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1. Introduction

In this article, Cartan’s concept of a projective basis frame of functions, F, a
vector valued set of 1-forms w? (often called a Vierbein) and a matrix valued
set of 1-forms, w§, (often called a connection) will be defined and constructed
on a manifold using the technique of matrices and linear algebra. The algebraic
method depends upon the Whitney theorem that any manifold can be embedded
in a euclidean space of suitably higher dimension (and not exceeding 2n+1). It
is a remarkable feature of the method that the matrix of curvature 2-forms, the
two vectors of torsion 2-forms, and the structural equations on the partitioned
space can be created both differentially or algebraically. Hopefully, the non-
tensor (but tensor equivalent) matrix method will enable the appreciation of the
Cartan concepts by an audience of engineers and applied scientists, whose skills
with tensor analysis may be somewhat limited. Moreover the algebraic method
demonstrates some new features that are often overlooked by use of the tensor
methods.

In Cartan’s early papers it was apparent that the theory of Lie groups led
to certain structural equations that had a basis in differential geometry. These
structural equations (Maurer) were necessary conditions that the Lie system of
differential equations could be integrated. The structural equations are often
written in the form,

dw’ + wgwﬂ =0 (1.1)

and

dw? + wgwg = 0. (1.2)

for basis frames that are orthonormal.



A more general representation would be of the form

dw’ + C§w’ =0 (1.3)

and

dC + C5CE = 0. (1.4)

where the Cartan matrix of connections is not necessarily related to an orthonor-
mal basis frame. (The matrix w? is anti symmetric, while the matrix C? is not
antisymmetric.)

These equations represent, in essence, a closure condition on the elements of
the Vierbein and the Connection, a condition that implies that the differentials
of the each set are composed of algebraic combinations of the set.

Applying the method to Riemannian geometries, where the connection of Levi-
Cevita can be uniquely constucted in terms of the differentials of the metric, it
became apparent that for spaces with non-zero Gauss Curvature, the structural
equations above could have non zero Right Hand Sides. To a physicist, it is as
if a source term were added (out of the blue) to the second of the equations of
structure above, to yield

dC] + C5CL = 05, (1.5)

Where did the source terms come from? The now classic interpretation is that
they (the matix of curvature 2-forms, ©7) come from the curvature of the man-
ifold. If the manifold was flat, then the curvature 2-forms vanish. So far so
good. However in the early days the first of the equations of structure above
(the Vierbein equations) remained with out ”source terms” on the RHS. Then
"out of the blue again” Cartan, about 1922, conjectured that systems should be
investigated where

dw’ + ngﬁ =37, (1.6)

The only trouble is that although visual descriptions of curvature are relatively
easy to construct. (the spherical surface has curvature), visual descriptions of the
vector of Torsion 2-forms has not been so easy to come by. The work of Eisenhart
and Cartan (1925 - 1927) focused attention on the importance of manifolds linearly
connected by a transitive group, and extended the work of Finsler to consider
connections that were not generated by differentiations of the metric. Where
Riemannian spaces admit a unique connection, and can have curvature, their



induced Levi-Cevita connections are torsion free. The connections of the Levi-
Cevita type and the affine type are often distinguished by the symbol I'; such that
for these systems the structural equations are written in the form

dw’ 4+ I’ = 27 (1.7)
and

dry 4+ Igls = o9, (1.8)
The symmetric part of I'? is identified with the Christoffel connection and the
antisymmetric parts of I'? are identified with the "Torsion tensor”. For the

Affine connections, an anti-symmetric part is required to produce 3.

The selection of a transitive group connecting points on manifolds, when com-
bined with the idea of preserving parallelism, leads to two possible connections.
Whereas the Levi-Cevita connection, generated from a symmetric metric, enjoys a
symmetry (in the two lower indices) the parallelism generated by transitive groups
yields connections which are not symmetric. Cartan introduced the concept of
(+) parallelism, and (-) parallelism, for the two asymmetric connections, and the
concept of (0) parallelism for the symmetric connection.

1.1. Some speculations

Just how this relates the two components of the General Linear group is not clear to
me at this time. However it is known that the two components are not connected.
To be a group the determinant must not be zero. But the determinant could be
plus or minus. Only the plus determinant group is near the identity (which has a
positive determinant). The negative determinant cases must somehow be related
to reflections. Or note that as the product of two minus det matrices gives a plus
det matriz, the maybe the minus determinant cases are spinors.

