wave
function language, reinforced with the exclusion principle and the notion of spin.
The results were spectacular. Not only did this new approach qualitatively account
for the observed two independent spectral systems of helium, it also gave a
reasonable quantitative account of the term levels. They were later refined by
higher order perturbation calculations.

From the victory over helium's spectral peculiarities, a new transcending
insight emerged. It is now known as the Heisenberg exchange force and its
associated energy. This exchange force is not really a new force category. It is a
Coulomb-type interaction, which develops a new angle through the superimposed
process of quantum mechanical averaging. The exchange energy for helium is a
dynamically weighted integral of the Coulomb interaction between the two
orbiting electrons; low order weight functions are the one-particle solutions
prevailing in the absence of Coulomb interaction.

Heisenberg's analysis reveals some uncanny single system capabilities of the
"many" particle Schroedinger equation. This went well beyond the early tools
available to Kramers. These experiences may also give a measure of
understanding how Heisenberg became a convinced supporter of a single system
based interpretation. So, when in the next year (1927), the concept of quantum
uncertainty was launched, the success of the helium analysis suggested to make
uncertainty a single system attribute. Only later was it discovered that this very
step would produce vacuum infinities. The latter were to acquire a near-fatal, yet
crucial role, in later QED procedures.

This interlude about exchange forces raises the most serious challenge to a
compatibility with the unmistakable ensemble connotations earlier identified for
Schroedinger's method (see section on Copenhagen). While it is true that classical
statistical processing of early single system quantization can give typical
Schroedinger results, that evidence does not suffice to derive and obtain the whole
Schroedinger method in that manner.The Schroedinger process here reveals
capabilities of dealing with compound structures not presently covered by the
earlier Bohr-Sommerfeld procedures.
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 Heisenberg's exchange perturbation process gives Schroedinger's method
indeed a better handle on many particle situations than the Bohr-Sommerfeld
process. A semi-classical orbitally-based perturbation would have trouble yielding
these results, because typical Heisenberg exchange effects follow from electron
spin and wave function stipulations imposed by the Pauli principle. The latter has
no obvious counter part in classical mechanics! Heisenberg's exchange process
thus reveals, over and above the ensemble statistics, an internal statistics of
compound single system structure. These matters have been the subject of new
semiclassical investigations, recently reviewed by Wintgen at al.*

The previous section on Phenomenological Pathways mentions quanta
counters as superseding the Bohr-Sommerfeld relations.  Aharonov-Bohm takes
precedent over Bohr-Sommerfeld (as it should).** Compound many particle
single systems may well be governed by a mixture of flux closure and and orbital
topology. The latter somehow translates into observed electron shell formations.

Presently, these are at best options for future investigation.  The question is
whether and how global approaches can cast light or duplicate Heisenberg's
exchange procedures. The exchange integral procedure has also been successfully
applied to molecule formation and chemical bonding. As for helium, also here
single system aspects demand a new forum, because a statistical looseness (chaos)
remains in the internal structure of compound single systems.

Applications to magnetism further illustrate how exchange forces convert
ensembles of random spin into extended single systems with long range spin
order. Here is a giant single system with minimal internal looseness compared to
the micro-loosenes in the helium atom. Internal looseness again prevails near  the
Curie temperature.

It now becomes clear why it is difficult to derive Schroedinger's equation from
first principles. Planck showed that zero point energy ¡ø/2 can have a classical
statistical origin and later the angular momentum quantum number n(n+1)  was
shown to be reducible to a classical statistical origin. When these two items later
were found to emerge automatically from the Schroedinger equation, physics gave
in to the temptation of accepting a first principle status for this equation. These
two items are indicative but not sufficient for a conceivable reduction of
Schroedinger's equation to the first quantum principles used in the older quantum
mechanics of Planck, Einstein and Bohr-Sommerfeld.

The preliminary picture transpiring here has a potential of yielding better
understanding of the complex nature of Schroedinger's equation. This quest is
contingent on two factors:

(A) The quanta counters earlier referred to in the previous sections give a
better first principle foundation of early forms of quantum mechanics. Phase and

                                                
* D Wintgen et al, Chaos 2,19 (1962)
** The Aharonov-Bohm integral must be regarded as more fundamental, because it is independent
of specific particle assumptions.  In fact, the 3-dimensional   Kiehn integral yields Bohr-
Sommerfeld after a point charge application of theAmpère-Gauss integral.
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orientation statistics of quanta counter statements pertaining to elementary single
systems can lead to Schroedinger statements. 

(B)  The semiclassical studies pursued by Wintgen et al and others hold
promise of also covering ensembles of compound single systems. In this vein
Schroedinger's equation covers ensembles as well as internal statistical matters of
compound single systems. Hence the Copenhageners were at least partially
right.

At about the time when Heisenberg solved the helium problem, Kramers, who
had started out with that problem when he came to Copenhagen, achieved a
significant victory in the phenomenological realm.  He established a set of
analytic conditions that need to be obeyed if physical interactions are subject to
the dictates of causality. It is interesting to compare the nature of these two
achievements.

Heisenberg expertly juggled an array of ontic propositions that finally led to
an understanding of the helium spectrum. The input came from the discovery of
electron spin, the Pauli principle and the methods of the new quantum mechanics.
It is a beautiful example how ontic combinations can ultimately home in on
epistemic truth.

When Kramers started out with the helium problem, all of the just mentioned
ingredients were still absent. His efforts stranded on insurmountable difficulties.
Then in later joint work on dispersion with Heisenberg, it was Kramers who
supplied the mathematical structure of dispersion that enabled Heisenberg to make
his ontic proposition that would cast new light on quantization. Then armed with
Heisenberg's ontic proposition, the more rational part was completed by Born and
Jordan. They worked out the mathematical procedures that later became known as
matrix mechanics.

The realm of dispersion theory has a strong phenomenological aspect that
must have appealed to Kramers, because he returned to a missing element in his
earlier work. He namely succeeded in giving a rigorous mathematical formulation
of how causality is obeyed in the process of dispersive response. We see here how
the development of quantum mechanics has been an almost ideal playing field for
recognizing the complementary potential of intuition and rational effort in making
meaningful steps forward possible.

 MATHEMATICS; VEHICLE FOR PHYSICAL THOUGHT

Introduction
Man's need for mathematics may well have coincided with his awakening

sense of property. There was an early need to count herds of sheep and cattle. So,
animal husbandry may well have ignited man's fascination with numbers.

From counting herds to the operation of addition was in many ways an
abstraction waiting to happen. It arose as an act of convenience. How else could a
herd owner obtain an impression of his total herd, if his several shepherds were
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taking their part of the herd to different places? In case man had not yet invented
addition, the chances were he would do it soon.

For a perspective on these matters, consider that animal husbandry may have
started as little as thirty to fifty thousand years ago. We know little about how
those ancestors dealt with their numbers. We do know, however, that the Romans
used a notation for numbers that was not very convenient for the performance of
arithmetic operations.

It was late in the middle ages that Roman numerals in Europe were being
replaced by the Indian-Arabic number system. At that time, arithmetic with the
new number system became a university specialty. It is said a professor at the
university of Padua let it be known that people could now overcome their fear for
big number arithmetic by taking his courses.

This little detour in the history of mathematics carries an important message. It
shows, no matter how simple or lofty the mathematical objective, the endeavor
can stand and fall with a wrong choice of notation.  Mathematical notations may
be said to represent an engineering aspect of mathematics. The transition from
Roman to Indian-Arabic numerals had a tremendously liberating effect, not only
on the development of arithmetic but also on the development of mathematics in
general. Many things in arithmetic that, until that time, seemed impossible or
cumbersome, now became possible. The ensuing liberation led to the emergence
of new mathematical disciplines, each with their own aspects of notational
engineering.

A familiar example in calculus is the fluxion notation of Newton versus the d
notation of Leibniz. The latter won out, because it explicitly identifies the
variables inducing the change. In so doing it permits a helpful distinction between
partial and total derivatives.

