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The theory of classical electromagnetism is constructed in terms
of two exterior di®erential systems, F ¡ dA = 0, and J ¡ dG = 0,
which act as topological constraints on the variety of independent
variables fx; y; z; tg. These two fundamental constraints lead to
two other independent concepts of topological torsion, A^F , and
topological spin, A^G, which are explicitly dependent upon the po-
tentials, A: The exterior derivative of these 3-forms creates the two
familiar Poincare deformation invariants of an electromagnetic sys-
tem, valid in the vacuum or plasma state. When the Poincare in-
variants vanish, the closed integrals of A^F and A^G exhibit topo-
logical invariant properties similar to the "quantized" chiral and
spin properties of a photon. The possible evolution of these and
other topological properties is studied with respect to classes of pro-
cesses that can be de¯ned in terms of singly parameterized vector
¯elds. Non-zero values of the Poincare invariants are the source of
topological change and non-equilibrium thermodynamics.

1 Introduction

In the language of exterior di®erential systems [1] it becomes evident that
classical electromagnetism is equivalent to a set of topological constraints on a
variety of independent variables. Certain integral properties of such an elec-
tromagnetic system are deformation invariants with respect to all continuous
evolutionary processes that can be described by a singly parameterized vector
¯eld. These deformation invariants (or topological properties) lead to the fun-
damental topological conservation laws described in the physical literature as
the conservation of charge-current and the conservation of °ux. The object
of this article is to examine other objects that can behave as deformation in-
variants relative to certain equivalence classes of continuous processes, and yet
exhibit topological change with respect to other classes of continuous processes.
Recall the de¯nitions:

De¯nition 1: A continuous process is a map from an initial state
with a topology Tinitial into a ¯nal state with perhaps a di®erent
topology Tfinal such that the limit points of the initial state are per-
muted among the limit points of the ¯nal state. [2]
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De¯nition 2: A deformation invariant is an integral over a closed
manifold

R ¢ ¢R
closed

! such that the Lie derivative of the closed inte-

gral with respect to a singly parameterized vector ¯eld, ¯V k; vanishes,
for any choice of the parametrization function, ¯(x; y; z; t::).

If ¯ is a ¯xed constant, and the Lie derivative of the integral vanishes, then
the object is an evolutionary °ow invariant, but not a deformation invariant.
The points on a trajectory that make up the initial integration domain in all
cases must remain on the same trajectory. For arbitrary ¯; the points remain
on the initial trajectory, but the integration domain can be deformed relative to
the hydrodynamic evolution. If the deformed integral equals the initial integral,
and is also equal to the hydrodynamic integral, then the object is a deformation
(topological) invariant [3].

It is also important to recall that a given variety of independent variables can
support more than one topology. In classical electromagnetism,experience indi-
cates that there are topological concepts related to the Field Intensities, (E;B);
and forces, which are thermodynamically distinct from the topological concepts
related to Field Excitations (D;H) ; and sources. The Field Intensities have
functional components which transform as a covariant tensor, while the Field
Excitations are quantities with components that transform as a contravariant
tensor density. These thermodynamic distinctions of intensities and quantities
[4] are often masked by the imposition of a metric structure, or a limitation
to self dual systems or volume preserving (often non-dissipative) evolutionary
processes.

1.1 The Postulate of Potentials

Herein, the assumption that classical electromagnetic systems are de¯ned
by the topological constraint that the 2-form F is exact will be called the

Postulate of Potentials F ¡ dA = 0: (1)

The postulate of potentials can be recognized as an exterior di®erential sys-
tem constraining the topology of the independent variables. The constraint
requires that the (2 dimensional) domain of support for F cannot be compact
without boundary. The torus and the Klein bottle are the only exceptions.
When the 2-form F is exact, the Poincare lemma, ddA = dF = 0; implies that
the partial di®erential equations so generated form a nested set independent
from the dimension of the independent variables. Using the classic de¯nitions
of Field Intensities

E = ¡@A=@t ¡ gradÁ; B =curl A ´ @Ak=@xj ¡ @Aj=@xk; (2)

the closure of the exterior di®erential system, dF = 0; generates the Maxwell-
Faraday partial di®erential equations:
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fcurl E + @B=@t = 0; div B = 0g: (3)

These equations therefor are universal and applicable to all physical systems
that support a 1 form of Action on a domain of four dimensions or more. By
using Cartan's magic formula [5] it is possible to prove that the closed integral
of F is a deformation invariant for any continuous evolutionary process that
can be de¯ned in terms of a singly parameterized vector ¯eld. This result is
known as the conservation of electromagnetic °ux.

