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Abstract

In terms of exterior differential forms A, and exterior differential form
densities, J, the fundamental PDE’s of Maxwell are represented in met-
ric free form by the exterior differential system F-dA = 0 and J-dG = 0.
Transformation properties of exterior diffential forms, based upon topolog-
ical differences between differential forms and differential form densities,
support the conclusion of E. J. Post that charge is a psuedo scalar under P
and T transformations.

1. FUNDAMENTAL ASSUMPTIONS:

The use of differential forms should not be viewed as just another formalism of
fancy. The Cartan technique goes well beyond the methods of tensor calcu-
lus (which is restricted to diffeomorphisms) and admits the study of topological
evolution with respect to continuous maps that do not preserve topology. For
example, the PDE’s of Maxwell electrodynamics, unconstrained by metric, connec-
tions, or constitutive maps, can be formulated as the exterior differential system
constructed on two topological constraints.
The first constraint is the postulate of potentials,

F—dA=0, (1.1)

where A is a 1-form of Action, with twice differentiable coefficients (potentials
proportional to momenta) which induce a 2-form, F) of electromagnetic intensities



(E and B, related to forces). The closure of the exterior differential system, dF' =
0, generates the Maxwell-Faraday relations. The second topological constraint is
the postulate of conserved charge currents,

J—dG =0, (1.2)

where G is an N-2 form density of field excitations (D and H, related to sources),
and J is the N-1 form of charge-current densities. The partial differential equa-
tions equivalent to the exterior differential system are precisely the Maxwell-
Ampere equations, and the closure dJ = 0 yields the charge conservation law.
For details and other references, see [1]

It is to be noted that exterior differential forms are of two species: differen-
tial (pair) forms, w, and differential (impair) form densities, ©. The standard
example of an exterior pair form will be taken as the electromagnetic 1-form of
Action per unit charge, A. The standard example of an exterior impair form
will be taken as the N-1 form density of electromagnetic charge current, J. The
symmetry properties of the two species of exterior differential forms with respect
to diffeomorphisms are different. Based on the assumptions given above that
define the electromagnetic system from a topological point of view, the discrete
symmetry properties of the various fields contained in the Maxwell system are to
be examined in that which follows. The major result is that in order to be con-
sistent with the topological viewpoint, the concept of charge must be interpreted
as a pseudo-scalar with respect to P and T transformations in agreement with
Post[2], and in disagreement with the ”standard model” where charge is assumed
to be a scalar [3] [4].

1.0.1. Exterior differential forms (Pair forms)

A differential 1-form, A, on a variety of independent variables, £”, is composed of
coefficient functions A, (") and differentials d¢”

A=A (EM)dE” = Apde” (1.3)
With respect to diffeomorphisms of the independent variables, this exterior dif-

ferential 1-form is an invariant object. Relative to the differentiable, invertible
map,



P =T =N EY (1.4)
dp : dgt = dE" = {0pN(€")/0¢" Yder = T (&) de™. (1.5)

The differentials d¢? are linearly mapped from an initial ”state” to a final ”state”
by means of the Jacobian matrix .J;(£") of the diffeomorphism between the ini-
tial set of independent variables, £, and the final set of independent variables,
EA. This push forward transformation is the epitome of the behavior of a con-
travariant object (index up). The coefficient functions A, (£") (with index down)
are presumed to behave as covariant tensors with respect to the diffeomorphism,
and are pushed forward by means of the linear map defined by the inverse of the
Jacobian matrix. Hence the exterior differential form is an invariant object with
respect to diffeomorphic transformations of the independent variables:

A=A, (&)de" = A, (€)0de" = AL(€") [J7(€N] " [J5(€")] de* = Aa<f“>c(z§”.)
1.6
Note that the inverse mapping is required to formulate the specific format of
the functions A,(€") = A, (") [J7(&)] ~!. However, initial data and functional
coefficient formats given on the initial state can be pushed forward in a well defined
manner to a final state, relative to diffeomorphisms. It is also true that given
data and functional form on the final state, the functional forms and data are well
defined on the initial state. This operation defines the pullback, in distinction to

the classic push forward:

A= A (E)de" = A, (p(€")) [T (€")] det = A, (E")dE". (1.7)
It is apparent that the preimage (pullback) is functionally well defined as A,,(£§") =
A (e(€)) [J2(£7)] , and does not invoke the inverse mapping nor the inverse Ja-
cobian. Note that this formula agrees exactly with the covariant tensor definition
if the inverse Jacobian exists. However, this pullback property is valid even when
the map is not a diffeomorphism. In this sense, exterior differential forms go
beyond the concept of tensors. Exterior differential forms are well behaved in a
retrodictive sense, with respect to differentiable maps without a local, much less
a global, inverse; tensors are not. Differential p-forms can be constructed from
products of 1-forms, so that the concepts of pullback apply to all p-forms.
The bottom line is that exterior differential forms are well defined behavior
with respect to maps which are not diffeomorphisms, but only in a retrodictive
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(not predictive) pullback (not pushforward) sense. The data and functional
formats must be given it terms of the functions and independent variables on the
final state if the mappings of the independent variables are not diffeomorphisms.
Such differentiable mappings admit topological evolution, where diffeomorphisms
do not. Hence differential forms may be used to describe topological evolution.

1.0.2. Exterior Differential Form densities. (Impair forms)

In projective geometry, where the concept of length, such as that defined in terms
of a metric quadratic form, is not required, the concept of a vector is still useful
idea. However it is the directional properties of the vector ( its ”line of action”)
that are of importance. The idea is that vectors are defined to be equivalent if
they are the same to within a multiplying factor. sometimes such vectors are
called pseudo-vectors. In the diffeomorphic subset, exterior differential forms can
be constructed from pseudo-vectors, where the multiplying factor is determinant
of diffeomorphism. The restriction to the determinant factor is why such impair
forms are called ”densities”. However, for non-diffeomorphic maps, the impair
forms have pullback properties different from the pullback properties of the pair
exterior forms.

To demonstrate these concepts consider the N-1 form impair form, or current
density, J. This form is in a sense a projective dual of a pair 1-form, A. It
can be constructed by using the top down process in terms of coefficient functions
defined in terms of a contravariant tensor density (this is not the same as a pair
N-1 form whose coefficients are covariant tensors. A convenient notation is given
by the formula:

Current _density _impair N —1_ form:J = J”(E)d?AdE%...dE”...dEN. (1.8)

The order sequence of differentials forms a local differential volume element. The
hatted symbol d€” means that factor is left out of the N-form,

Vol = dg' "de™".....dE", (1.9)

and is replaced by the contravariant (to within a factor) coefficients, J7(¢), all
defined on the final state. Direct substitution (of the differentiable mappings
expressing the differentials on the final state as linear combinations of the differ-
entials on the initial state) into the impair N-1 form leads to the impair N-1 form
on the initial state.



J = Jo(€")de  de . dev g (1.10)
= J7(QH(E) [JS(EN] T dE e dE7 . deN = Jo(E)dE g .. dE” (1dET)

It is apparent that the pullback preimage components of the current density on
the initial state are related to the final state components multiplied by the Adjoint
of the Jacobian matrix. Recall that for a pair 1-form the pullback depended on
the Transpose of the Jacobian matrix.  For the impair forms the pullback is
dependent upon the Adjoint of the Jacobian matrix.

For diffeomorphisms the coefficients of a contravariant vector push forward
with respect to the linear transformations induced by the Jacobian matrix of
the transformation. The components of a contravariant density pushforward
by means of the Jacobian divided by the determinant of the mapping. The
contravariant vector components pull back via the linear transformations of the
Jacobian inverse. The contravariant vector density pulls back with respect to the
linear mapping defined by the Jacobian matrix inverse divided by the determi-
nant of the transformation. However, this matrix is precisely the adjoint of the
Jacobian matrix (the matrix of cofactors transposed.

Hence it is apparent from the pull back formula above that the coefficient func-
tions of the charge - current density impair form pull back as a contravariant tensor
density. For diffeomorphisms, the mappings are sensitive to the determinant of
the transformation.