From these earlier experiences it is clear that appliers of mathematics had at
least as great a stake in notational engineering as the practitioners of pure
mathematicians. In fact, the latter may take a more neutral position vis a vis
notation, where the applier of the art may show very specific preferences.

By the same token, it also happens that appliers of the art of mathematics are
so anxious for their results that they take shortcuts. They take just that what they
think is needed to serve them for the moment of need, yet later such shortcuts may
come back to haunt them. Undoing premature shortcut decisions is a very hard
thing to do once a pattern of shortcut habits has been established. As an example
we shall discuss here the Saga of the use of mathematical field theories in Physics.

The Mathematical Field Concepts of Physics
The velocity field of fluid flow is a traditional physical field and so is the

associated field of momentum density, which comes about after multiplying the
flow velocity by the local mass density of the fluid. The forces in a fluid are taken
to be transmitted by contact across a surface area of given direction. The contact
forces in a fluid remain somewhat academic entities, because they are contingent
on a choice of surface. In a more general sense the force conditions in a
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continuum are described by a so-called stress field. The latter is a tensor field, a
local force acting across a surface area is then obtained by having this tensor
operate on the vector of the surface element as a linear vector function. It means
the components of the force field are linearly related to the components of the
vector defining the surface across which the force is supposed to work. The
components of the stress tensor are the coefficients of this linear vector relation.

These stress force concepts were beginning to develop already in the days of
Euler, yet the final codification of the field description in material media was due
to Cauchy. Here we see how major parts of physics were developed by leading
mathematicians of the time.

Quite different from these traditional contact forces was the gravity force
concept introduced by Newton. The force of gravity in effect reaches across empty
space, without the need of a physical contact to transmit the force; they were said
to be acting at a distance.  Their intensities were perceived as depending on the
mutual distance of those gravitating bodies and their masses.

In the beginning of the 19th Century, other examples of such forces became
known as also acting at a distance. They were the electric and the magnetic forces.
Faraday explicitly initiated the description of the realm  of influence of those
forces with the help of an influence field. As the gravity field, these new electric
and magnetic forces also were identified as vector fields of influence. Two are
defined as forces per unit mass and per unit electric charge respectively. The
magnetic induction field is now defined per unit electric charge and velocity, since
extensive searches have not led  to an identification of magnetic charge!

It is hard to find fault with the 19th Century pioneers who gave in to the
temptation of lumping all these vectorial quantities together under one unified
mathematical vector concept. Even if Maxwell, in practice, may have succumbed
to the pressure of adopting a unified vector concept, it is known that in the spirit
of Faraday's original geometric conceptions, Maxwell was well aware that the
physical distinctions between these vector species were also explicitly reflected in
subtle mathematical differences.

Yet notwithstanding the important sentiments of Faraday and Maxwell, the
vector unification nevertheless became a fact of convenience and led to the system
of vector analysis, which is today the most widely used shorthand of mathematical
communication in physics. Here we want to find out more about the price that
had, and still has, to be paid for this convenience?

Closer scrutiny shows that the system of vector analysis remains valid
provided rectangular frames are being used that are all of the same handedness. It
means the frames are mutually related by the special orthogonal group SR(3). It
soon appeared that the restriction to frames of one handedness made it difficult to
deal with phenomena that have mirror image features such as occur in crystals.
The system of vector analysis is therefore unusable in crystal physics.  A point of
later concern became the presumed arbitrary extensions of these frames to infinity,
which is possible if, and only if, physical space is taken to be Euclidian in nature.
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Even if this proposition has locally a good measure of validity, the fact is that
the Euclidian thesis of indefinitely extendable frames of reference to infinity is an
idea that is much less clear than we were made to believe in school. Assumptions
of a Euclidian physical space are so highly specialized, that the chances of their
verification in the long run must be taken as slim.

To the Euclidian predicament we may add that physical reality imposes, over
and above, a distinction between inertial and noninertial frames. The latter are
mutually related by transformations that are not linear in the time.  By contrast,
note that Euclidian rectangular frames are mutually related by the strictly linear
transformations of the group SR(3). This unbalance between space and time
properties for particle dynamics was removed by Lagrange. These analytic
ramifications were further developed by Hamilton and Jacobi. The existence of a
(spacetime) differential one-form of energy-momentum was so established. The
integrability of this form gives Hamilton's equations of motion, going back to
early 19th Century.

At that time, however, the continuum theory of the electromagnetic field had
not yet developed. Perhaps for reasons of simplicity, the attractiveness of the
shorthand of vector analysis won out in the early mathematical codification of
electrodynamics. Yet, this tie-in with the restricted system of vector analysis
justifies questions whether this connection imposes undue restraints in con-
temporary situations.

Even from this brief overview it is clear that the interaction between physics
and mathematics on the subject of field theory is very convoluted. To disentangle
this situation we do well to obtain first a time table of mathematical developments
that seems relevant to the emergence of physical field theory.

Survey of Mathematics in Its Relation to Physics

17th Century
Descartes' analytic treatment of geometry. His notion of "Cartesian" frames of
reference, mutually related by linear transformations are strictly Euclidian.

end 17th Century
The development of calculus, Leibniz and Newton and beginning the concurrent
development of Newtonian mechanics against  the backdrop of a strictly Cartesian
tradition.

18th Century
The development of continuum mechanics by Euler,  continuing Cartesian
traditions.  At the end of this century his successor Lagrange lifts the Cartesian
traditions in particle dynamics.

first part 19th Century
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Beginnings of global formulations in physics, in contrast to the differential
traditions of Newton and Euler.

Examples are:
1  Hamilton's action principle
2  Gauss'law of electrostatics
3  Ampère's law
4  Faraday's law of induction

Concurrent with these developments came the extension of the field concept
as capable of conveying an action at a distance. This period of global formulations
in physics was made possible by two major integral theorems ascribed to Gauss
and Stokes. Both theorems convert an integral over a closed boundary to an
integral over the interior of that boundary. It became clear by the turn of the
century, that these theorems have validity way beyond their initial Euclidian
origin. They are now seen as dimensional generalization of the principal theorem
of the integral calculus. Since notions such as enclosing and linking are crucial for
their formulation, they are also beginning to invoke ideas about topology and
global physics.

1854
Riemann breaks with the exclusive Euclidian-Cartesian tradition in geometry. The
Riemann-Christoffel condition is a tensor criterion providing information how
much a Riemann manifold locally deviates from Euclidian. With Riemann and
followers begins the development of a metric-based tensor calculus, holding up
under general transformations; i.e., Diffeo-n, instead of the SR(n) or SR(3). This
metric-based apparatus of generalized calculus was further honed to perfection in
the next century by the work of Ricci, Levi-Civita and Schouten.

Last part 19th Century
 Since the needs of crystal physics were purely local, where curvature has
no major role, there was reason to retain Cartesian frames. This simplified need,
led in first parttime to disciplines restricted to Cartesian tensors.

 20th Century
Since the primary  laws of electrodynamics and many other fields invoke

mostly tensors of valency one (called vectors), the slumbering discipline of
Cartesian tensors ultimately gave birth to the famous shorthand that later became
known as vector analysis.

Better than any very detailed mathematical discussion, this brief
history illustrates the sequence of compromises underlying physics' most
widely used vehicle for communicating essentials of physical field theory.

1915 For the purpose of delineating the principles of his general theory of
relativity, Einstein had to revive the basics of noncartesian tensor analysis.
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His efforts only met with partial success, because his principle of general
covariance, meant to adapt the Riemannian procedures to the compelling needs of
physics met with major opposition. Contemporary texts on relativity tend to pay
lip service to this criticism, which leaves this matter unresolved.

1920 Cartan develops the shorthand of differential forms, which meets
the condition of general, i.e., a diffeo invariant frame independence, in contrast to
the orientation preserving orthogonal group in three dimensions SR(3) of vector
analysis. It is an invariant shorthand for antisymmetric covariant tensors. The
(invariant) differential operator replacing the gradient, curl and divergence of
vector analysis is the exterior derivative. The latter is a metric-independent
differential operator, identical to the differential operator in the generalized laws
of Stokes and Gauss. 