L(¯V)

ZZ

closed

F =

ZZ

closed

fi(¯V)dF + d(i(¯V)F )g = 0 + 0: (4)

The postulate of potentials is an essential point of departure from other
theoretical developments, because, straight away, physical meaning is associated
with topological equivalence classes of potentials. In fact, topological evolution
will be observed most often when the potentials evolve from one equivalence
class to another. A theory of topological evolution can not be gauge invariant,
nor can it make unique predictions, because the prediction of the functional
form of tensor ¯elds is impossible if the Jacobian matrix does not have an
inverse [6]. Yet when couched in the language of di®erential forms, a theory
of continuous topological evolution can be retrodictively deterministic. It is
the closed components of A that are not exact that determine many of the
topological, multiply connected, features of the electromagnetic system.

1.2 The Postulate of Conserved Currents

It is also stipulated that the classic electromagnetic system requires a second
topological constraint to be imposed upon the domain of independent variables.
This postulate will be called the

Postulate of Conserved Currents: J ¡ dG = 0: (5)

The electromagnetic domain not only supports the 1-form A, but also sup-
ports an N-1=3 form, J; which is exact. The equivalent di®erential system,
J ¡dG = 0; requires that the (N-1 dimensional) domain of support for J cannot
be compact without boundary. However, using Cartan's magic formula it is
possible to prove that the closed integrals of J are deformation invariants for
any continuous evolutionary process that can be de¯ned in terms of a singly
parameterized vector ¯eld. This result is otherwise known as the conservation
of charge-current density.

L(¯V)

ZZZ

closed

J =

ZZZ

closed

fi(¯V)dJ + d(i(¯V)J)g = f0 + 0)g = 0: (6)
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This second postulate, the Postulate of Conserved Currents, on a four
dimensional domain of independent variables, assumes the existence of a N-2
form density given by the expression (in terms of the Field Excitations),

G = G34(x; y; z; t)dx^dy:: + G12(x; y; z; t)dz^dt::: = Dzdx^dy:: + Hzdz^dt:::
(7)

Exterior di®erentiation produces an N-1 form,

J = Jz(x; y; z; t)dx^dy^dt::: ¡ ½(x; y; z; t)dx^dy^dz: (8)

Matching the coe±cients of the exterior expression dG = J leads to the
Maxwell-Ampere partial di®erential equations,

curlH ¡ @D=@t = J and div D = ½: (9)

The fact that J is exact leads to the charge conservation law, dJ = ddG = 0;
or

@Jx=@x + @Jy=@y + @Jz=@z + @½=@t = 0: (10)

It is important to note that the domain of support for G (not F ) can be com-
pact without boundary, and idea that leads to the intuitive concept of charged
particles.

1.3 The Torsion and Spin 3-forms

The two fundamental postulates of an electromagnetic system require the
existence of four fundamental exterior di®erential forms, fA;F;G; Jg; which
form a di®erential ideal. The elements of the ideal can be used to construct
the complete Pfa® sequence of forms

Pfaff Sequence = fA;F = dA;G;J = dG;A^F; A^G;A^J;F^F; G^Gg:
(11)

by the processes of exterior di®erentiation and exterior multiplication. A (Car-
tan) topology constructed on this system of forms has the useful feature that the
exterior derivative may be interpreted as a limit point, or closure, operator in
the sense of Kuratowski [7]. It is important to note that the complete Maxwell
system of di®erential forms (which assumes the existence of the potentials, A)
also generates two other exterior di®erential systems.

d(A^G) ¡ (F^G ¡ A^J) = 0; d(A^F ) ¡ F^F = 0: (12)
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These equations introduce the (apparently novel to many researchers) 3-forms
of Spin Current density, A^G;[8] and Topological Torsion-Helicity, A^F [9].
For an electromagnetic system, the Action 1-form, A; which has the physical
dimensions of the °ux quantum, h=e: The 2-form, G; has the physical dimensions
of charge, e: The 3-form, A^G; has the physical dimensions of spin, h; and the 3-
form A^F;has the physical dimensions of spin multiplied by the Hall impedance,
(h=e)2 = h(h=e2) = hZhall: [10]

