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The theory of classical electromagnetism is constructed in terms of two exterior differential

systems, F − dA = 0, and J − dG = 0, which act as topological constraints on the variety of

independent variables {x, y, z, t}. These two fundamental constraints lead to two other

independent concepts of topological torsion, A^F, and topological spin, A^G, which are

explicitly dependent upon the potentials, A. The exterior derivative of these 3-forms creates

the two familiar Poincare deformation invariants of an electromagnetic system, valid in the

vacuum or plasma state. When the Poincare invariants vanish, the closed integrals of A^F

and A^G exhibit topological invariant properties similar to the ”quantized” chiral and spin

properties of a photon. The possible evolution of these and other topological properties is

studied with respect to classes of processes that can be defined in terms of singly

parameterized vector fields. Non-zero values of the Poincare invariants are the source of

topological change and non-equilibrium thermodynamics.

1 Introduction

In the language of exterior differential systems [1] it becomes evident that classical

electromagnetism is equivalent to a set of topological constraints on a variety of independent

variables. Certain integral properties of such an electromagnetic system are deformation

invariants with respect to all continuous evolutionary processes that can be described by a

singly parameterized vector field. These deformation invariants (or topological properties)

lead to the fundamental topological conservation laws described in the physical literature as

the conservation of charge-current and the conservation of flux. The object of this article is

to examine other objects that can behave as deformation invariants relative to certain

equivalence classes of continuous processes, and yet exhibit topological change with respect

to other classes of continuous processes. Recall the definitions:

Definition 1: A continuous process is a map from an initial state with a

topology Tinitial into a final state with perhaps a different topology Tfinal such

that the limit points of the initial state are permuted among the limit points of

the final state. [2]



Definition 2: A deformation invariant is an integral over a closed manifold

∫ ⋅ ⋅ ∫closed
ωsuch that the Lie derivative of the closed integral with respect to

a singly parameterized vector field, βVk, vanishes, for any choice of the

parametrization function, β.

It is also important to recall that a given variety of independent variables can support

more than one topology. In classical electromagnetism, experience indicates that there are

topological concepts related to the Field Intensities, (E,B), and forces, which are

thermodynamically distinct from the topological concepts related to Field Excitations
(D,H), and sources. The Field Intensities have functional components which transform as a

covariant tensor, while the Field Excitations are quantities with components that transform

as a tensor density. These thermodynamic distinctions are often masked by the imposition of

a metric structure, or a limitation to volume preserving (often non-dissipative) evolutionary

processes [3].

The idea of a deformation invariant comes from the Cartan concept of a tube of

trajectories as applied to Hamiltonian mechanics. On the odd dimensional state space of

variables, {p,q, t}, Cartan evaluated the closed integral of a given 1-form of Action,

∮
C

A(p,q, t) = ∮
C

pdq − H(p,q, t)dt, on a curve, C, that encloses a tube of (possible)

trajectories. The objective was to determine which trajectories (evolutionary processes) leave

the closed integral invariant, as the points of C curve are arbitrarily deformed or transported

along the trajectories. The only restriction was that a point of the curve C on a given

trajectory stays on the same trajectory. Cartan proved that the direction field that defines

such a tube of trajectories is unique, and has the usual classic Hamiltonian representation [4].

Cartan’s proof is not restricted to state space, but instead applies to any 1-form of Action

whose Pfaff dimension, or class, is odd. Such Action 1-forms always admit a Hamiltonian

representation for the evolutionary vector field. Moreover, for arbitrary physical systems

that can be defined by a C2 differentiable 1-form of Action, A, by using Cartan’s magic

formula [5], it is possible to prove:

Theorem 1. The closed integral of the derived 2-form F = dA is an

evolutionary deformation invariant with respect to all continuous processes

that can be defined by a singly parameterized vector field.

Proof: L(βV) ∫∫closed
F = ∫∫closed

{i(βV)ddF + d(i(βV)F)} = 0 + 0.

The integration domain is, in this case, a two dimensional closed two surface, which need



not be a boundary. This concept is at the basis of the Helmholtz theorems in hydrodynamics,

and the conservation of flux in classical electromagnetism. The necessary condition that a

2-form be an evolutionary deformation invariant for all continuous processes is that the

2-form be closed, dF = 0. This requirement is satisfied by the constraint of the exterior

differential system, F − dA = 0, and C2 differentiability; the 2-form F is said to be exact.

The domains of support for an exact 2-form are usually either open (and extend to infinity)

or are compact with boundary.The only exceptions are the Torus and the Klein bottle. In this

article it is subsumed that classical electromagnetism is defined by an exact 2-form, F. On

the other hand, the domain of support for the Field Excitations, G, can be compact without

boundary, a fact that leads to the intuitive concepts of particles.

1.1 The Postulate of Potentials

Herein, the assumption that classical electromagnetic systems are defined by the

topological constraint that the 2-form F is exact will be called the Postulate of Potentials.

The postulate is an essential point of departure from other theoretical developments, because

physical meaning is associated with topological equivalence classes of potentials. When

written as the equation, F − dA = 0, the postulate of potentials can be recognized as an

exterior differential system constraining the topology of the independent variables. When

the 2-form F is exact, the Poincare lemma, ddA = dF = 0, implies that the partial

differential equations so generated form a nested set independent from the dimension of the

independent variables. The Maxwell-Faraday equations are therefor universal and applicable

to all physical systems that support a 1 form of Action on a domain of four dimensions or

more.