For a physicist, the Cartan concept of plus and minus parallelism immedately
suggests the conjecture that the two connections are (somehow) associated with
the concept of left and right handedness, as in the propagation of polarized light.
Another conjecture, that is exhibited by certain examples described below, presumes
that the two connections are related to the differences between particle propagation
versus wave propagation.



2. The Cartan method of Projective Frame Fields

2.1. Construction of the Projective Connection and Vierbein

For purposes of demonstration and immediate interest, the method will be applied
to euclidean R4 which has a base coordinate representation of space-time {x,y,z,t}.
The projective basis frame will be partitioned into space like tangent (or interior)
vector fields, e, and a normal field (or exterior) vector field, n. On such a 4
dimensional space there exist many basis frames for describing linear systems.
The elements of a matrix for the general linear group has 16 elements (functions
of x,y,2,t). Given some functional form for this matrix, the domain of [x,y,z,t]
can be constrained such that only those regions where the determinant of the
matrix is non-zero are to be considered. Such a constraint defines a Projective
Frame Field, [F]. (The compliment to the project Frame will be discussed later).
However, the essential assumption is that the Projective Basis Frame of functions
has a global inverse (modulo the singular points). From this constraint,

[FJo[F~'| =[1], (2.1)
it is possible to differentiate and apply the Leibniz rule to obtain

d[F] = [F] o [C] = [F] o {— [dF~'| o [F]}. (2.2)

The important result is to note that the differentials of any vector of the basis
frame [F| is a linear combination of the elements of the basis frame, with the
coefficients of linearity given by the Cartan matrix, [C]. This concept of differ-
ential closure for elements of the Projective frame [F] is the key to the Cartan
developoment. The matrix of linear connections [C] is immediately computable
from the formula (assuming that the projective frame is C1)

[C] = {~ |dF '] o [F]}. (2.3)

The Cartan connection matrix is now a matrix of 1-forms, [C], constructed from
the differentials of the functions that make up the Projective Frame field matrix
inverse, and every element is functionally well defined. The important point is,
again, that the differentials of any basis vector in the Cartan system is a linear
combination of the basis vectors; i.e., the process of differentiation is closed.
Cartan also assumed that in this space which supports a global Projective
basis frame, there exists an origin and a position vector R to a point in the domain.
Expand the differential position vector in terms of the basis frame to obtain
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dx dx o*

_ dy \ _ ] Ay ¥
cm@#J—MOC&>—MOF E M>_mp &>. (2.4)
dt dt w
The formula then describes the genesis of the Vierbein 1-forms:
dx o”
d oY
B\ — [p-t YN
=) = [F1] o dz>_ 0Z> (25)
dt w

The mystery of the Vierbein 1-forms is resolved.

A physical mechanism for defining the ”position” or the existence of an ab-
solute origin is lacking in the Cartan assumption. Furthermore it is not clear
that the ”origin” is located in the space of interest, but might actually be a point
in some higher dimensional space, in the sense of a projection. For example,
consider the projective plane where the perspective point is not in the plane at
all. (This case will be studied in detail below.)

The column vector of differential 1-forms, ‘0’“ , representing the differ-
ential position vector in terms of the basis frame, is well defined algebraically in
terms of the matrix product. These Cartan assumptions lead to the exterior
differential system on R4:

d|R) — [F]o|w) =0 (2.6)

d[F] — [F] o [C] = 0. (2.7)

Without the knowledge that the domain is R4, and the fact that the basis frame
is a projective basis on R4, it is tough to see how to proceed. Also the question
remains, what determines the frame [F] , and what determines the position vector
R? However, as R4 is euclidean, everything is well defined, and the Poincare
lemma can be applied

Suppose that the Cartan differentials are exact, and all of the functions
in the matrices are differentiable. = Then take the exterior derivative of both
equations to yield, (using the Poincare lemma which states that dd |R) = 0, and
dd [F] = 0):



[F]{d|o) +[C]"|o)} =0 (2.8)

[F]{d[C] +[C] " [C]} = 0. (2.9)
As [F| is invertible (criteria of linear independence of the projective basis

vectors), these equations imply that

{d]o) +[C]"|o)} =0 (2.10)

{d[C]+[C]"[C]} =0. (2.11)

which are Cartan’s structural equations for a flat space without torsion. Note
that the matrix dot o product symbol has been replace by the wedge product
symbol " to remind one that the matrix elements are 1-forms, and the standard
matrix product of matrix elements has to preserve the exterior product.