By direct evaluation of the exterior product on a domain of 4 indepen-
dent variables, each 3-form will have 4 components that can be symbolized by
the 4-vector arrays,

Spin ¡ Current : S4 = [A £ H + DÁ;A ± D] ´ [S;¾]; (13)

Torsion ¡ vector : T4 = [E £ A + BÁ;A ± B] ´ [T;h]; (14)

which are to be compared with the charge current 4-vector density:

Charge-Current : J4 = [J; ½]; (15)

Note that the ubiquitous helicity density is merely the fourth component of
A^F:

The 3-forms then can be de¯ned by the equivalent contraction processes

SpinCurrent 3 ¡ form = A^G = i(S4)dx^dy^dz^dt: (16)

Torsion (helicity) 3 ¡ form = A^F = i(T4)dx^dy^dz^dt (17)

The vanishing of A^G is a topological constraint on the domain that
de¯nes topologically transverse electric (TTE) waves: the vector potential, A,
is orthogonal to D; in the sense that A ± D = 0: The vanishing of A^F is
a topological constraint on the domain that de¯nes topologically transverse
magnetic (TTM) waves: the vector potential, A, is orthogonal to B;in the sense
that A ± B = 0: When both 3-forms vanish, the topological constraint on the
domain de¯nes topologically transverse (TTEM) waves. For classic real ¯elds
this double constraint would require that the vector potential, A; is collinear
with the ¯eld momentum, D £ B; and in the direction of the wave vector,
k. Such constraints permit the de¯nition of singular solutions of propagating
discontinuities, or electromagnetic "signals" [11].

Note that if the 2-form F was not exact, such topological concepts of
transversality would be without distinct meaning, for the 3-forms of Topological
Spin and Topological Torsion depend explicitly upon the existence of the 1-form
of Action. For future developments, observe that the torsion vector T4 and the
Spin vector S4 are associated vectors to the 1-form of Action, in the sense that

i(T4)A = 0 and i(S4)A = 0: (18)
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The two distinct concepts of Spin Current and the Torsion vector have
had almost no utilization in applications of classical electromagnetic theory, for
they are explicitly dependent upon the potentials, A. Examples, both novel
and well-known, of vacuum and plasma solutions to the electromagnetic system
which satisfy (and which do not satisfy) these topological constraints are given
elsewhere [12].

1.4 The Poincare Invariants

The exterior derivatives of the 3-forms of Spin and Torsion produce two 4-
forms, F^G¡A^J and F^F; whose closed integrals are deformation invariants
for any continuous evolutionary process that can be de¯ned in terms of a singly
parameterized vector ¯eld. These topological objects are related to the con-
formal invariants of a Lorentz system as discovered by Poincare and Bateman
[13]. Note that their topological properties are valid even in the plasma domain
of dissipative charge currents and radiation, as well as in the vacuum. In the
format of independent variables fx; y; z; tg; the exterior derivative corresponds
to the 4-divergence of the 4-component Spin and Torsion vectors, S4 and T4:

Poincare 1 = d(A^G) = F^G ¡ A^J (19)

= fdiv3(A £ H + DÁ) + @(A ± D)=@tgdx^dy^dz^dt

= f(B ± H ¡ D ± E) ¡ (A ± J ¡ ½Á)gdx^dy^dz^dt

Poincare 2 = d(A^F ) = F^F (20)

= fdiv3(E £ A + BÁ) + @(A ± B)=@tgdx^dy^dz^dt

= f¡2E ± Bgdx^dy^dz^dt

For the vacuum state, de¯ned by J = 0; zero values of the Poincare invariants
require that the magnetic energy density is equal to the electric energy density
(1=2B ± H = 1=2D ± E), and, respectively, that the electric ¯eld is orthogonal
to the magnetic ¯eld (E ± B = 0): Note that these constraints often are used
as elementary textbook de¯nitions of what is meant by electromagnetic waves.
Consider the de¯nitions:

De¯nition 3: Spin is de¯ned as the closed integral of the 3-form
A^G

Spin =
RRR

closed

A^G (21)

De¯nition 4: Chirality is de¯ned as the closed integral of the
3-form A^F
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Chirality =
RRR

closed

A^F (22)

By using Cartan's magic formula it is possible to prove

Theorem 1: If the First Poincare Invariant vanishes, Spin is an
evolutionary deformation invariant with values whose ratios are ra-
tional.