The concepts developed in this article subsume that the potentials, A, have physical

meaning in a topological sense of equivalence classes. In fact, topological evolution will be

observed most often when the potentials evolve from one equivalence class to another. A

theory of topological evolution can not be gauge invariant, nor can it make unique

predictions. Yet when couched in the language of differential forms, a theory of continuous

topological evolution can be retrodictively deterministic [6]. It is the closed components of

A that are not exact that determine many of the topological, multiply connected, features of

the electromagnetic system.

1.2 The Postulate of Conserved Currents

Herein, it is stipulated that the classic electromagnetic system requires a second

topological constraint to be imposed upon the domain of independent variables. This



postulate will be called the Postulate of Conserved Currents. The electromagnetic domain

not only supports the 1-form A, but also supports an N-1=3 form, J, which is exact. The

equivalent differential system, J − dG = 0, requires that the (N-1 dimensional) domain of

support for J cannot be compact without boundary. However, using Cartan’s magic formula

it is possible to prove (see Theorem 1):

Theorem 2: The closed integrals of J are deformation invariants for any

continuous evolutionary process that can be defined in terms of a singly

parameterized vector field.

For the 3-forms of charge current, a similar argument indicates that the compact domains of

support are limited to those of zero Euler characteristic. The classic example is the three

sphere, S3. The three sphere (that will support currents without zeros) has a famous map to a

compact two sphere. Hence, there can exist domains of field excitations on compact two

spheres, such that the induced current, J = dG, resides on the three sphere. The image is the

Hopf map, which can have torsion. Such currents are in the direction of the torsion vector,

A^dA = A^F, and have extraordinary properties, as will be shown below.

In section 2, it will be demonstrated explicitly that the classic formalism of

electromagnetism is a consequence of a system of two fundamental topological constraints

F − dA = 0, J − dG = 0.     (1)

defined on a domain of four independent variables. The theory requires the existence of four

fundamental exterior differential forms, {A,F,G,J}, which form a differential ideal. The

elements of the differential ideal can be used to construct the complete Pfaff sequence of

forms

Pfaff Sequence = {A,F = dA,G,J = dG,A^F,A^G,A^J,F^F,G^G}.     (2)

by the processes of exterior differentiation and exterior multiplication. On a domain of four

independent variables, the complete Pfaff sequence contains three 3-forms: the classic

3-form of charge current density, J, and the (apparently novel to many researchers) 3-forms

of Spin Current density, A^G, [7] and Topological Torsion-Helicity, A^F [8]. For an

electromagnetic system, the Action 1-form, A, has the physical dimensions of the flux

quantum, h/e. The 2-form, G, has the physical dimensions of charge, e. The 3-form, A^G,

has the physical dimensions of spin, h, and the 3-form A^F, has the physical dimensions of

spin multiplied by the Hall impedance, (h/e)2 = h(h/e2) = hZhall. These last two 3-forms are

explicitly dependent upon postulate of potentials, and demonstrate the physical significance



of the vector and scalar potentials. [9]

As the charge current 3-form, J, is a deformation invariant by construction, it is of

interest to determine topological refinements or constraints for which the 3-forms of Spin

Current and Topological Torsion will define physical topological conservation laws in the

form of deformation invariants. The additional constraints are equivalent to the topological

statement that the closure (exterior derivative) of each of the three forms is empty (zero). It

will be demonstrated in section 3 that these closure conditions define the two classic

Poincare invariants (4-forms) as deformation invariants, and when each of these invariants

vanish the corresponding 3-form generates a topological quantity (Spin or Torsion

respectively) which is also a deformation invariant. The possible values of the topological

quantities, as deRham period integrals [10], form rational ratios.

The two distinct concepts of Spin Current and the Torsion vector have had almost no

utilization in applications of classical electromagnetic theory, for they are explicitly

dependent upon the potentials, A. Hence, if the additional constraint of gauge invariance is

placed upon the theory of electromagnetism, then the construction of such 3-forms is

contrived, if not impossible. The constraint of gauge invariance is NOT subsumed in this

article, as an understanding of topological evolution is the desired goal. Just as the vanishing

of the 3-form of charge current, J = 0, defines the topological domain called the vacuum,

the vanishing of the two other 3-forms, A^G and A^F, will refine the fundamental topology

of the Maxwell system. Such constraints permit a definition of transversality to be made on

topological (rather than geometrical) grounds. If both A^G and A^F vanish, the vacuum state

supports topologically transverse modes only (TTEM). A topologically transverse

magnetic (TTM) mode corresponds to the topological constraint that A^F = 0. A

topologically transverse electric mode (TTE) corresponds to the topological constraint that

A^G = 0. Examples, both novel and well-known, of vacuum solutions to the

electromagnetic system which satisfy (and which do not satisfy) these topological constraints

are given elsewhere [11].

In section 3, evolutionary processes will be studied in terms of the Lie derivative (with

respect to a vector field) acting as a propagator on each element of the Pfaff sequence. The

evolutionary processes (as vector fields) will be put into equivalence classes according to

certain topological refinements that they impose on the physical electromagnetic system, as

described by the elements of the Pfaff sequence. For example, a plasma process (which is to

be distinguished from a Hamiltonian process) will be restricted to those evolutionary vector

fields which leave the closed integrals of G a deformation invariant. (Compare to the Cartan

definition that a Hamiltonian process is a restriction on arbitrary processes such that the



closed integrals of A are deformation invariants.) A plasma process need not conserve

energy. A perfect plasma process is a plasma process which is also a Hamiltonian process.