The Cartan differential form method thus manifests itself as  a subcategory of a
generalized tensor analysis, that is distinguished by a metric-free feature.

Mid Thirties
As earlier observed, the Stokes and Gauss laws with their closure and

linking features have topological de Rham implications. Since topological
assessment precedes metric assessment, the metric-free connotations here
mentioned invite an exploration of the Stokes-Gauss laws and Cartan's method of
differential forms as tools in topology. De Rham has done exactly that, over and
above he reintroduced with his pair-impair forms the orientability features that
could not be covered by the usual methods of vector analysis. De Rham's
procedures for topology exploration are now known as de Rham Cohomology.
Since de Rham made little or no use of the option created by impair forms, later
mathematical discussions have unfortunately remained restricted to pair forms.

Do these Cartan-de Rham methods relate to a truly frame- and metric
independent global mathematical formulation of major physical laws? Here is a
preliminary answer to that question, which is, in fact, a spacetime invariant
quantum reformulation of earlier mentioned 19th Century laws:

I The energy-momentum closed one-form has an integral that can assume
the  role of the Bohr-Sommerfeld conditions.

II The Aharonov-Bohm integral is the integral of a closed one-form, which
can assume the role of counting units of flux. This one-form is also said to be
closed.

III The Faraday induction law can be seen as an integral of a two-form
expressing the conservation of flux, if the integral is taken over any closed two-
dimensional domain in spacetime.  This two-form is now said to be exact.

IV The Ampère-Gauss law is the integral of a two-form that can assume the
role of a counter of a net number of charge units. This two-form is now said to be
closed.
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V Charge conservation is expressed by a vanishing integral of a three-form,
which is taken over any closed three-dimensional domain in spacetime. This
three-form is now said to be exact.

VI There is an integral of a closed three-form defined by Kiehn, which may be
said to be the field counter part of the particle-based relation I.  The three-form of
the Kiehn integral is the exterior product the differential forms of II and IV. 

Integration of the Ampère-Gauss part IV reduces the field statement VI
to the particle statement I of the Bohr-Sommerfeld integral.

Statements II,III,IV,V are all familiar field laws. Thanks to the Cartan-de
Rham formalism, they can now be seen in a different perspective capable of
adding new insight of a topological nature. Specifically the differential forms II,
IV and VI now testify to a fundamentally global, Diffeo-4 invariant, aspect of
quantization, which cannot come through at all in the traditional SR(3) way of
viewing these laws

Pondering the Implications of this History
The just given overview of mathematics as it relates to physics testifies about

elements of philosophy and reoccurring trends in the mathematical treatment of
physics.

There is a basic philosophy of making fundamental physical laws as much as
possible independent of the frame of reference. After all, laws are given by
Nature, frames of reference are chosen by man. Throughout this history of
physical mathematical interaction between physics and mathematics, the theme of
frame-independence reoccurs with different demands of rigor. The trend in early
exploration first attempts weaker requirements of rigor, which initially may en-
hance chances of making progress faster. From time to time, this process is
interrupted to give the conscience a chance for reconsideration. The purpose is
one of probing the rigor of earlier decisions. Once it appears that the existing ways
of life are mostly adequate, traditions retake their course, provided certain restric-
tions are kept in mind. Thus the old methods become reestablished with minimal
adaptations to account for new insights.

The history as here accounted vividly illustrates this state of affairs. From
Descartes to Newton and Euler, the Euclidian frame background was found to be
as quite adequate. Then at the turn of the century from 18th to 19th, there was a
sudden trend to extend the frame independence of particle mechanics. It was
initiated by Lagrange and then continued by Hamilton and Jacobi. Extended
frame-independence, only in part, motivated this work; in fact, it may have been a
byproduct.

The intensified exploration of the planetary system called for more accurate
predictions of planetary objects. This need in part precipitated the sophisticated
techniques of Lagrange and Hamilton-Jacobi. Their work was much enhanced by
an extended and improved transformation theory for celestial mechanics.
Surveyors, navigators and chart makers needed the improved data.
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Continuing the path of physical development, the next laws to emerge are
Gauss' law of electrostatics and then the Faraday law of induction. Neither the net
charge count inside an enclosure nor the induction law seem to demand a
specialized choice of rectangular inertial frames of reference, yet invariably, the
run of the mill text book always seems to imply exactly that. Rotating electric
generators operating on accelerating vehicles vividly indicate that Faraday's law
fortunately knows how to ignore unnecessary inertial frame restrictions. If
restrictions remain, they are due to man's acts of convenience to carry on with
formalisms that are known to be inadequate. Many workers in the field know
these shortcomings, but don't feel called upon to make changes.

 Gauss' law, as a counter of net charge, manifests an obvious frame-
independence in static situations. Counting moving charges requires a combining
of Gauss' law with Ampère's law. This combining of the two calls for a spacetime
frame-independent global rendition. Texts giving local-oriented presentations can
be expected to avoid those issues.

At the beginning of the Twentieth Century, the study and applications of
electrodynamics had flourished, notwithstanding the restrictive nature of the
system of vector analysis in which it had been cast. All of which goes to show that
people are smarter than the systems they devise. Even if today better mathematical
systems are available, there is no rush to make changes. Apart from some
reluctant experimentation with differential form methods, the overall impression
is that teachers and students of physics are not buying into this.

The only way of changing that stalemate is to discontinue the use of SR(3)
restricted systems, because they stand in the way of perceiving promising new
opportunities. Since the promise of new opportunity has a different ring to
different people, let the pursuit of new not be just for the sake of an indiscriminate
pursuit of new.

Frames and Metric
One of he hazards of life is to be confronted with situations in which we seem

compelled to use words not knowing what their impact will be, because we are
not sure how others perceive them. In physics, the words frame and metric belong
in that category. To serve an objective of having these words generate a consistent
picture, here is an attempt at delineating their role in mathematics and physics
without too many technicalities.

Descartes first introduced the concept of frame of reference in geometry as an
aid in the analytic description of geometric objects. His coordinate axes, in effect,
were rulers with a metric subdivision. All rulers are given the same metric
subdivision. It thus appears that frame and metric were really introduced jointly as
almost inseparable entities. The Pythagorean theorem then provides a basis for
transferring the metric notion to arbitrary directions.

It was the combination of identical rulers at right angles with respect to one
another, which, in the Cartesian tradition, made the metric next to invisible. It was
this tradition of the invisible metric that directly carried over into physics with
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great success. In fact Descartes' choice ruled supreme in physics until the
beginning of the Twentieth Century. In geometry, Descartes' tradition succumbed
to a more general point of view in the middle of the 19th Century.

Minkowski was the first to make the metric visible as a separate entity by
extending spatial physical description to the level of explicit spacetime
description. The spatial expression for distance x2+y2+z2 so became replaced by
the time affected expression x2+y2+z2 - c2t2, which boldly transforms the
invisible spatial metric {1,1,1} into a visible spacetime metric {1,1,1,-c2} with -
c2 disturbing the pristine character of the {1,1,1} part of the metric. So strong was
the tradition of working with an invisible metric that people started making the
rather unphysical substitution c2= -1, for the mere purpose of also establishing for
spacetime a metric {1,1,1,1}, just to maintain similarity with the space metric
{1,1,1}.

Unfortunately for the magicians who in their amazing juggling act had made
the metric disappear again, Einstein at just about the same time was walking
around with a strong suspicion that the speed of light might not be a constant.
This point of view has since been observationally supported by three effects
(gravitational red shift, bending of light rays and perihelion shift of Mercury).
More recently one can add to these a time delay anomaly measured by Shapiro.
This anomaly occurs for radar signals bounced from the surface of the planet
Venus when travelling through the sun's gravity field. While the bending of light
in gravitational fields should already give some time delay, the bulk of the Shapiro
effect would have to come from an actual decrease of the speed of light in strong
gravitational fields. Until now astronomy observations of singular twin star
formations has in general been supportive of the existence of the effect observed
for the Mercury orbit. It should be mentioned that an acceleration red shift has
been accurately verified in the laboratory with the help of the Mössbauer effect.
Experiments by Moon and Champeney* have brilliantly verified the acceleration
red shift as exactly what it says it is; i.e., not a purely kinematic effect explainable
in terms of Lorentz tranformations.