Theorem 2. If the second Poincare Invariant vanishes, Chirality is
an evolutionary deformation invariant with values whose ratios are
rational.

The quantized (integer) ratios comes from the deRham cohomology theorems
on closed integrals of closed p-forms [14]. All of the above development has been
without the constraint of a metric and without the choice of a connection, in
the spirit of Van Dantzig [15]. It is important to realize that these topological
conservation laws are valid in a plasma as well as in the vacuum, subject to
the conditions of zero values for the Poincare invariants. On the other hand,
topological transitions between "quantized" states of Spin or Chirality require
that the respective Poincare invariants are not zero.

2 Topological Evolution and Thermodynamics

Topological evolution can be studied in terms of the Lie derivative (with
respect to a vector ¯eld) acting as a propagator on each element of the Pfa®
sequence. No metric or connection is necessary. Evolutionary processes (as
vector ¯elds) can be put into equivalence classes according to certain topo-
logical (invariance) re¯nements that they impose on the elements of the Pfa®
sequence. For example, a "plasma process" (which is to be distinguished from
a Hamiltonian process) will be de¯ned as an element of the equivalence class of
evolutionary vector ¯elds which leave the closed integrals of G a deformation
invariant. Cartan de¯ned an extremal Hamiltonian process as an element of an
equivalence class of processes such that the closed integrals of A are deformation
invariants. For an electromagetic system, such processes are "force-free". A
plasma process need not conserve energy. A perfect plasma process is a plasma
process which is also a Hamiltonian process. The three forms, J; A^G and
A^F are of particular interest, because their tangent manifolds de¯ne direction
¯elds, or "lines", in the 4-dimensional variety of space and time. Relative to
plasma processes, the topological evolution associated with such lines, and their
entanglements or knots, is of utility in understanding solar corona and plasma
instability. [16]
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2.1 Topological Thermodynamics and Evolutionary Pro-
cesses

The basic tool for studying topological evolution is Cartan's magic formula
for the action of the Lie derivative on exterior di®erential forms [5]. It is
presumed that a physical system can be described, minimally, by a 1-form of
Action, A, and that a physical process can be represented by the direction ¯eld
of a contravariant vector ¯eld, V. It is important to realize that Cartan's magic
formula of topological evolution is equivalent to the ¯rst law of thermodynamics.

L(v)A = i(V)dA + d(i(V)A) = W + dU = Q: (23)

In the formula above, A is the "Action" 1-form that describes the hydrodynamic
or electromagnetic system. V is the vector ¯eld that de¯nes the evolutionary
process. W is the 1-form of (virtual) work. Q is the 1-form of heat that is the
result of the process acting on the system. The basic idea behind this formalism
(which is at the foundation of the Cartan-Hilbert variational principle) is that
the postulate of potentials is valid: F ¡dA = 0. Herein, the base manifold will
be the 4-dimensional variety fx; y; z; tg of engineering practice, but no metrical
features, or constitutive properties, are presumed a priori. The fundamental
formula can be applied to integral properties as well. For example, if (relative
to V ) L(v)

R
A =

R
Q ) 0, then

R
A is said to be an integral invariant of the

evolution generated by V: In thermodynamics such processes are said to be
adiabatic.

From the point of view of di®erential topology, a key idea is that
the Pfa® dimension, or class [17], of the 1-form of Action speci¯es topologi-
cal properties of the system. Given the Action 1-form, A, the Pfa® sequence,
fA;dA;A^dA;dA^dA; :::g will terminate at an integer number of terms equal to,
or less than, the number of dimensions of the domain of de¯nition. On a 4 di-
mensional domain, the top Pfa±an, dA^dA, will de¯ne a volume element with a
density function whose singular zero set (if it exists) reduces the symplectic do-
main to a contact manifold of Pfa® dimension 3. This (defect) contact manifold
supports a unique extremal ¯eld that leaves the Action integral "stationary",
and leads to the Hamiltonian conservative representation for the Euler °ow in
hydrodynamics. The irreversible regime will be on an irreducible symplectic
manifold of Pfa® dimension 4, where dA^dA 6= 0: Topological defects (or co-
herent structures) appear as singularities of lesser Pfa® (topological) dimension,
dA^dA = 0:

2.2 Reversible Processes

Classical hydrodynamic and electromagnetic processes can be represented
by certain nested categories of vector ¯elds, V. Three distinct classes of pro-
cesses are de¯ned by the constraints on the evolutionary vector ¯eld such that
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Extremal ¡ (unique Hamiltonian generator) i(V)dA = 0 (24)

Bernoulli ¡ Casimir ¡ (£ is the generator) i(V)dA = d£ (25)

Helmholtz ¡ Stokes ¡ ¡Symplectic di(V)dA = 0: (26)

The vector ¯elds de¯ned by the ¯rst two constraints have generators that
create a Hamiltonian °ow. This Hamiltonian °ow is uniquely de¯ned, in the
extremal case, on a contact maximal rank manifold of odd dimensions, as the
null eigen vector of the matrix of coe±cients of the 2-form, dA: The result is
independent of any reparameterization, ¯:

In the Bernoulli¡Casimir (maximal rank) case, the maximal rank manifold
is of even dimensions and is symplectic. In this case, there does not exist a
unique null eigenvector direction ¯eld. The evolutionary ¯eld depends upon
the choice of the Bernoulli ¡ Casimir function £: Such Bernoulli processes
can correspond to energy dissipative symplectic processes, but they, as well as
all symplectic processes, are reversible in the thermodynamic sense described
below. The mechanical energy need not be constant, but the Bernoulli-Casimir
function(s), £; are evolutionary invariant(s), and may be used to describe non-
unique "stationary" thermodynamic state(s).

The equations, above, are in e®ect constraints on the topological evo-
lution of any physical system represented by an Action 1-form, A: The Pfa®
dimension of the 1-form of virtual work, de¯ned as W = i(V)dA is 2 or less for
each of the three categories. The extremal constraint can be used to generate
the Euler equations of hydrodynamics for a incompressible °uid. The Bernoulli-
Casimir constraint can be used to generate the equations for a barotropic com-
pressible °uid. The Helmholtz constraint can be used to generate the equations
for a Stokes (not Navier-Stokes) °ow. However as will be shown below, all such
processes are thermodynamically reversible.

An important idea is that domains of Pfa® dimension 3, or more,
with attendant properties of non-uniqueness, envelopes, regressions, and projec-
tivized tangent bundles, are required to yield the concepts of Spin and Torsion-
Helicity. As demonstrated below, it takes systems of Pfa® dimension 4 to
accommodate processes which are thermodynamically irreversible.

2.3 Irreversible Processes

Although there does not exist a unique extremal process on a symplectic
manifold of Pfa® dimension 4, remarkably there does exist a unique (conformal)
vector ¯eld whose direction ¯eld depends only upon the functional form of the
1-form, A; that is used to de¯ne the physical system. The direction ¯eld on the
four dimensional domain is de¯ned by the 3-form of topological torsion, A^dA;
as discussed in Section 2.3. This unique (to within a factor) vector ¯eld is
de¯ned in component form as the Torsion Current, T4, and satis¯es (on the 4
dimensional manifold) the equation,
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i(T4)dx^dy^dz^dt = A^dA (27)

This (four component) vector ¯eld, T4, has a non-zero divergence almost
everywhere, for if the divergence is zero, then the 4-form dA^dA vanishes, and
the domain is no longer a symplectic 4-manifold! The Torsion vector, T4, can
be used to generate a dynamical system that will decay to the stationary states
(div4(T4) ) 0) starting from arbitrary initial conditions. As shown below these
processes are irreversible in the thermodynamic sense. It is remarkable that
this unique evolutionary vector ¯eld, T4, is completely determined (to within
a factor) by the physical system itself; e.g., the components of the 1-form, A,
determine the direction ¯eld of the Torsion vector.

To understand what is meant by thermodynamic irreversibility, recall
that in the theory of classical thermodynamics, a process is de¯ned to be irre-
versible when the heat 1-form Q does not admit an integrating factor.

De¯nition 5: An irreversible (non-equilibrium) process is one for
which the Heat 1-form Q does not admit an integrating factor [18].