Again, the three forms, J, A^G and A^F are of particular interested because their tangent

manifolds define direction fields, or ”lines”, in the 4-dimensional variety of space and time.

Relative to plasma processes, the topological evolution associated with such lines, and their

entanglements or knots, is of utility in understanding solar corona and plasma instability.

[12]

2. The Fundamental Exterior Differential Systems.

The use of differential forms should not be viewed as just another formalism of fancy.

The technique goes beyond the methods of tensor calculus, and admits the study of

topological evolution. Recall that if an exterior differential system is valid on a final variety

of independent variables {x,y, z, t}, then it is also true on any initial variety of independent

variables that can be mapped onto {x,y, z, t}. The map need only be differentiable, such that

the Jacobian matrix elements are well defined functions. The Jacobian matrix does not have

to have an inverse, so that the exterior differential system is not restricted to the equivalence

class of diffeomorphisms. The field intensities on the initial variety are functionally well

defined by the pullback mechanism, which involves algebraic composition with components

of the Jacobian matrix transpose, and the process of functional substitution. This

independence from a choice of independent variables (or coordinates) for Maxwell’s

equations was first reported by Van Dantzig [13]. It follows that the Maxwell differential

system is well defined in a covariant manner for both Galilean transformations as well as

Lorentz transformations, or any other diffeomorphism. (The singular solution sets to the

equations do not enjoy this universal property [14]).

2.1 The Maxwell-Faraday exterior differential system.

The Maxwell-Faraday equations are a consequence of the exterior differential system

F − dA = 0,     (3)

where A is a 1-form of Action, with twice differentiable coefficients (potentials proportional

to momenta) which induce a 2-form, F, of electromagnetic intensities (E and B , related to

forces). The exterior differential system is a topological constraint that in effect defines

field intensities in terms of the potentials. On a four dimensional space-time of independent

variables, (x,y, z, t) the 1-form of Action (representing the postulate of potentials) can be

written in the form



A = Σk=1
3 Ak(x,y, z, t)dxk − φ(x,y, z, t)dt = A ∘dr −φdt.     (4)

Subject to the constraint of the exterior differential system, the 2-form of field intensities, F,

becomes:

F = dA = {∂Ak/∂x j − ∂A j/∂xk}dxj^dxk

= F jkdxj^dxk = Bzdx^dy... + Exdx^dt...

    (5)

    

where in usual engineering notation,

E = −∂A/∂t − gradφ, B =curl A ≡ ∂Ak/∂x j − ∂A j/∂xk.     (6)

The closure of the exterior differential system, dF = 0,

dF = ddA = {curl E + ∂B/∂t}xdy^dz^dt − .. + .. − div Bdx^dy^dz} ⇒ 0,     (7)

generates the Maxwell-Faraday partial differential equations.:

{curl E + ∂B/∂t = 0, div B = 0}.     (8)

The component functions (E and B) of the 2-form, F, transform as a covariant tensor of rank

2. The topological constraint that F is exact, implies that the domain of support for the field

intensities cannot be compact without boundary, unless the Euler characteristic vanishes.

These facts distinguish classical electromagnetism from Yang-Mills field theories.

Moreover, the fact that F is subsumed to be exact and C1 differentiable excludes the concept

of magnetic monopoles from classical electromagnetic theory on topological grounds. By

Theorem 1, the integral of the 2-form F over any closed 2-manifold is a deformation

(topological) invariant of any evolutionary process that can be described by a singly

parameterized vector field.

2.2 The Maxwell Ampere exterior differential system

The Maxwell Ampere equations are a consequence of a second exterior differential

system,

J − dG = 0,     (9)

where G is an N-2 form density of field excitations (D and H , related to sources), and J is

the N-1 form of charge-current densities. The partial differential equations equivalent to the

exterior differential system are precisely the Maxwell-Ampere equations. This second



postulate, the Postulate of Conserved Currents, on a four dimensional domain of independent

variables, assumes the existence of a N-2 form density given by the expression,

G = G34(x,y, z, t)dx^dy.. + G12(x,y, z, t)dz^dt... = Dzdx^dy.. + Hzdz^dt...     (10)

Exterior differentiation produces an N-1 form,

J = Jz(x,y, z, t)dx^dy^dt... − ρ(x,y, z, t)dx^dy^dz.     (11)

Matching the coefficients of the exterior expression dG = J leads to the Maxwell-Ampere

partial differential equations,

curl H − ∂D/∂t = J and div D = ρ.     (12)

The fact that J is exact leads to the charge conservation law, dJ = ddG = 0, or

∂Jx/∂x + ∂Jy/∂y + ∂Jz/∂z + ∂ρ/∂t = 0.     (13)

From Theorem 2, the closed integral ∫∫∫closed
J is a topological deformation invariant of any

process that can be described by a singly parameterized vector field. Note that the domains

of support for G (but not F) can be compact without boundary.

2.3 The Torsion and Spin 3-forms

As mentioned above, the method of exterior differential forms goes beyond the domain

of classical tensor analysis, for it admits of maps from initial to final state that are without

inverse. (Tensor analysis and coordinate transformations require that the Jacobian map from

initial to final state has an inverse - the method of exterior differential forms does not.)