2.2. Algebraic partitions and the Structural Equations.

To exemplify the algebraic methods consider that the Projective basis frame can
be written in partitioned form as:

e, €5 .. n!
2 B 2

[F]:[ea es . n|=|% %% - "1 (2.12)
el n"

and the differential position vector expanded in terms of the partitioned frame as:

o% o%

8 B
dR = [F]o g > = [ € €3 .. n } ol 7 > =e, 0" +ego” + ... +nw (2.13)
w w
(The method of constructing or defining the basis frame is deferred until the
next section.) This explicit example considers only one normal or exterior ba-

sis vector, n, but there could as many as k+1. The general and corresponding
partition of the Cartan connection matrix [C] of 1-forms becomes



d[F] = [Fo[C] = [F]o | @ Fg - (2.14)
he hy .. O

The k x k submatrix of 1-forms represented by [I'] will be defined as the interior
connection coefficients on the subspace. Note that these 1-forms range over the
k interior variables, and the p exterior variables (or external parameters). There
is still some ambiguity for the choice of the basis frame [F] on the euclidean space,
but a common choice is the orthonormal frame of engineering analysis. (Another
constructive procedure will be developed below in terms of a projective geometry
based in the existence of a global 1-form of Action.)

To proceed, presume that the basis set [F] is given. Then rewrite the
structural equations for the euclidean space in terms of the partition. The equa-
tions for the exterior differential system can be partitioned into two parts: the
first part relating to the k interior vectors (of k& + p components)

de; = ekF;? +nh; (2.15)

and a second part relating to the p exterior vectors, (in the example that follows,
p=1)

dn = ey* +n. (2.16)

The differential position vector can be partitioned as

dR = e,o" + nw. (2.17)

The coefficients of each of the basis vectors are differential 1-forms with a range
of k + p.

When the exterior space and the interior space are transversal in the
sense that e; on = 0, the interpretation of the various coefficients becomes more
transparent. The factor {2 represents the change of n in the direction of n, while
the factor 7" represents the change of n in the direction of the e;. The factor
h; represents the change in the e, in the direction of n. Note that if the adjoint
vector n is constrained to have no change in the direction of n, then the factor €2
vanishes.

Assuming that the functions that make up the basis vectors and the po-
sition vector are C1 differentiable, then the exterior derivative of these three sets
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of equations must vanish. Most of the features of the theory can be developed by
successive application of the exterior derivative to the above equations, followed
by algebraic substitution of the closure relations defined by the exterior differen-
tial system. As the Frame matrix and the Cartan matrix are partitioned relative
to the tangent (or interior, or associated, or horizontal) vectors ej and the normal
(or exterior, or vertical) vectors, n, the Poincare lemma breaks up into linearly
independent factors, each of which must vanish separately. The results are given
by structural equations (sums over repeated up and down indices):

ddR = e{d|o")+[T5]" [o™)+|¥" w)} +n{do+Q w (hn| “ [o™)} =0 (2.18)
dde; = ex{d[T¥]+ [T5]°[T7]+ |v*) = (hyl} +n{d (h;| + Q" (hy|+ (hy| [T]]} =0

ddn = en{d|v*) + [T Iy™)+ 77 02) )+ n{d2+ @ Qe (| *[77)} = 0. (220

Each of the bracket {} factors must vanish, for by hypothesis the basis vectors
are linearly independent (and non-zero). The outcome (due to the partition)
is six structural equations, three related to the interior domain of the partition
and three related to the exterior domain of the partition. Each bracket factor is
composed of 2-forms.