From the Frobenius theorem, the lack of an integrating factor implies that
Q^dQ 6= 0: Hence a simple (non-statistical) test may be made for any process,
V, relative to a physical system described by an Action 1-form, A:

Theorem 3:

If L(v)A^L(v)dA 6= 0 then the process is irreversible: (28)

Proof: Using Cartan's magic formula yields L(v)A = Q and L(v)dA =
dQ: Hence the requirement that an integrating factor does not exist
is Q^dQ ) L(v)A^L(v)dA 6= 0:

This topological de¯nition implies that the three categories (above) of Sym-
plectic evolutionary processes, S; are reversible in a thermodynamic sense (as
L(S)dA=dQ = 0): However, for evolution in the direction of the Torsion
vector, T4, direct computation demonstrates that the fundamental equations
lead to a conformal evolutionary process:

L(T4)A = ¾A and i(T4)A = 0 (29)

with ¾ » div4(T4) » d(A^dA)
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Theorem 4: Evolution in the direction of the Torsion Vector is
irreversible.

Proof: The direction ¯eld associated with T4 is uniquely deter-
mined by the functional form of the 1-form of Action that de¯nes
the physical system on the four dimensional variety. By direct eval-
uation,

L(T4)A^L(T4)dA = Q^dQ = ¾A^(¾dA + d¾^A) = fdiv4(T4)g2A^dA:
(30)

As the domain is of Pfa® dimension 4, it follows that A^dA is not
zero, and dA^dA » div4(T4) is not zero. Therefore, the RHS is not
zero, and the irreversibility result follows from theorem 3.

2.4 Applications to Electromagnetism

All of the development above will carry over to the electromagnetic system,
which also assumes the postulate of potentials. The topological torsion 3-form,
A^dA, induces the torsion current

T4 = f(E £ A + BÁ);A ± Bg ´ fT; hg: (31)

If div4T = ¡2 E ± B 6= 0; the electromagnetic 1-form, A; de¯nes a domain of
Pfa® dimension 4. Such domains cannot support topologically transverse mag-
netic waves (as A^F 6= 0). Evolutionary processes (including plasma currents)
that are proportional to the Torsion current are thermodynamically irreversible,
if ¾ = ¡E ± B 6= 0. However, the conformal properties of evolution in the di-
rection of the Torsion current lead to extraordinary properties when the plasma
current is in the direction of the Torsion vector. Using the notation of an
electromagnetic system

L(T4)A = ¾A = ¡(E ± B)A and L(T4)(A^F ) = 2¾A^F = ¡2(E ± B)A^F:
(32)

Hence, it follows that motion along the direction of the torsion vector freezes-
in the lines of the torsion vector in space time, but the process is irreversible
unless the second Poincare invariant is zero. Such "frozen in" objects [19]
can be used to give a topological de¯nition of deformable coherent structures
in a plasma. Moreover, as the evolutionary process causes the "frozen in"
structures to deform and decay, it is conceivable that evolution could ultimately
create stationary (not stagnant) states (where E±B ) 0); such that the "frozen
in" ¯eld line structures become local deformation invariants, or topological de-
fects. Electromagnetic coherent structures are evolutionary deformable (and
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perhaps decaying) domains of Pfa® dimension 4, which form stationary states
of topological defects (including the null state) in regions of Pfa® dimension 3,
where E ± B = 0.

3 The Classical Photon

3.1 Examples of Classical Electromagnetism with Chiral-
ity and Spin

An empirical property of the photon is its quantized spin. As it is not
commonly appreciated that the classical Maxwell electromagnetic ¯eld can have
quantized spin and torsion properties, three examples are presented below which
demonstrate spin and torsion properties of the ¯eld. In the ¯rst example, the
spin radiation is related to the back reaction of a Lorentz force on a rotating
plasma, to produce an accretion disk. The ¯rst example has zero torsion but
¯nite spin. The second example models a plasma which has ¯nite helicity, but
zero spin. In the third example, a time dependent vacuum wave solution is
presented. The vector potentials exhibit a lack of time reversal invariance,
and the ¯elds are not transverse, as E ± B 6= 0: The third example has both
¯nite torsion and ¯nite spin. A fourth example (without torsion) demonstrates
a solution where the Poynting vector is in the direction of the Spin vector,
indicating that radiation is related to the spin qualities of the photon. Moreover,
in the third example, the closed integrals of the Spin 3-form are quantized in
the sense that their values have integer ratios.