In the light of this accumulating evidence, the motivation for a continued
hiding of the metric is beginning to lose its justification. Perhaps one might still
continue in hiding the space metric, but not the spacetime metric. Since the
spacetime metric components are tied together in a single tensor quantity that was
postulated by Einstein as the spacetime metric, there is, in the light of the general
theory, no alternative but to give this metric an independent physical existence.
All this is based on Einstein's initial suspicion that the speed of light might be
subject to change according to the gravitational profile existing in the universe.

Precision laboratory experiments give the speed of light in about ten decimal
places. These measurements need to be regarded as measuring the speed of light
in the gravitational field of the earth. The correction suggested by the general

                                                
* Proc. Phys. Soc. (London) 77,350(1961)
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theory to extrapolate those measurements to a hypothetical gravity-free space are
presently still escaping a direct verification.

All of this brings out the boldness of the conceptions underlying the general
theory. Even if some major parts remain unverified by direct experiment, the body
of indirect evidence supporting its premises is by now rather impressive. In terms
of a field description of physics it means the metric tensor has been making a tran-
sition from being a purely geometric quantity to becoming a field with rather
exclusively large scale physical implications. This metric tensor no longer should
remain hidden in a special choice of frame of reference.

Let us now consider the implications of this metric emancipation for the bulk
of physics that deals with every day, smaller scale, physical phenomena. It means
a rewriting of standard physics using an explicit metric tensor and arbitrary frames
of reference obeying Diffeo-4 instead of SR(3) conditions. If that seems a lot of
work, it may come as a relief that much of that work has already been done in
Twenties and Thirties by Kottler, Cartan and van Dantzig.**

The most striking result of these mathematical transcriptions is that the metric
tensor again disappears form the scene as a primary physical quantity, but now in
a Diffeo-4 context. Many pundits of the time could be heard saying: "Of course,
we knew this all along. You just proved that we can continue using the SR(3)
frames of our beloved vector analysis. So what you are doing is just
mathematics."   

It may be historically relevant to recall that the time of the KCD publications
roughly coincided with the Kretschmann-Bridgman(KB) criticism of Einstein's
principle of general covariance. They (KB) claimed the principle to be without
compelling physical implications.  Most relativity texts mention the KB criticism,
yet few mention the explicit KCD results. It seems Einstein remained unaware of
KCD developments despite his correspondence with Cartan.

The positive variant on this theme may lead us to observe how the KCD out-
come is in keeping with the relativity conclusion that metric influences only show
up in very large scale gravity effects. So, the next question should have been: what
is the meaning of a Diffeo-4 frame-independence of the KCD statements? Such
inquiry would have been more positive than seeking premature justification to dis-
miss the KCD results. Here is an answer why KCD distinctions are needed:

First: the metric is the one and only criterion that gives us a measure of large
and small in a physical sense. Hence, if the metric does not explicitly occur in the
law statements, they may be expected to hold in the macro- as well as in the
micro-domain.

Second: prior to questions about metric properties of physical objects, a
knowledge of their topological structure is a prerequisite.  Topological properties
are not affected by changes in the category of Diffeo-4. Hence the typically

                                                
** This KCD process imposes an obligation to give noncartesian definitions of physical fields
previously only known in a Cartesian context.  Physics has consistently evaded such decision
making, its method of "curvilinear" coordinate procedures testifies to that.
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metric-free Diffeo-4 invariance of KCD law statements permits and really invites
a topological exploration of microphysical objects.

Most modern physicists will vehemently deny the possibility of probing into
the topology of microphysical structure, because with their thesis of a universal
single system quantum mechanical uncertainty they had made the domain
inaccessible. So, to the extent that there is at all an awareness of these matters,
physics has been assuming a stance of taking quantum uncertainty as an excuse
not to delve into the KCD aspects of physics.

On the other hand, if quantum mechanics, as it stands today, describes, say,
phase  randomized ensembles of identical systems, the excuse not to take
cognizance of KCD related matters no longer holds. Then there are no longer
objections against uncovering mathematical machinery capable of casting light on
the topology of microphysical structures. Therefore, standard SR(3) field theory
shortchanges physics by missing out on valuable topology insight.

The earlier cited integral law statements I,II-VI, are all metric-inde-
pendent and Diffeo-4 invariant. Over and above, the statements I,II ,IV and VI
are honest to goodness Diffeo-4 invariant quantization statements that are in
general use today. So, what is all this talk of quantum theory not being
reconcilable with requirements of the general theory of relativity? Presumably,
physics got caught in interlocking inferences that can only be disentangled by
KCD !

On the one hand, there is the SR(3) restricted field theory. Extended to
standard quantum theory, it goes hand in hand with Copenhagen's single system
view of Schroedinger solutions and the single system universal quantum
uncertainty thereof. The latter totally blocks a straightforward assessment of
microphysics.

On the other hand, if a Diffeo-4 field theory is being pursued, it reveals
metric-free aspects of existing quantum integral laws. This opens up the
microdomain for individual assessment, if and only if, quantum uncertainty is now
viewed as an ensemble phenomenon.  That makes the Schroedinger equation an
ensemble and not a single system tool as claimed by the Copenhageners. Since
single system laws may be considered as more fundamental than ensemble laws,
the SR(3) restriction of the Schroedinger equation is an ensemble symmetry
and not a single system property.   

In the Thirties and even in the late Twenties several leading physicists and
mathematicians made very serious attempts at transcribing the  Schroedinger and
Dirac equations in a Diffeo-4 invariant manner. Their objective was making them
compatible with the general theory of relativity. This work did not lead to new
physics.

In the light of the topology perspectives created by the KCD work, it can now
be said: those early attempts at Diffeo-4 transcriptions of the Twenties and
Thirties were incorrectly addressed. Since there had been many other unpromising
efforts at Diffeo-4 transcription of other equations of physics, some people said:
"any equation can be written in covariant form, if you set your mind to it." All
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these indiscriminate and unsuccessful attempts at generalization brought a
measure of discredit to the principle of covariance.

A few words are now in order about the physical dimensions associated with a
global Diffeo-4 field treatment on the basis of the known integral laws I,II,...VI.
All of them have physical dimensions exclusively expressible in terms of the units
of electric charge [e] and action [h]. Flux has the dimension [h/e]. The universal
impedance of the quantum Hall effect has the dimension [h/e2], it emerges as the
quotient of two integrals. Nature is telling us that h, e, h/e and h/e2 are good
Diffeo-4 invariants, as they should be, if the integral laws I,II...VI are deserving of
the name scalar-valued integrals.

These cited facts of life in physics suggest minor modifications in the standard
custom of citing physical dimensions. The standard MKS system of mass [m]
charge [e], length [l] and time [t] is advantageously changed into a system [h,e,l,t].
The latter has two invariant dimensional units [h] and [e], the customary system
[m,e,l,t], instead. has only one invariant unit [e].

Mappings between Mathematics and Physics
Since all mathematics derives from the physical being of things, in a technical

sense, all mathematics is relevant to physics; meaning it can have an applicable
counterpart in physics. In this sense mathematics and physics can be said to be
related by some sort of a "mapping."

The map from physics to mathematics is in a grosso modo of a one to one
nature. In fact, the formulation of physical fundamentals can lead to very specific
mathematical fundamentals; calculus being a prime example. Conversely, the map
form mathematics to physics is bound to be multivalued, because basic math-
ematical concepts are a subcategory of basic physical concepts. It is harder to get
from mathematics to physical fundamentals than from physics to mathematical
fundamentals. It is the principal reason why mathematics lends itself better to
abstraction than physics.