Hence the theory of electromagnetism expressed in the language of exterior differential

forms admits of topological evolution, at least with respect to continuous processes without

Jacobian inverse. With respect to such non-invertible maps, both tensor fields and

differential forms are not functionally well defined in a predictive sense [15]. Given the

functional forms of a tensor field on an initial state, it is impossible to predict uniquely the

functional form of the tensor field on the final state unless the map between initial and final

state is invertible. However differential forms are functionally well defined in a retrodictive

sense, by means of the pullback. Covariant anti-symmetric tensor fields pull back

retrodictively with respect to the transpose of the Jacobian matrix (of functions) and

functional substitution, and contravariant tensor densities pullback retrodictively with respect

to the adjoint of the Jacobian matrix, and functional substitution. The transpose and the



adjoint of the Jacobian exist, even if the Jacobian inverse does not.

The differential forms that make up the complete Pfaff sequence, and their unions, may

be used to form a topological base on the domain of independent variables. The Cartan

topology constructed on this system of forms has the useful feature that the exterior

derivative may be interpreted as a limit point, or closure, operator in the sense of Kuratowski

[16]. The exterior differential systems that define the Maxwell-Ampere and the

Maxwell-Faraday equations above are essentially topological constraints of closure. Note

that the complete Maxwell system of differential forms (which assumes the existence of A)

also generates two other exterior differential systems.

d(A^G) − (F^G − A^J) = 0,     (14)

d(A^F) − F^F = 0.     (15)

The two objects, A^G and A^F are three forms, not usually found in discussions of classical

electromagnetism. The closed components of the first 3-form (density) were called

topological spin [17] and the closed components of the second 3-form were called

topological torsion (or helicity or chirality) [18]. By direct evaluation of the exterior

product, and on a domain of 4 independent variables, each 3-form will have 4 components

that can be symbolized by the 4-vector arrays

Spin − Current : S4 = [A × H + Dφ,A ∘ D]≡ [S,σ],

Torsion − vector : T4 = [E × A + Bφ,A ∘ B]≡ [T,h],

    (16)

    (17)

which are to be compared with the charge current 4-vector density:

Charge-Current : J4 = [J,ρ],     (18)

The 3-forms then can be defined by the equivalent contraction processes

Topological Spin 3 − form ≐ A^G

= i(S4)dx^dy^dz^dt = Sxdy^dz^dt..... − σdx^dy^dz

    (19)

Topological Torsion − helicity 3 − form ≐ A^F

= i(T4)dx^dy^dz^dt = Txdy^dz^dt..... − hdx^dy^dz.

    (20)

The vanishing of A^G is a topological constraint on the domain that defines topologically

transverse electric (TTE) waves: the vector potential, A, is orthogonal to D, in the sense that

A ∘ D = 0. The vanishing of A^F is a topological constraint on the domain that defines

topologically transverse magnetic (TTM) waves: the vector potential, A, is orthogonal to



B, in the sense that A ∘ B = 0. When both 3-forms vanish, the topological constraint on the

domain defines topologically transverse (TTEM) waves. For classic real fields this double

constraint would require that the vector potential, A, is collinear with the field momentum,

D × B, and in the direction of the wave vector, k. Such constraints permit the definition of

singular solutions of propagating discontinuities, or electromagnetic ”signals” [14].

The geometric notion of distinct transversality modes of electromagnetic waves is a well

known concept experimentally, but the association of transversality to topological issues is

novel herein. For certain examples it is apparent that the concepts of geometric transversality

and topological transversality are the same. In the classic case, often considered in fiber

optic theory of wave guides with open boundaries, it is known that the TEM modes do not

transmit power. However, it is possible to construct vacuum wave solutions which satisfy the

geometric concept of transversality, but the mode radiates, because it does not satisfy the

topological concept of transversality. The conjecture obtained from examples is that a

TTEM solution does not radiate.

Note that if the 2-form F was not exact, such topological concepts of transversality

would be without distinct meaning, for the 3-forms of Topological Spin and Topological

Torsion depend explicitly upon the existence of the 1-form of Action. For future

developments, observe that the torsion vector T4 and the Spin vector S4 are associated

vectors to the 1-form of Action, in the sense that

i(T4)A = 0 and i(S4)A = 0.     (21)

2.4 The Poincare Invariants

The exterior derivatives of the 3-forms of Spin and Torsion produce two 4-forms,

F^G − A^J and F^F, whose closed integrals are deformation invariants for the Maxwell

system. (The deformation invariance follows from Cartan’s magic formula and the fact that

the 4-forms are exact). These topological objects are related to the conformal invariants of a

Lorentz system as discovered by Poincare and Bateman [19]. Note that their topological

properties are valid even in the plasma domain of dissipative charge currents and radiation,

as well as in the vacuum. In the format of independent variables {x,y, z, t}, the exterior

derivative corresponds to the 4-divergence of the 4-component Spin and Torsion vectors,

S4 and T4.



Poincare 1 = d(A^G) = F^G − A^J

= {div3(A × H + Dφ) + ∂(A ∘ D)/∂t}dx^dy^dz^dt

= {(B ∘ H − D ∘ E) − (A ∘ J − ρφ)}dx^dy^dz^dt

    (22)

Poincare 2 = d(A^F) = F^F

= {div3(E × A + Bφ) + ∂(A ∘ B)/∂t}dx^dy^dz^dt

= {−2E ∘ B}dx^dy^dz^dt

    (23)

For the vacuum state, defined by J = 0, zero values of the Poincare invariants require that

the magnetic energy density is equal to the electric energy density (1/2B ∘ H = 1/2D ∘ E),
and, respectively, that the electric field is orthogonal to the magnetic field (E ∘ B = 0). Note

that these constraints often are used as elementary textbook definitions of what is meant by

electromagnetic waves. Consider the definitions:

Definition 3: Spin is defined as the closed integral of the 3-form A^G

Spin = ∫∫∫
closed

A^G     (24)

Definition 4: Torsion-Helicity is defined as the closed integral of the 3-form

A^F

Torsion-Helicity = ∫∫∫
closed

A^F     (25)

By using Cartan’s magic formula it is possible to prove

Theorem 3: If the First Poincare Invariant vanishes, the Spin is an

evolutionary deformation invariant with values whose ratios are rational.