3.2 Example 1. A rotating plasma with ¯nite Spin (but
zero Chirality).

A very interesting time independent set of functions that satisfy the Maxwell
system is given by the Potentials,

A = fz=
p

(±z2 + x2 + y2)g[¡y; x;0]=(x2 + y2) (33)

which generates the Hedge-Hog B ¯eld,

B = ¡[x; y; z]=(±z2 + x2 + y2)3=2; (34)

and (assuming the Lorentz constitutive relations) the London-like Current den-
sity,

J = ¤(x; y; z; t)A = ¡3(1 ¡ ±)(x2 + y2)=(±z2 + x2 + y2)2A: (35)

It is apparent that the Helicity density A ± B vanishes identically, as do
all components of the Topological Torsion tensor: A^F ) 0: There exists a
Lorentz force,
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J £ B = f3(1 ¡ ±)=(±z2 + x2 + y2)4g[yz2; xz2;¡z(x2 + y2)]=¹ (36)

which has the remarkable features that for an "oblate" situation (± < 1), the
"plasma" is forced away from the rotation z axis, but is attracted to the z = 0
plane to form an accretion disk. There are no Amperian currents and no Lorentz
force unless the system is anisotropic (oblate or prolate).

When the 3-form of topological Spin is evaluated, A^G 6= 0; it is remarkable
that the Lorentz force is proportional to the Spin current

J £ B = ¡3(1 ¡ ±)S=(x2 + y2): (37)

In this example, the spin current is to be considered as a back reaction to the
Lorentz force. The usual interpretation in MHD theory is to resolve J £ B in
terms of a "magnetic pressure and a magnetic tension":

J £ B = ¡r(B ± H)=2 + H±rB = "magnetic pressure + magnetic tension":
(38)

However, the Spin interpretation would imply that the e®ects are more related
to rotational deformations, rather than to translational deformations.

3.3 Example 2. A plasma with ¯nite Chirality (but zero
Spin)

Consider the Beltrami potentials (related to a Heisenberg exterior di®eren-
tial system of Pfa® dimension 3)

A = [¡y; x;¡a]=(a2 + x2 + y2); (39)

which generate the Fields, and the Amperian currents,

B = 2a[¡y; x;¡a]=(a2 + x2 + y2)2; (40)

¹J = 4a[¡2ay; 2ax; ¡a(¡a2 + x2 + y2)]=(a2 + x2 + y2)3: (41)

The Torsion vector has one component (the helicity density) and the Spin van-

ishes:

T4 = ¡2a[0; 0; 0; 1]=(a2 + x2 + y2)2; S4 = [0; 0; 0; 0] : (42)
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3.4 Example 3. A time dependent irreversible vacuum
wave (with E ±B 6= 0):

Modi¯cations of the Hopf map suggest consideration of the system of potentials
given by the equations

A = [+y;¡x;+ct]=¸4 ; Á = cz=¸4; where ¸2 = ¡c2t2 + x2 + y2 + z2;
(43)

which yield the real ¯eld intensities,

E = [¡2(cty ¡ xz);+2(ctx + yz);¡(c2t2 + x2 + y2 ¡ z2)]2c=¸6 (44)

B = [¡2(cty + xz);+2(ctx ¡ yz);¡(c2t2 + x2 + y2 ¡ z2)]2=¸6: (45)

Subject to the dispersion relation, "¹c2 = 1 and the Lorentz constitutive con-
ditions, these time dependent wave functions satisfy the homogeneous Maxwell
equations without charge currents, and are therefore acceptable vacuum solu-
tions, J4(+t) = 0: The extensive algebra involved in these and other computa-
tions in this article were checked with a Maple symbolic mathematics program
[20].

It is to be noted that when the substitution t ) ¡t is made in the functional
forms for the potentials, the ¯elds computed from the new functional forms fail
to satisfy the vacuum Lorentz conditions for zero charge-currents, J4(¡t) 6= 0.
The E(¡t) ¯eld calculated from the potentials A4(¡t) is not equal to the E(+t)

¯eld computed from A4(+t); and exhibits a non-zero divergence;e:g:;

E(¡t) = [¡2(cty ¡ xz);+2(ctx + yz); (c2t2 + z2)]2c=¸6 (46)

½=" = div3fE(¡t)g = ¡8cz(x2 + 5c2t2 + y2 + z2)=¸8: (47)

In this sense, the valid vacuum (+t) solution presented above is not time-reversal
invariant. (Of course the di®erential form for the Action transforms properly).