Yet, during a better part of this century, physics has been taking recourse to
abstractions much more so than in the past  Such occurrences have notably
coincided with events referred to as transitions from classical to nonclassical
physics. The terminology classical‘nonclassical is here taken to refer to an
attempted extension of existing classical procedures to the realm of microphysics.
Such extensions were found to be subject to not earlier noted limitations. Hence a
discipline, initially thought to be complete, turned out be incomplete. If a more
rigorous test of completeness were to emerge, one might hope that the artifact of a
classical-nonclassical division might become a thing of the past.

At this juncture Planck, Einstein, Bohr and Sommerfeld had given sundry
formulations of those restrictions, which finally culminated in what are now
known as the Bohr-Sommerfeld relations. The latter imposed discrete quantized
values for the action integrals of analytical mechanics, whereas before they could
assume a continuum of values. This scholarly and logical approach  met the best
traditions of working from physics to mathematics. Yet this codification of the
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nonclassical quantum conditions imposed by nature was still believed to be
wanting.

 Others, Heisenberg, Schroedinger and Dirac now decided on a far more
radical path. This new generation of pioneers followed the seemingly less
promising, yet somehow inspired, process of seeking maps from the mathematical
realm into the realm of physical fundamentals. Two major themes can be
identified as having dominated this transition.

Heisenberg started out with a mathematically most demanding proposition of
seeking a radical transition from the realm of continua to that of discrete objects.
It took the vast mathematical experience of Born to translate this program into a
mathematically feasible eigenvalue procedure for calculating stationary states of
real physical situations.

By contrast, Schroedinger, older, with a wider realm of mathematical
experience, found an eigenvalue continuum that could produce the discreteness
needed for the problem at hand. Here is a rare case of two mathematical
procedures describing the same physical situation. A result which seemed to
question the earlier proposition of a one‘one map from physics to mathematics. A
subsequently proven mathematical equivalence rescued the thesis of a single path
from physics to mathematics.

The Heisenberg-Schroedinger eigenvalue process became one of the most
widely applicable calculational procedures known in physics. It gave an answer to
many pressing questions, without really yielding a commensurate insight into the
fundamental nature of the quantum conditions. The procedure retained the status
of a recipe. In fact, it was one of those rare occasions in which a mathematical
proposition created a fundamental piece of physical machinery, without really
revealing the fundamental physical counterparts that are believed to be needed for
a derivation of that machinery from entities that have a more obvious first
principle character.  In all those years hat derivation has not been forthcoming.

After this inverse procedure of working from mathematics to physics had
shown such extremely promising results, it could be expected that this path would
be tried again. From the infinities of QED to the quarks' eight-fold group structure
all the way to String theory, modern physics testifies to a trend of abstractly
adapting all of physics to existing mathematics. While there have been results,
there are also signs of a diminishing return from this reversal of the path of
inquiry.

The here depicted method of creating machinery, without finding out what
makes the machinery tick, is a major dilemma in the state of modern physics.  A
sentiment has been spreading in the physics community that man has approached
natural limits to what he can know about nature. The Copenhagen view of the
Heisenberg uncertainty relation definitely reflects such sentiment and has created
an attitude that from now on physics ought to be prepared to settle for those
limitations.

While there is no question that Schroedinger's equation constitutes a
fundamental piece of machinery, the very recipe Schroedinger gave for obtaining
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his wave equation still tempts beliefs in an ultimate reducibility to simpler first
principles; even if there is presently no consensus as to how. The fundamentals
are believed to be hidden. The Copenhagen attitude sort of intimates that that is all
man can hope for. Others, not convinced that Copenhageners have an exclusive
option of reading the mind of God,* are not settling for such compromise. They
hold out for a further reduction to fundamentals.

In carrying further this assessment, at least some sort of criterion is needed as
measure of fundamentality of physics-related assertions. It is well to consider a
measure of irreducibility of basic law statements under consideration, because
irreducibility reveals some sort of primordial quality.  Such irreducible elements
lend themselves best to be used as general building blocks from which more
involved reducible entities, say the Schroedinger process, can be constructed.

Since the need for nonclassical quantum corrections first showed up after ex-
trapolating macroscopic laws to microphysical situations, a structural feature
signalling the absence or presence of incompleteness in macro-micro transition
would be most helpful. In the light of what has been said in previous sections, the
metric is found to have a major role in making those distinctions, because it is the
one and only criterion in physics for making an effective macro-micro distinction.

Mindful of the earlier discussed extensive efforts in the traditional
mathematical descriptions of physics of making the metric invisible, it is now
evident how this trend has obliterated aspects of the classical-nonclassical schism.
Since such distinctions can't be denied, they take us by surprise and come in
through the back door to haunt us. Having thus shown some of the ways in which
we can mislead ourselves by going the inverse path, let now be the time to make a
long story short. How do we disentangle the labyrinth encountered as a result of
using the inverse probing from mathematics to physics?

Reversing the path, it becomes necessary to conclude that the Schroedinger
process describes an, in experiments frequently occurring, compound situation: a
randomized ensemble of identical elelments. The latter does not qualify for the
irreducible status of a basic primordial law. Schroedinger statements now become
reproducible as averages of randomized (perfectly classical) statistical ensembles
of elements that are found to be irreducible.  The discrete quantum states of the
irreducible elements are governed by the earlier discussed (primordial) integral
statements I,II..VI encountered in the second section of this chapter; they cover
the Bohr-Sommerfeld relations as a special case for point-particles.  The easily
establishable Diffeo-4, metric-independent status of these integrals justifies their
applicability in macro- and microdomains.

By contrast, the Schroedinger equation, or the Dirac equation for that matter,
can be given a Diffeo-4 status; as has been done several times. This Diffeo-4
status is, however, contingent on retaining the metric structure. Since the
avoidability of metric structure in establishing quantization for the ensemble

                                                
* Ironically Bohr accused Einstein of having such exclusive information (God does not play dice).
All of this shows: such risks do come with the territory!
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elements has now assumed a crucial position for extrapolations to the micro-
domain, the remaining role for the metric would have to relate to the ensemble
nature of objects described by the Schroedinger process.

A Frank Assessment of Mathematical Physics In this Century
The preceding has been a preliminary assessment of the consequences of

certain customs lingering in contemporary physics. A major point of concern is
the remaining reference to physical fields on an SR(3) basis as compared to an ab
initio Diffeo-4 referral. The outcome of these discussions is mostly a change of
emphasis as to what is fundamental and what is derived or implied in physics.

Customary renditions of quantum physics present Schroedinger's equation as a
fundamental and primary source of information and the law statements I,II,.....VI
are regarded as inferred.

The option defended in these chapters proposes an alternative that the
quantum law statements I,II,...VI are fundamental, whereas the recipe origin
of the Schroedinger equation suggests a derived ensemble status in physics.
There are good arguments to consider the Schroedinger equation as a tool
exclusively describing phase and orientation random ensembles of identical
quantum systems.

An experimental justification for this reversal in emphasis is to be found in the
ten decimal place precision of h and e measurements ensuing from Josephson and
quantum Hall effects.

By contrast, measurements of h and e inferred from Schroedinger and
quantum field theory  have shown a scatter of values affecting the fourth and fifth
decimal places.* These are facts of life that cannot be denied. The SR(3)-based
field tradition has been a factor in maintaining an indecision of priorities as to
what is fundamental. Notwithstanding this uncertainty of what comes first, the
Lamb shift and the anomalous magnetic moment of the electron and muon be-
came the very important triumphs of SR(3)-based field theory.

From that time onwards, physical theory of the particle domain assumed a
change of course. Group theory became a guiding principle to create order in the
abundance of particles discovered in the world's high energy accelerators. This led
to an hypothesized existence of fundamental building blocks named quarks. At
this time, it is not clear at all how many quarks have been hypothesized and
how many have been discovered.