Theorem 4. If the second Poincare Invariant vanishes, the Torsion Helicity

is an evolutionary deformation invariant with values whose ratios are

rational.

The quantized (integer) ratios comes from the deRham cohomology theorems on closed

integrals of closed p-forms.

It is important to realize that these topological conservation laws are valid in a plasma as

well as in the vacuum, subject to the conditions of zero values for the Poincare invariants.



On the other hand, topological transitions between ”quantized” states of Spin or Torsion

require that the respective Poincare invariants are not zero.

3. Thermodynamics

3.1 Topological Thermodynamics and Irreversibility

The basic tool for studying topological evolution is Cartan’s magic formula [5], in which

it is presumed that a physical system can be described adequately by a 1-form of Action, A,

and that a physical process can be represented by the direction field of a contravariant vector

field, V. The application of Cartan’s magic formula yields

L(V) ∫ A = ∫ L(V)A = ∫{i(V)dA + d(i(V)A)} = ∫{W + d(U)} = ∫ Q.     (26)

The basic idea behind this formalism (which is at the foundation of the Cartan-Hilbert

variational principle) is that the postulate of potentials is valid: F − dA = 0. The base

manifold will be the 4-dimensional variety {x,y, z, t} of engineering practice, but no metrical

features are presumed a priori. If relative to the process, V, the RHS is zero, ∫ Q ⇒ 0, then

∫ A is said to be an integral invariant of the evolution generated by V. In thermodynamics

such processes are said to be adiabatic.

From the point of view of differential topology, the key idea is that the Pfaff dimension,

or class [20], of the 1-form of Action specifies topological properties of the system. Given

the Action 1-form, A, the Pfaff sequence, {A,dA,A^dA,dA^dA, ...} will terminate at an

integer number of terms equal to, or less than, the number of dimensions of the domain of

definition. On a 4 dimensional domain, the top Pfaffian, dA^dA, will define a volume

element with a density function whose singular zero set (if it exists) reduces the symplectic

domain to a contact manifold of Pfaff dimension 3. This (defect) contact manifold supports a

unique extremal field that leaves the Action integral ”stationary”, and leads to the

Hamiltonian conservative representation for the Euler flow in hydrodynamics. The

irreversible regime will be on an irreducible symplectic manifold of Pfaff dimension 4,

where dA^dA ≠ 0. Topological defects (or coherent structures) appear as singularities of

lesser Pfaff (topological) dimension, dA^dA = 0.

3.2 Reversible Processes

Classical hydrodynamic and electromagnetic processes can be represented by certain

nested categories of vector fields, V. Three distinct classes of processes are defined by the

constraints on the evolutionary vector field such that



Extremal − (unique Hamiltonian generator) i(V)dA = 0

Bernoulli − Casimir − (Θ is the generator) i(V)dA = dΘ

Helmholtz − Stokes − −Symplectic di(V)dA = 0.

    27a)

    (27b)

    (27c)

The vector fields defined by first two constraints have generators that create a Hamiltonian

flow. This Hamiltonian flow is uniquely defined, in the extremal case, on a contact manifold

of odd dimensions, as the null eigen vector of the matrix of coefficients of the 2-form, dA. In

the Bernoulli − Casimir (maximal rank) case, the manifold is of even dimensions and

symplectic, so there does not exist a unique null eigenvector direction field. The evolutionary

field depends upon the choice of the Bernoulli − Casimir function Θ. Such Bernoulli

processes can correspond to energy dissipative symplectic processes, but they, as well as all

symplectic processes, are reversible in the thermodynamic sense described below. The

mechanical energy need not be constant, but the Bernoulli-Casimir function(s), Θ, are

evolutionary invariant(s), and may be used to describe non-unique ”stationary”

thermodynamic state(s).

The equations, above, are in effect constraints on the topological evolution of any

physical system represented by an Action 1-form, A. The Pfaff dimension of the 1-form of

virtual work, W = i(V)dA, is 2 or less for each of the three categories. The extremal

constraint can be used to generate the Euler equations of hydrodynamics for a

incompressible fluid. The Bernoulli-Casimir constraint can be used to generate the equations

for a barotropic compressible fluid. The Helmholtz constraint can be used to generate the

equations for a Stokes (not Navier-Stokes) flow. However as will be shown below, all such

processes are thermodynamically reversible.

An important idea is that it takes domains of Pfaff dimension 3, or more, with attendant

properties of non-uniqueness, envelopes, regressions, and projectivized tangent bundles, to

yield the concepts of Spin and Torsion-Helicity. It takes systems of Pfaff dimension 4 to

accommodate processes which are thermodynamically irreversible.