The Spin current density for this non-transverse wave (+t) example is
evaluated as:

Spin : S4 = [x(3¸2 ¡ 4y2 ¡ 4x2); y(3¸2 ¡ 4y2 ¡ 4x2); z(¸2 ¡ 4y2 ¡ 4x2);

t(¸2 ¡ 4y2 ¡ 4x2)](2=¹)=¸10; (48)

and has zero divergence. Hence its global integral (Spin) is quantized. The
Torsion current may be evaluated and leads to:

Torsion : T4 = ¡[x; y; z; t]2c=¸8 Poincare 2 = ¡2E ± B = +8c=¸8: (49)
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The solution has magnetic helicity as A±B 6=0 and is radiative in the sense that
the Poynting vector, E£H 6=0, and the wave is not transverse. The Chirality
integral is not quantized.

It is to be noted that the example solution given above is but one of a
class of vacuum wave solutions that have similar non transverse properties. As a
second example, consider the ¯elds that can be constructed from the potentials,

A = [+ct;¡z;+y]=¸4 ; Á = cx=¸4; where ¸2 = ¡c2t2 + x2 + y2 + z2: (50)

These potentials will generate the ¯eld intensities,

E = [+(¡c2t2 + x2 ¡ y2 ¡ z2);+2(ctz + yx);¡2(cty ¡ zx)]2c=¸6 (51)

B = [+(¡c2t2 + x2 ¡ y2 ¡ z2);+2(¡ctz + yx); +2(cty + zx)]2=¸6: (52)

As before, these ¯elds satisfy the Maxwell-Faraday equations, and the associated
excitations satisfy the Maxwell-Ampere equations without producing a charge
current 4-vector. However, it follows by direct computation that the second
Poincare invariant, and the Torsion 4-vector are of opposite signs to the values
computed for the ¯rst example:

Torsion : T4 = +[x; y; z; t]2c=¸8 ; ¡2E ± B = ¡8c=¸8 : (53)

3.5 Example 4. A radiating vacuum wave with Quantized
Spin, ¯nite Poynting Vector, zero Chirality.

When the two solutions of example 3 are combined by addition (or sub-
traction), the resulting wave is transverse magnetic (in the topological sense
that A ± B = 0). Not only does the second Poincare invariant vanish under
superposition, but so also does the Torsion 4 vector. Conversely, the examples
above show that there can exist transverse magnetic waves which can be decom-
posed into two non-transverse waves. A notable feature of the superposed
solutions is that the Spin 4 vector current does not vanish, hence the example
superposition is a wave that is not transverse electric (in the topological sense
that A ± D 6= 0). For the superposed example, the ¯rst Poincare invariant
vanishes, which implies that the Spin integral remains a conserved topological
quantity, with values proportional to the integers. The non-zero Spin current
density for the combined examples is given by the formula:

Spin : S4 = [¡2x(y + ct)2; (y + ct)(x2 ¡ y2 + z2 ¡ 2cty ¡ c2t2);¡2z(y + ct)2;

¡(y + ct)(x2 + y2 + z2 + 2cty + c2t2)](4=¹)=¸10; (54)

while the Torsion current is a zero vector, A^F ) 0:
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In addition, for the superposed example, the spatial components of the
Poynting vector are equal to the Spin current density vector multiplied by °,
such that

E £ H = ° S; with ° = ¡(x2 + y2 + z2 + 2cty + c2t2)=2c(y + ct)¸2: (55)

These results seem to give classical credence to the Planck assumption that
the vacuum state of Maxwell's electrodynamics supports quantized angular
momentum, and that the energy °ux must come in multiples of the spin quanta.
In other words, these combined solutions to classical electrodynamics have some
of the experimental qualities of the quantized photon.

4 Summary

Many of the chiral and spin features of the quantized photon have their basis
in the topological properties of classical electromagnetism, and the 3-forms A^F
and A^G:
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