Starting in the Seventies, a next wave of physical theorizing has invoked the
concept of strings. It has now become known as String theory, perhaps later
superseded by Superstring theory. So far neither version of string theory has
led to a contact with experimental physics. It should be mentioned that the
concept metric-free has also surfaced in String theory. Yet, no contacts are made
with earlier work of the Twenties and Thirties by Kottler, Cartan and van Dantzig
(KCD), which now is physically relevant .

                                                
* Cohen and Dumond, Revs. Mod. Phys.,37,593(1965)
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The Cartan-de Rham view is crucial in unveiling the metric-free, Diffeo-4,
global features of integral law statements I,II,....VI, thus leaving quantum
gravity in a very illusionary position.

 One would have hoped that string theory could have made the KCD
connection. Instead, string theorists have been adding insult to this injury of
omission they inflicted on their own topological aspirations. String theory has
been reviving the experimentally unsubstatiated magnetic monopole. Magnetic
monopoles have been incompatible with established laws, ever since flux
quantization has been experimentally proven to exist in the Sixties. Flux
quanta are described by the (London) Aharonov-Bohm law II. The 2-form ensuing
from this L-A-B one-form by exterior derivation is by definition exact, hence no
magnetic charge residues: i.e., no magnetic monopoles!

Moreover, electric monopoles can be shown to be enantio-morphic pairs,
which means their 2-form is impair in the sense of de Rham. However, the
alleged magnetic monopoles derive from a 2-form that crystal physics has
identified as definitely pair, hence it misses this feature of enantiomorphic "pair"
production. It is now incumbent on the magnetic charge people to invent a new
pairing principle; they never did! Since de Rham's notions of pair and impair are
contingent on manifold orientability, we are here confronted with ramifications of
the orientability neglect of physics' favorite vehicle of mathematical
communication: vector analysis.

Here is direct and clear evidence how unawareness of the physical
implications of distinctions such as closed and exact as well as pair and impair
leads to situations of wanting one's cake and eating it too; even among those who
should have known better.

The sequence from quantum fields to quarks and strings unfortunately
manifests an undeniable decline of physical relevance. A partial answer why has
been alluded to in previous discussions. The perpetuation of SR(3)-based field
concepts (even in the Diffeo context of relativity) has become a major obstacle
standing in the way of bringing into cognizance physical implications of the
global concepts conveyed by closed  and exact  as well as pair and impair
distinctions  between differential forms.

Experimental physics can claim several high points over the last half century
from Mössbauer effect to Josephson and quantum Hall effects.The Josephson
effects were the fruit of systematic exploration, somehow anticipated. The other
two were products of serendipity. Their descriptions can be strikingly
accommodated by the integral laws II, IV and VI.

The contemporary mathematical descriptions of physics reveal shortcomings
of communication in physics itself and with the neighbor discipline of
mathematics. It is rather amazing that there are not more published accounts of
mathematicians pinpointing deficiencies of prevailing mathematical treatments in
physics. Somehow mathematicians today either throw up their hands in despair
about what physicists are doing or they passively accept and elaborate on their
concoctions if funding comes through physics channels. Things were different at
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the beginning of this century. The following true story illustrates how years ago
mathematicians were less afraid of physics related initiatives and criticism.

In 1915, Einstein consulted Hilbert about problems he had in obtaining
gravitational field equations to replace the Newton-Poisson equation. After having
been briefed by Einstein, Hilbert went to work and went ahead publishing an
elegant solution to his visitor's problem. A few weeks later Einstein found the
same result in a much less elegant manner. However, Einstein also published his
first order solutions to the field equation. Unlike Hilbert, the physicist knew its
solutions before he had the equation.

Hilbert, by contrast, drew a faulty conclusion from the equations he had so
well derived. After having been called to task about his error by the
mathematician Felix Klein, Hilbert admitted to his error, and then proceeded
making a famous conjecture restricting the law of energy-momentum
conservation. The existence and nature of this restriction was later substantiated
by another mathematician, Emmy Noether. Quantum field physicists later took a
liking to quoting Noether's result, yet without mentioning Hilbert's restriction.

Another example of interdisciplinary crossfertilization was given by an
astronomer by the name Schwarzschild. He found an exact solution of the new
field equations of gravity.

These examples testify how people of diverse background can do more
together than in isolation. In comparison, the current scene conveys more
chauvinistic attitudes. Over the past decades too many mathematicians could be
heard priding themselves on their ignorance of physics. Physics can't afford this
snobism. No independent initiatives, say comparable to those of David Hilbert
and Felix Klein, can be expected on that basis. The for ever recurring magnetic
monopole is living testimony that such narrow specialism condems mathematics
to an unworthy subordinate role obscuring rather than opening new horizons.
Better levels of mutual inquiry and criticism are needed to restore a more balanced
exchange between the queen and king of sciences.

Schroedinger and the Copenhagen View
A preliminary word, about a good option on a more promising reassessment of

contemporary quantum mechanics, is now in order. It pertains to the question how
the present observations affect the interpretation of quantum mechanics:

I. The lack of hospitality shown by Schroedinger and Dirac equations to
accommodate, in a meaningful manner, Diffeo-4 requirements of frame-
independence rules out a fundamental status based on first principles.

II. The three quanta counters of flux, charge and action do have perfect,
Diffeo-4 frame- and metric-independent properties. They qualify to assume a
primary status as fundamental laws. Their close association with high precision
measurements of the quanta of action and electric charge strongly supports that
position.

Let the Schroedinger recipe for obtaining his wave equation be the guide in
the now following exposition. Consider the Hamiltonian H of a compound
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system, with particle positions given by the radius vectors (rk)l, with k numbering
the particles  in a single system and l numbering systems in an ensemble. The
independent  variable S be the action of the Hamilton-Jacobi equation, it relates to
¡  through the Aharonov-Bohm one-form. The logarithm of S is defined as the
wave function ×. Then optimize this modified hamiltonian with respect to × and
behold, Schroedinger's wave equations emerges.

A major question is the role played by the variational procedure. The S‘×
modified Hamilton-Jacobi equation has a solution manifold spanned by the
integration "constants" of its general solution. The variational procedure selects a
family of integration constants that give H an optimum value. The quantization
ensues from square integrability and single valuedness of ×.  Can this picture
bring us closer to an interpretation of the Schroedinger equation?

Now consider the closed orbits of a single system planetary motion:i.e., k=1.
The quantization of energy and angular momentum selects elliptical orbits tangent
to two concentric circles in a plane. The orientation of the plane of this family of
ellipses, and the position and phase of the latter, constitute remaining integration
constants. The Schroedinger angular momentum number n(n+1)  can be shown
to be an orientation average of an ensemble of planetary orbitals (compare the
Feynman Lectures for a proof).

The next simplest case of a two electron compound system (helium) k=1,2.
Instead of a simple spatial averaging, there is now an averaging in a six-
dimensional phase space for both particles. The impact of Heisenberg exchange is
assessed by first regarding the orbiting electrons as independent, which reduces
orbital behavior to the previous case. Electron spin taken in the perspective of the
Pauli principle already delineates para-ortho helium features. Next a Coulomb
interaction between the two electrons is injected as a perturbation to approach
quantitative data in successive steps. This procedure has been one of the major
triumphs of the (Pauli and spin) extended Schroedinger process, yet by the same
token, it also shows that it is not purely an ensemble tool, in addition to
quantization, Schroedinger rules on other internal behavior of compound systems.

For isotropic radiation one may consider the harmonic oscillators (photons) of
vacuum. They also correspond to a situation equivalent to k=1. The remaining
parameter of interest is the phase of each oscillator. An averaging over phase, as
indicated by the Schroedinger recipe, yields an ensemble of harmonic oscillators
that has to retain an average energy ¡ø/2 per oscillator if the ensemble probability
is to remain positive (Planck, 1912).