3.3 Irreversible Processes

Although there does not exist a unique extremal process on a symplectic manifold of

Pfaff dimension 4, remarkably there does exist a unique (conformal) vector field whose

direction field depends only upon the functional form of the 1-form, A, that is used to define

the physical system. The direction field on the four dimensional domain is defined by the

3-form of topological torsion, A^dA, as discussed in Section 2.3. This unique (to within a

factor) vector field is defined in component form as the Torsion Current, T4, and satisfies



(on the 4 dimensional manifold) the equation,

i(T4)dx^dy^dz^dt = A^dA     (28)

This (four component) vector field, T4, has a non-zero divergence almost everywhere, for if

the divergence is zero, then the 4-form dA^dA vanishes, and the domain is no longer a

symplectic 4-manifold! The Torsion vector, T4, can be used to generate a dynamical system

that will decay to the stationary states (div4(T4) ⇒ 0) starting from arbitrary initial

conditions. As shown below these processes are irreversible in the thermodynamic sense. It

is remarkable that this unique evolutionary vector field, T4, is completely determined (to

within a factor) by the physical system itself; e.g., the components of the 1-form, A,

determine the direction field of the Torsion vector.

To understand what is meant by thermodynamic irreversibility, realize that Cartan’s

magic formula of topological evolution is equivalent to the first law of thermodynamics.

L(v)A = i(V)dA + d(i(V)A) = W + dU = Q.     (29)

A is the ”Action” 1-form that describes the hydrodynamic or electromagnetic system. V is

the vector field that defines the evolutionary process. W is the 1-form of (virtual) work. Q is

the 1-form of heat. From classical thermodynamics, a process is irreversible when the heat

1-form Q does not admit an integrating factor.

Definition 5: An irreversible (non-equilibrium) process is one for which the

Heat 1-form Q does not admit an integrating factor [21].

From the Frobenius theorem, the lack of an integrating factor implies that Q^dQ ≠ 0. Hence

a simple (non-statistical) test may be made for any process, V, relative to a physical system

described by an Action 1-form, A:

Theorem 5:

If L(v)A^L(v)dA ≠ 0 then the process is irreversible.     (30)

Proof: Using Cartan’s magic formula yields L(v)A = Q and L(v)dA = dQ.

Hence the requirement that an integrating factor does not exist is

Q^dQ ⇒ L(v)A^L(v)dA ≠ 0.

This topological definition implies that the three categories (above) of Symplectic ⊃
Hamiltonian ⊃ Extremal evolutionary processes, S, are reversible in a thermodynamic

sense (as L(S)dA=dQ = 0).



However, for evolution in the direction of the Torsion vector, T4, direct computation

demonstrates that the fundamental equations lead to a conformal evolutionary process:

L(T4)A = σA and i(T4)A = 0

with σ ∼ div4(T4) ∼ d(A^dA)

    (31)

Theorem 6: Evolution in the direction of the Torsion Vector is irreversible.

Proof: The direction field associated with T4 is uniquely determined by the

functional form of the 1-form of Action that defines the physical system on

the four dimensional variety. By direct evaluation,

L(T4)A^L(T4)dA = Q^dQ = σA^(σdA + dσ^A)

= σ2A^dA = {div4(T4)}2A^dA.

    (32)

As the domain is of Pfaff dimension 4, it follows that A^dA is not zero, and

dA^dA ∼ div4(T4) is not zero. Therefore, the RHS is not zero, and the

irreversibility result follows from theorem 5.

Explicit evaluations are carried out in the next section for electromagnetic systems of Pfaff

dimension 4.

3.4 Applications to Electromagnetism

All of the development above will carry over to the electromagnetic system, which also

assumes the postulate of potentials. The topological torsion 3-form, A^dA, induces the

torsion current

T4 = {(E × A + Bφ); A ∘ B} ≡ {S,h}.     (33)

If div4T = −2 E ∘ B ≠ 0, the electromagnetic 1-form, A, defines a domain of Pfaff

dimension 4. Such domains cannot support topologically transverse magnetic waves

(as A^F ≠ 0). Evolutionary processes (including plasma currents) that are proportional to

the Torsion current are thermodynamically irreversible, if σ = −E ∘ B ≠ 0. However, the

conformal properties of evolution in the direction of the Torsion current lead to

extraordinary properties when the plasma current is in the direction of the Torsion vector.

Using the notation of an electromagnetic system



L(T4)A = σA = −(E ∘ B)A and L(T4)(A^F) = 2σA = −2(E ∘ B)A^F.     (34)

Hence, it follows that motion along the direction of the torsion vector freezes-in the lines of

the torsion vector in space time, but the process is irreversible unless the second Poincare

invariant is zero.

Recall that the definition of a plasma current, J, is equivalent to an evolutionary process

such that the number of charges is an evolutionary invariant, L(J)G = 0. Consider a plasma

current which is also in the direction of the Torsion vector. Then

L(J)A^G = (L(J)A)^G + A^L(J)G = (L(γT4)A)^G + 0 = −γ ⋅ (E ∘ B) A^G     (35)

Hence for plasma motions in the direction of the (possibly dissipative) torsion vector, both

the ”lines” of the Spin vector are ”frozen in” and the lines of the Torsion vector are ”frozen

in”. Such ”frozen in” objects [22] can be used to give a topological definition of deformable

coherent structures in a plasma. Moreover, as the evolutionary process causes the ”frozen

in” structures to deform and decay, it is conceivable that evolution could proceed to form

stationary (not stagnant) states (where E ∘ B ⇒ 0), such that the ”frozen in” field line

structures become local deformation invariants, or topological defects. Electromagnetic

coherent structures are evolutionary deformable (and perhaps decaying) domains of Pfaff

dimension 4, which form stationary states of topological defects (including the null state) in

regions of Pfaff dimension 3, where E ∘ B = 0.