Consider the three interior structural equations rewritten as

d|o*) + 5] o™ =w |7*) = [2F) (2.21)
d[T¥) + 5] [07) = = |4*) ~ (hy| = [©]] (2.22)
dy*) + ) ) =2 [y*) = |[¥F) (2.23)

On the left hand side of each structural equation, given the interior connection
coefficients, [I'* ], differential processes are used to construct the vector or matrix
arrays of 2-forms. The vector array ‘Ek> is defined as the translation affine tor-
sion 2-forms. These objects have been used to analyze the concept of dislocation
defects in crystals. The matrix array {@ﬂ is defined as the curvature 2-forms.
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These concepts appear in the classical literature of Cartan (and others). What
is new from the construction presented herein, is that these arrays of 2-forms
also can be computed algebraically, with out the need for another differentiation.
Moreover, the third and new interior structural equation yields another vector
array of rotational erpansion-twist torsion 2-forms, \I"“> . This latter array can
represent the concept of disclinations in liquid crystals. Each array of torsion
2-forms depends upon distinct and different 1-forms, w and €. If the 1-form w
vanishes (as it does for all parametrically described surfaces) then there does not
exist any two forms of affine torsion. If the 1-form €2 vanishes then there does
not exist any two forms of expansion-twist torsion.

One physical objective of this article is to associate the 2-forms ‘Ek > with

shears of (affine) translation of parallel planes, and the 2-forms “I’k %With shears
of expansion twists. A second physical objective is to associate the structural
equation

AT + D51 [07] = —|v*) * (] (2.24)

with an extension of the Einstein field equations that would be valid on non-
Riemannian spaces.

(G = d[T%] + [TE]"[T7] = = |4*) * (hy| = [T}]. (2.25)

An important feature of the Einstein Ansatz is that the divergence of the Ricci
tensor for a metric space is zero, hence the divergence of the stress energy tensor
must be zero, which is pleasing on physical grounds. What is remarkable herein,
is that when the Cartan matrix of connection 1-forms is antisymmetric, (the case
of an orthogonal frame field) the exterior derivative of the matrix of curvature
2-forms, {@;?L, vanishes (see below), which implies that both the differential con-
struction of the curvature 2-forms and the algebraic construction of the curvature
2-forms are closed. Locally there exists a set of 1-forms (the potentials) that gen-
erate the curvature 2-forms. The topology of the subspace will be dictated by the
cohomology of the curvature 2-forms. From the deRham theorems, this closed
integrals are quantized (have values whose ratios are rational). This result does
not depend upon an interior metric, but does depend upon the group structure
of the connection.

In the formula above, on the left is the construction based upon inte-
rior geometry of the ”connection” and differential processes, and on the right is



the stress energy tensor computed algebraically from the exterior features of the
embedded system.
The three exterior structural equations are

dw+Q'w=—(hy| " o™ =L (2.26)
d (h;| + Q" (hy| = — (hy| " [I']] = (J| (2.27)
dQ+Q°Q=— (hy| " |y") = S (2.28)

The physical significance of these structural equations has yet to be deter-

mined. However, it is important to recognize that the 2-form S is always exact.

The method developed above indicates that there exist a number of exact

2-form structures. Recall that each exact 2-form is an evolutionary deformable

integral invariant, that can be used to establish a topological conservation law.
These exact 2-forms can be read off from the structural equations:

5] lo™) —w |4*) = —d|o*) (2.29)

T4 [ + ) (bl = —dT] (2:30)
Th) y™) - [y = —d|+*) (2.31)

Qw4+ (hy| " |o™) = —dw (2.32)

Q" (hy| + (hy,| "[T'}"] = —d (hy| (2.33)

Q°Q+ (hy| " |y™) = —dO (2.34)

It is to be observed that the structural equations above represent exterior dif-
ferential systems that define topological properties of the domain. The objects
on the RHS need not be exact, but can have closed components in the sense of
deRham that define cohomological properties of the partitions.
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3. The Bianchi identities and other conserved 3-forms

An application of the exterior derivative to the equations of the set of section 3
leads to constraints on systems of 3-forms as further necessary conditions. Exterior
differentiation of each of the brackets yields the system of 3-form equations:

d[%) + [ |%) = [8] " |o) (3.1)
d[e] +[I" [e] = [8] "I (3.2)
d[®) +[[]" [¥) = [B] " |7) (3.3)

with similar expressions for the exterior curvature components of the structural
equations ( the parts that depend upon Q,not I'). The 3-form equations lead to
exact 3-form structures and topological deformation invariants in terms of the
integrals of

[ [%) - [©]" |o) = —d|%) (3.4)
I"[e] -[e]"[I=-d[e] (3.5)
] |®) = 8] |v) = —d[¥) (3.6)

The equation (4.2) involving d [@®] is the equivalent to the Bianchi identities
in classical tensor analysis.