The Schroedinger process is in these examples revealed as a hybrid statistical
tool pertaining to an ensemble and the mutual particle relations inside the single
systems of that ensemble. Seen in the cited Hamilton-Jacobi perspective, there are
integration constants pertaining to the ensemble aspect of the identical systems,
whereas other integration constants pertain to the system itself in case the latter is
of a compound nature. The variational recipe so becomes a structural optimization
pertaining to an ensemble and the single systems therein, similar to the more
familiar dynamic extremum creating a most probable velocity distribution.
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In recent times there have been efforts of reassessing the helium atom again
from a semiclassical point of view. These methods have been reviewed by
Wintgen et al.* There now is an overriding  picture emerging from these
discussions indicating that all statistics invoked by Schroedinger's process are
essentially classical in nature. In fact, identifying the nature of this hybrid
statistics helps greatly in understanding the physical nature of the recipe that led to
the Schroedinger equation. That understanding is now getting closer to
completion, which means one of these days the Schroedinger recipe may be
graduating to become a real derivation.

The Schroedinger equation viewed as a derived object elevates the Aharonov-
Bohm integral into a first principle position., because the Hamilton-Jacobi action
function S is the phase of × and relates to the differential one-form of Aharonov-
Bohm and the Bohr-Sommerfeld  energy-momentum one-form. Since single
valuedness of × governs quantization, a relation to cyclic integration is evident.
Pauli and the "build-up" principles now challenge new perspectives in flux closure
(Aharonov-Bohm) and orbital closure  (Gauss-Ampère).

An extreme case, different from any of the previous ones, is the quantum Hall
effect. A two-dimensional lattice of Landau states is moving through the Hall
sample.  In the plateau states there is total order of orientation and mutual phase.
So, there is no statistics, it means the quanta counting laws can now be applied
without the intermediary of the Schroedinger equation. Outside the plateau state is
a realm for Schroedinger applications, with an ensuing zero-point energy. The
transition from plateau- to normal state in the Hall effect is contingent on a build-
up of zero-point energy and vice versa transitions to plateau states eliminate zero-
point energy disorder.

 It appears the statistical implications of the Schroedinger process indicate
a perfectly classical origin. This may help in staying away from some of the
more fantastic wave function options that have been made in the course of time:
e.g., wave functions of the world and even of the universe. They are by-products
of an undefined concept of nonclassical statistics.

More extensive discussions of a "first principle" status of the cyclic integrals
are given in a recent monograph entitled: Quantum Reprogramming (Notes and
refs.). The same text also covers detailed discussions of phase and orientation
randomness in ensembles.

Physics Role in Kindling Mathematical Concepts
The Newtonian breakthrough in physics prompted the creation of calculus as a

new mathematical discipline. So, it was the wider physical problem that brought
on an emergence of a more narrowly specialized new branch of mathematics.
Subsequent developments in calculus by the Bernouillis and Euler and many
others were, in just about every step, accompanied by a multitude of physical
applications of the Newtonian laws of mechanics.

                                                
* D Wintgen et al, Chaos 2,19 (1992)
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The development of musical instruments in the 18th Century, from organs,
woodwinds, horns and string instruments, is greatly indebted to a mathematical
physical analysis of those instruments. The Fourier decomposition of wave motion
is a direct offshoot of  joint endeavors in the physical mathematical realm.

The next century saw new mathematical discoveries, many of them again
prompted by questions asked in the realm of physics. Would Gauss have arrived
at his divergence theorem, if he had not been preoccupied with the collective
behavior of electric charges such as expressed in Gauss' law of electrostatic? His
divergence theorem became necessary to establish the residue integral status of
Gauss' integral law of electrostatics.

Similarly,  hydrodyamics and especially Ampère's studies about the relation
between currents and magnetic fields have led to what is now known as Stokes'
curl theorem. Since moving charges are currents, the Gauss and Stokes theorems
must be expected to be closely related. An awareness of this kind emerged in the
last part of the 19th Century. It led to an extension of these early theorems, which
is now known as the generalized Stokes theorem.

The latter theorem can be viewed as a natural dimensional generalization of
the principal theorem of the integral calculus. In the hands of de Rham the gen-
eralized Stokes theorem and its associated residue integrals have become a mighty
instrument in topology. De Rham's early papers and some of his ensuing
terminology are vivid reminders that Maxwell's theory of elctromagnetism was
midwife to a sophisticated method of assessing topological structure. All of which
brings to the 20th century  groups of cohomology as a dual counterpart of the
earlier Poincaré groups of homology.

Yet, speaking about groups what more natural illustration of the group concept
exists than the groups of crystallography. The 32 crystallographic point groups
may have been enumerated already in the 18th Century. The question is: could
these diverse mathematical perspectives have come into focus at all without the
early stimulation of assessing the physical world around us?

It may now no longer be necessary to venture an answer to the last question.
Let us just be thankful to those earlier generations for not unduly limiting their
fields of perception and specialism.  Just a reminder: Discipline chauvinism is no
help in widening horizons!

A Need for Imperfection
While we may be inclined to give some laws of nature a label of perfection,

there are others that are known to be approximations. Is it possible to come to a
more instructive subdivision of the two?

A delineation between the two categories can be made by assessing how they
relate to the ordering principles of nature. Some laws are valid no matter what the
conditions of temperature and no matter in what medium the phenomena take
place. As long as we stay away from the realm of quanta, the Newtonian laws of
mechanics and the Faraday law of induction seem to have that sort of quality.
They are valid at any time and any place.
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Depending on their denominational convictions, some physicists may even say
these laws are still valid in the quantum domain, provided certain integration
constants are permitted to assume only discrete values. If for purposes of
classification the latter point of view is allowed to prevail, these laws can said to
belong in the category of field laws.

By contrast, there are the so-called constitutive laws of physical media ranging
from free space to gases, liquids, solids and the particle, atomic and molecular
constituents thereof.  The theory of groups has plaid a role in classifying and
identifying their properties, because the medium properties remain invariant
under all the symmetry operations of the medium.  By contrast, the field laws
have to remain unaffected by symmetry operations, because if they were
affected they could not belong in the field law category,

The field laws apply anywhere, any time, and the goal is to have them either in
perfect or near-perfect form so as not to have them  unduly restrict the constitutive
laws. The constitutive laws only apply to situations as specified by that law.  They
can at best be expected to be near-perfect in their stipulated realm. The laws of
crystal physics come perhaps closest to near-perfection.

Nature is home for the perfect as well as the near perfect. Faraday's law of
induction may well be an example of perfect information; even if we don't know
as yet its quantum ramifications.  By contrast, the laws of crystal physics provide
examples of near-perfect descriptions. Man, as a constitutive part of Nature,
belongs himself by necessity in the category that can never be perfect.

This condition of being less than perfect is not to be regarded as a necessarily
regrettable state of affairs. Without imperfection man would not be able to grow.
Similarly as crystals grow around their imperfections, so does man.

Music provides probably one of the most elevated examples of how man can
grow through imperfection. Unbeknown to many who make music, the creation of
the Western musical scale and the ensuing emergence of polyphonic orchestration
of symphonic musics became possible as the result of a purposeful introduction of
a slight, but inviting, numerical imperfection. It became known as Johann
Sebastian Bach's well tempered clavier. The piano key board is designed so that
12 quints equal 7 octaves. To achieve this compromise, every quint needs to be
tuned lower by about one part in thousand.

The great compositions of Western music have all been erected around these
imperfections of the musical scale. In fact, these great compositions became
possible by virtue of its well chosen tuning imperfection. It is based on a general
experience that appropriate combinations of tonal intervals appear to be capable
of carrying a gamut of different emotional sentiments. This general experience
seems to be universal for all people, except perhaps those who are tone deaf.

The composing genii of the world discovered how combining rhythmic beats
and polyphonic sound became a mighty instrument for reaching out to the soul of
mankind. It was said, Franz Liszt conducted subtle flirtations with his female
students by changing the key of musical themes he played on his piano. His
transpositions of key were aimed at adapting to the personality of the girl to whom
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it was addressed.  Bach, of course, tapped  entirely different realms of human
emotion and then so again did Beethoven.