4. The Classical Photon

An empirical property of the photon is its quantized spin. As it is not commonly

appreciated that the classical Maxwell electromagnetic field can have quantized spin an

torsion properties, three examples are presented below which demonstrate spin and torsion

properties of the field. In the first example, the spin radiation is related to the back reaction

of a Lorentz force on a rotating plasma, to produce an accretion disk. The first example has

zero torsion but finite spin. In the second example, a time dependent vacuum wave solution

is presented. The vector potentials exhibit a lack of time reversal invariance, and the fields

are not transverse, as E ∘ B ≠ 0. The second example has both finite torsion and finite spin.

A third example (without torsion) demonstrates a solution where the Poynting vector is in

the direction of the Spin vector, indicating that radiation is related to the spin qualities of the

photon. Moreover, in the third example, the closed integrals of the Spin 3-form are quantized

in the sense that their values have integer ratios.



4.1 A rotating plasma with an accretion disk

A very interesting time independent set of functions that satisfy the Maxwell system is

given by the Potentials,

A = {f(x,y, z, t)}Kelvin = {z/ (δz2 + x2 + y2) }[−y,x, 0]/(x2 + y2)     (36)

which generates the Hedge-Hog B field,

B = −[x,y, z]/(δz2 + x2 + y2)3/2,     (37)

and (assuming the Lorentz constitutive relations) the London-like Current density,

J = Λ(x,y, z, t)A = −3(1 − δ)(x2 + y2)/(δz2 + x2 + y2)2A.     (38)

It is apparent that the Helicity density A ∘ B vanishes identically, as do all components of the

Topological Torsion tensor: A^F ⇒ 0. There exists a Lorentz force,

J × B = {3(1 − δ)/(δz2 + x2 + y2)4}[yz2,xz2,−z(x2 + y2)]/µ     (39)

which has the remarkable features that for an ”oblate” situation (δ < 1), the ”plasma” is

forced away from the rotation z axis, but is attracted to the z = 0 plane to form an accretion

disk. There are no Amperian currents and no Lorentz force unless the system is anisotropic

(oblate or prolate).

When the 3-form of topological Spin is evaluated, A^G ≠ 0, it is remarkable that the Lorentz

force is proportional to the Spin current

J × B = −3(1 − δ)S/(x2 + y2).     (40)

In this example, the spin current is to be considered as a back reaction to the Lorentz force.

The usual interpretation in MHD theory is to resolve J × B in terms of a ”magnetic pressure

and a magnetic tension”:

J × B = −∇(B ∘ H)/2 + H ∘∇B = ”magnetic pressure + magnetic tension”.     (41)

However, the Spin interpretation would imply that the effects are more related to rotational

deformations, rather than to translational deformations.

4.2 A time dependent irreversible vacuum wave with E ∘ B ≠ 0.

Modifications of the Hopf map suggest consideration of the system of potentials given by the



equations

A = [+y,−x,+ct]/λ4 , φ = cz/λ4, where λ2 = −c2t2 + x2 + y2 + z2,     (42)

which yield the real field intensities,

E = [−2(cty − xz),+2(ctx + yz),−(c2t2 + x2 + y2 − z2)]2c/λ6

B = [−2(cty + xz),+2(ctx − yz),−(c2t2 + x2 + y2 − z2)]2/λ6.

    (43)

    (44)

Subject to the dispersion relation, εµc2 = 1 and the Lorentz constitutive conditions, these

time dependent wave functions satisfy the homogeneous Maxwell equations without charge

currents, and are therefore acceptable vacuum solutions, J4(+t) = 0.

The extensive algebra involved in these and other computations in this article were

checked with a Maple symbolic mathematics program [23].

It is to be noted that when the substitution t ⇒ −t is made in the functional forms for the

potentials, the fields computed from the new functional forms fail to satisfy the vacuum

Lorentz conditions for zero charge-currents, J4(−t) ≠ 0. For example, the E(−t) field

calculated from the potentials A4(−t) is not equal to the E(+t) field computed from A4(+t) and

exhibits a non-zero divergence; e.g.,

E(−t) = [−2(cty − xz),+2(ctx + yz), (c2t2 + z2)]2c/λ6

ρ/ε = div3{E(−t)} = −8cz(x2 + 5c2t2 + y2 + z2)/λ8.

    (45)

    (46)

In this sense, the valid vacuum (+t) solution presented above is not time-reversal invariant.

(Of course the differential form for the Action transforms properly).

The Spin current density for this first non-transverse wave (+t) example is evaluated as:

Spin : S4 = [x(3λ2 − 4y2 − 4x2),y(3λ2 − 4y2 − 4x2), z(λ2 − 4y2 − 4x2),

t(λ2 − 4y2 − 4x2)](2/µ)/λ10,

    (47)

    

and has zero divergence. Hence its global integral (Spin) is quantized. The Torsion current

may be evaluated and leads to:

Torsion : T4 = −[x,y, z, t]2c/λ8 Poincare 2 = −2E ∘ B = +8c/λ8.     (48)

The solution has magnetic helicity as A ∘ B ≠0 and is radiative in the sense that the Poynting

vector, E × H ≠0, and the wave is not transverse. The Torsion_Helicity integral is not

quantized.

It is to be noted that the example solution given above is but one of a class of vacuum



wave solutions that have similar non transverse properties. As a second example, consider

the fields that can be constructed from the potentials,

A = [+ct,−z,+y]/λ4 , φ = cx/λ4, where λ2 = −c2t2 + x2 + y2 + z2.     (49)

These potentials will generate the field intensities,

E = [+(−c2t2 + x2 − y2 − z2),+2(ctz + yx),−2(cty − zx)]2c/λ6

B = [+(−c2t2 + x2 − y2 − z2),+2(−ctz + yx),+2(cty + zx)]2/λ6.