The process of repetitive exterior differentiation of these expressions can
proceed until the totality of necessary compatibility conditions on a system of
N+1 forms is generated. From then on, the process of exterior differentiation
leads to no new information.

4. Some Examples: Parametric Surfaces:

Parametric surfaces may be viewed as a map from N-1 parameters into a space
(often euclidean) of dimension N. The position vector R(u,v) to the surface has
N components with each component a function of N-1 parameters. The partial
derivatives of the position vector form a set of N-1 linearly independent (tangent)
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vectors e of dimension N. There exists a unique adjoint vector, N, algebraically
constructed with components proportional to the (N-1) by (N-1) determinants of
the ”"tangent” vector components. The N contravariant column vectors form a
basis frame, [F]. No concept of distance (metric) has been established. Each
column vector of the basis frame could be multiplied by an arbitrary function. In
particular, the adjoint vector, N, could be scaled by an arbitrary function of the
parameters, n — N/p(u,v). In such a case the determinant of the basis frame
becomes a complicated algebraic expression in the components of the tangent
vectors. For a Monge surface, the Frame matrix is computed from the position
vector, R(u,v) = [u,v, Z(u,v)], as

1 0 0Z (u,v)/0u/p(u,v)
[F] = 0 1 0Z(u,v)/0v/p(u,v) |, (4.1)
(0Z(u,v)/0u 0Z(u,v)/0v 1/p(u,v)

The determinant of the Frame matrix is
det [F] = {1+ (8Z(u,v)/0u)* + (0Z (u,v) /0v)?}/ p(u, v)

and is never zero for real functions, and p(u,v) > 0. Hence the Cartan matrix
exists globally. The 1-forms that make up the differential of the position vector

1 0 0Z(u,v)/0u/p(u,v)
are given by the expression: 0 1 0Z(u,v)/0v/p(u,v)
(0Z(u,v)/0u 0Z(u,v)/0v 1/p(u,v)
dx o du
B
[F_l}o dy>:> o >: dv>.
dz w 0

Note that the 1-form, w = 0, vanishes identically for any parametrized surface
(Monge or otherwise). Hence, the affine torsion 2-forms,

) =55 =10)

vanish for all parametric surfaces. Dislocation defects do NOT admit a description
in terms of parametric surfaces.

Ruled surfaces are generated by ”straight” lines, and are special cases of
parametric surfaces. Therefore, ruled surfaces can have rotational twisted torsion,
but not translational affine torsion.

_w/\
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Consider the one form w constructed from the components of the adjoint
field: w = {N,dx + N,dy + N.dz}/p = B,(u,v)du + B,(u,v)dv. As the pullback
form only involves two variables, there always exists an integrating factor such
that the components of the adjoint field are proportional to a gradient field. (This
result is not true in higher dimensions.)

If the scaling function for the adjoint field is chosen such that

p(u,v) = [+(N1)2 + (N2)2 + “.]1/2

then the parametrized surfaces the expansion-twist 1-form vanishes, Q(u, v, du, dv) =
0. It follows that

dl*) + [T8) [y = -0

V) =) =o.

The Torsion 2-forms of the second type, ‘\I"? , vanish for parametric representa-
tions which normalize the surface adjoint field with the quadratic norm. If the
surface vector is everywhere quadratically normalizable (without expansion), then
parametric methods cannot describe disclination defects.

For the Holder norm, p(u,v) = [+(N1)*+ (N2)*+..]"4, Q(u, v, du, dv) is not
zero, and the second type of Torsion 2-forms, —" ‘7’“ = “I’k > , can exist.

5. OTHER EXAMPLES TO FOLLOW

5.1. References

Leon Brillouin, ” Tensors in Mechanics and Elasticity”, Academic Press, NY, 1964
p-93

See

http://www.uh.edu/ rkiehn/pdf/parametric.pdf

for examples of the Repere Mobile used for parametric surfaces.

See

http://www.uh.edu/ rkiehn/pdf/implinor.pdf

for examples of the Repere Mobile used for implicit surfaces.
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