Music shows how great things can be created around a compromise that is
essentially an imperfection. Let this example not be an invitation to deify
imperfection. It is the special character of imperfection that remains after valiant
attempts of aiming for the perfect. Imperfection so acquires an intrinsic quality. If
perfection is the goal, imperfection provides the dynamics in approaching that
goal. Somehow man is always simultaneously dealing with a mixture of these
inseparable concepts. In music, it was the decision of learning to live with the
unavoidable imperfaction of he musical scale that opened up a wonderful world of
emotions that was much wider than what could possibly have been evoked by the
monophonic musicianship of the middle ages.

 EPILOGUE
What has been learned now that this exercise of viewing physics in a

philosophical perspective is coming to an end?
Those, who say they are now more confused than before, let them be reminded

that most of us have been addled all along. Man has capabilities of adapting to his
own states of confusion, while fiercely condemning those of others. In that vein,
these discussions may help in creating fuller awareness of how addled we all are.
Problems need to be recognized, before they can be worked on.

Those who, after reading these lines, claim they have not learned a thing, may
consider that they have at least gained a mnemonic device for the purpose of
retaining parts of that vast body of knowledge, called modern physics.  An
overview of the totality is needed to pass judgment on details. Once an overview
exists, the process of reevaluation can easier take its course.

Finally there is, we hope, a category admitting to pholosophy's potential for
ordering, if physics is viewed against the background of its subcategories.
Whatever has been learned is then found to be contingent on the use of a more
discerning mathematical machinery, which makes crucially needed distinctions
explicit from the start. Existing methodology in physics is predicated by three
almost silent assumptions:i.e., all of physics can be constructed working from
local towards global, SR(3) field definitions suffice, orientability can mostly
be ignored.

Despite proven relevance of the general theory of relativity, existing
mathematical vehicles remain prone to hidden assumptions testifying to a universe
dominated by residual elements of Euclidian uniformity. While locally this can be
very close to the truth, such presumed uniformity in the large remains a stumbling
block for gaining viable global perspectives on cosmology. By contrast, in the
small, the quantum laws of physics yield global insight into the topology of
microphysical structure. Unlike mathematics, in physics the concepts local and
global are not quite identical with the expressions in the small and in the large.

There is virtue in being reminded, at every step, that orientability counts and
that Euclidian uniformity cannot be taken for granted. The use of formalisms
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that compel confrontation with those issues helps in reassessing decisions of the
past that might have been obscuring a more discerning future.

If questions do arise whether here suggested reassessments are worth the
effort, keep in mind, thanks to those built-in mnemonic devices, it has been
possible to track down details of Copenhagen's obscure ontology and the ensuing
premature rejection of a truly royal road to quantization. Even Sommerfeld, a
principal originator of this royal road, abandoned his own creation, so great was
the magic lure of the Schroedinger-Dirac methodology. Einstein, who saw the
topological features of the Bohr-Sommerfeld integrals, also  made an effort to
reconcile the Schroedinger-Dirac equations with the precepts of general
covariance.

Transitions from local to global description invariably place emphasis on de-
grees of frame-independence in physical description. These requirements need to
be applied discerningly. Past experience with Dirac's equations remind us how
easily indiscriminate application of frame independence can lead into a cul de sac.
The degree of frame independence has to fit the object of description at hand.

Good judgment is needed to make the calls where and when to demand
Diffeo-4 treatment. It would be silly to demand it for the description of crystal
symmetries, yet the Faraday induction's universal applicability clearly demands
full Diffeo-4 independence. Yet, the induction law is rarely mathematically treated
that way, even if its local applications clearly support a Diffeo-4 relevance.

If promises of earlier attempts at replacing SR(3) vector analysis by Cartan's
Diffeo-4 differential forms have not met with expectations, the reason is
frequently that Diffeo-4 status cannot be dictated. Nature, instead, has to be
asked under what circumstances a Diffeo-4 status is appropriate. Increased
'specialism' in mathematics as well as physics have compounded the possibilities
of bridging a widening gap in communication.

Just having a better vehicle of communication in mathematics alone can't
swing the balance. If meaningful results are to be expected, a more subtle
understanding of how this vehicle relates to physics needs to go hand in hand with
knowledge of the vehicle. Differential forms have been taught in a manner of
learning the outward manipulations of a Diffeo-invariant system without
effectively touching on the deeper needs of physics. It is a reality of life that
having a better violin is a necessary but not a sufficient condition for making
better music.

Notes and General References
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sources used for philosophy
 E Zerin, Transactional Analysis Journal 25 (1995) 150: gives very succinct
definitions  and applications of major philosophy subdivisions.

      M Bunge, Ontology (Reidel, Dordrecht, Boston '77-'79) : part of a general
treatise on philosophy.

sources for experimentation
Direct verifications of the existence of flux quantization:
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B S Deaver and W M Fairbank, Phys. Rev. Lett.7 , 43 ( 1961)
Remarkable applications invoking flux quantization:
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Landmark evidence of the statistical nature of diffraction effects:
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Cyclic integrals
G de Rham, Variétés Differentiables  (Paris 1955) English translation 
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differential forms are discussed, although the impair option remains largely 
unused in a purely geometric context .
W V D Hodge, Harmonic integrals ( Cambridge, 1952) gives extensive 
discussions of de Rham's theorems on cyclic integrals, yet the pair-impair 
distinction of forms has disappeared as a mathematically essential feature.

 Tensors:
J A Schouten, Tensor Analysis for Physicists  (Dover, NY, 1974):
Tensor application to Crystal physics, covers orientation changes so that a

one
to one relation to de Rham's pair and impair forms can be established.
E J Post, Formal Structure of Electromagnetics  (Dover, NY, 1997): A 
more detailed tensorial treatment of electromagnetism along the lines of the 
Schouten (metric-free) school with a quanta-based dimensional analysis. The 
latter is an important key in making a transition to differential form language

a physically meaningful and transparent  operation.    
Cyclic integral law statements

1-dimensional: F London, Superfluids I (Dover, N.Y.,1950) p.152:First 
suggestion about  the  existence of flux quanta going back to the Thirties.
Y Aharonov and D Bohm. Phys. Rev.115, 485 (1959)
W Duane, Proc.Nat. Ac. Sciences 9, 158 (1923): A study of particle diffraction
with the help of the Bohr-Sommerfeld integral.
2-dimensional: E J  Post, J. Math. Phys.19, 347 (1978): Combining Ampère 
and Gauss law into one 2-dimensional cyclic spacetime integral.

 3-dimensional: R M Kiehn, J.Math. Phys.18, 614 (1977): a field
generalization of the Bohr-Sommerfeld integral.
Copenhagen single system versus ensemble aspects of Schroedinger solutions
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M Planck, The theory of Heat Radiation (Dover, NY, 1959) p.141; 
translation from 1912 German edition: discussion of  the zero-point energy  of 
phase-averaged ensembles.
R P Feynman, R B Leighton and M Sands, The Feynman Lectures  
(Reading 1964) Vol.II and Vol.III appendix: discussion of orientation-

averaged ensembles.
J C Slater, ..A Scientific Biography (Wiley, NY, 1975) Ch.2: interactions 
with Niels Bohr on quantum interpretations.

A monograph attempting a joint picture of ensemble tools & single system
cyclic integrals:

E J Post, Quantum Reprogramming (Kluwer, Ac. Publ.: Dordrecht,
Boston, 1995) Single systems and macroscopic phase- and orientation-

ordered
ensembles (acting as single systems) are treated by methods of cyclic
integration. Phase- and orientation- randomized ensembles are treated by
Schroedinger methods.

Historical almost forgotten exchanges:
The Hibert, Klein and Noether discussion on energy-momentum coservation 
can be found in the Göttinger Nachrichten between 1915-1920.
A compilation of work on pre-metric physics by Kottler, Cartan and van
Dantzig has appeared in an Handbuch der Physik  article by Truesdell and 
Toupin (Springer, Berlin, 1960) and in the earlier mentioned monograph 
Formal Structure of Electromagnetics  (Dover, NY,1997)
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