    (50)

    (51)

As before, these fields satisfy the Maxwell-Faraday equations, and the associated excitations

satisfy the Maxwell-Ampere equations without producing a charge current 4-vector.

However, it follows by direct computation that the second Poincare invariant, and the

Torsion 4-vector are of opposite signs to the values computed for the first example:

Torsion : T4 = +[x,y, z, t]2c/λ8 , − 2E ∘ B = −8c/λ8 .     (52)

4.3 Quantized Spin and the Poynting vector

When the two examples above are combined by addition (or subtraction), the resulting

wave is transverse magnetic (in the topological sense that A ∘ B = 0). Not only does the

second Poincare invariant vanish under superposition, but so also does the Torsion 4 vector.

Conversely, the examples above show that there can exist transverse magnetic waves which

can be decomposed into two non-transverse waves. A notable feature of the superposed

solutions is that the Spin 4 vector current does not vanish, hence the example superposition

is a wave that is not transverse electric (in the topological sense that A ∘ D ≠ 0). For the

superposed example, the first Poincare invariant vanishes, which implies that the Spin

integral remains a conserved topological quantity, with values proportional to the integers.

The non-zero Spin current density for the combined examples is given by the formula:

Spin : S4 = [−2x(y + ct)2, (y + ct)(x2 − y2 + z2 − 2cty − c2t2),−2z(y + ct)2,

− (y + ct)(x2 + y2 + z2 + 2cty + c2t2)](4/µ)/λ10,     (53)

while the Torsion current is a zero vector, A^F ⇒ 0.

In addition, for the superposed example, the spatial components of the Poynting vector

are equal to the Spin current density vector multiplied by γ, such that

E × H = γ S, with γ = −(x2 + y2 + z2 + 2cty + c2t2)/2c(y + ct)λ2.     (54)

These results seem to give classical credence to the Planck assumption that the vacuum state



of Maxwell’s electrodynamics supports quantized angular momentum, and that the energy

flux must come in multiples of the spin quanta. In other words, these combined solutions to

classical electrodynamics have some of the experimental qualities of the quantized photon.

5. Summary

Many of the chiral and spin features of the quantized photon have their basis in the

topological properties of classical electromagnetism, and the 3-forms A^F and A^G.

6. References

[1] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffths, Exterior

Differential Systems (Springer Verlag, 1991).

[2] S. Lipschutz, General Topology (Schaum, New York, 1965) p. 88.

[3] A. Sommerfeld, Electrodynamics (Academic Press, New York, 1952).

J. A. Stratton, Electromagnetic Theory (McGraw Hill, NewYork, 1941).

Sommerfeld carefully distinguishes between intensities and excitations on thermodynamic

grounds.

[4] E. Cartan, Lecons sur les invariants integrauxs (Hermann, Paris, 1958).

[5] J. E. Marsden and T. S. Riatu, Introduction to Mechanics and Symmetry

(Springer-Verlag, 1994) p.122

[6] R. M. Kiehn, ”Retrodictive Determinism”, Int. J. of Eng. Sci. 14, 749 (1976)

[7] R. M. Kiehn and J. F. Pierce, ”An Intrinsic Transport Theorem” Phys. Fluids 12, 1971

(1969)

[8] R. M. Kiehn, ”Topological Torsion, Pfaff Dimension and Coherent Structures”, in: H. K.

Moffatt and T. S. Tsinober eds, Topological Fluid Mechanics (Cambridge University Press,

Cambridge, 1990) p. 449 .

[9] R. M. Kiehn, ”Are there three kinds of superconductivity” Int. J. Mod. Phys B 5 1779

(1991)

[10] G. deRham, Varietes Differentiables (Hermann, Paris, 1960).

[11] http://www.uh.edu/~rkiehn

[12] G. Hornig and K. Schindler, K. ”Magnetic topology and the problem of its invaraint

definition” Physics of Plasmas, 3, p.646 (1996).

[13] D. Van Dantzig, Proc. Cambridge Philos. Soc. 30, 421 (1934). Also see:

D. Van Dantzig, ”Electromagnetism Independent of metrical geometry”, Proc. Kon. Ned.

Akad. v. Wet. 37 (1934).

[14] R. M. Kiehn, G. P. Kiehn, and R. B. Roberds, ”Parity and Time-reversal Symmetry

Breaking, Singular Solutions”, Phys Rev A 43, 5665

(1991).

[15] Ibid 6

[16] K. Kuratowski, Topology (Warsaw, 1948), Vol. I.



[17] R. M. Kiehn, ”Periods on manfolds, quantization and gauge”, J. of Math Phys 18 no. 4,

p. 614 (1977).

[18] Ibid 8.

[19] H. Bateman, Electrical and Optical Wave Motion, (Dover, New York, 1914, 1955) p.12.

[20] J. A. Schouten, and W. Van der Kulk, Pfaff’s Problem and its Generalizations (Oxford

Clarendon Press, 1949).

[21] P. M. Morse, Thermal Physics, (Benjamin,1964) p. 60.

[22] N. E. Kochin, I. A. Kibel, N. N. Roze, Theoretical Hydrodynamics, (Interscience, NY

1964) p.157.

R. M. Kiehn, ”Intrinsic hydrodynamics with applications to space time Fluids”, Int. J. Engng

Sci 13, 941 (1975).

[23] http://www.uh.edu/~rkiehn/pdf/emhopf.pdf