1.1. Differential forms are invariant with respect to either P or T trans-
formations in {x,y,z,t} in 4D.

A parity transformation in 4D will be defined as the map

P {I7yazat} = {—ZE, Y, =% +t} (112)
—1
P Jacobian = -1 1 (1.13)
+1

Determinant (P Jacobian) = —1 (1.14)

A time inversion transformation in 4D will be defined as the map
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T o {.T,y,Z,t} = {+$, +Y, +2, _t} (115)

1
T Jacobian = L 1 (1.16)
—1
Determinant (T"_Jacobian) = -1 (1.17)
Let w be a pair differential form: then
P(w) = 4w (1.18)
T(w) =+w (1.19)

1.2. Differential form densities change sign with respect to P or T trans-
formations in {x,y,z,t}.

Let © be an impair form, or differential form density: then
P(©)=-0 (1.20)
T(©)=-6 (1.21)

2. Electromagnetism

2.1. EM Differential forms

Define the differential forms on {z,y, z,t}

A=33_ Au(z,y, 2, t)dz” — d(z,y, 2, t)dt = Aodr—a¢dt. (2.1)

F =dA = {0A/02? —0A,; /02" }da? " da* = Fjpda’ " da® = B.dzx"dy...+ E,dz"dt...
(2.2)



Topological Torsion (A" F) = i(Ty)dz dy dz"dt
T dy dz"dt..... — hdx"dy " dz

Torsion — vector : Ty = [E x A+ B¢, A oB] =[T,h].

2.1.1. EM Differential form densities

G = G*z,y, z,t)dz"dy... + G*(z,y, z, t)dz"dt... = D*dz"dy.. H*dz dt...

J=J(z,y,z,t)dx"dy"dt... — p(x,y, z,t)dx"dy"dz.
Charge — Current density : J4 = [J, p],

Topological Spin  (A"G) = i(Sy)dz"dy dz"dt
= S%y dz"dt..... — odx"dy " dz

Spin — Current density : Sy = [A x H+ D¢, A o D] = [S,0],

3. PT transformations in 4D

P : xz=—x y=—-y, 2= —z,
A = dx’dy dz"dt = —1

T : t= —t,
A = dx’dy dz"dt = —1



3.1. 1. Discrete Symmetry behavior of the 2-form F

E B
pP: -E +B (3.5)
T: —E +B

This table is in agreement with Post, and NOT with the ”standard” model of
Sakurai and Henley {P(F) = —E, P(B) = +B, T(E)= +E,T(B)= —B}

3.2. 2. Discrete Symmetry behavior of the 1-form A

A ¢
P: —A +¢ (3.6)
T: +A —¢

This table is in agreement with Post, and NOT with the ”standard” model of
Sakurai and Henley which claims that {P(A) = —A, P(¢) = +¢, T(A) = —A,
T(¢) = +0}

3.3. 3 Discrete Symmetry behavior of the N-2=2 form (density) G

D H
P: -D +H (3.7)
T: -D +H

This table is in agreement with Post, and NOT with the "standard” model of
Sakurai and Henley which claims that {P(D) = —D, P(H) = +H, T(D)=
+D,T(H)= —H}

3.4. 4. Discrete Symmetry behavior of the 3-form of Charge-Current

(density) J

J
P: =J +4p (3.8)
T: +J —p

This table is in agreement with Post, and NOT with the "standard” model of
Sakurai and Henley {P(J) = —J, P(p) = +p, T(J)= —J, T(p) = +p}



3.5. 5. Discrete Symmetry behavior for Charge defined as Q = [ [ [ pdz"dy"dz

Q
P: —-Q (3.9)
T: —Q

This table is in agreement with Post, and NOT with the ”standard” model of
Sakurai and Henley. To be consistent, Sakurai and Henley would have to say
{P(Q) = —Q, T(Q)= +Q.}. BUT in their text [3] and [4], they claim that
Q is a scalar under both P and T, which is INCONSISTENT with their other
claims.

3.6. 6. Discrete Symmetry behavior of A"F' (not a density)

(ExA+B¢p) AoB
P: +(ExA+B¢p) —AoB (3.10)
T: —(ExA+B¢) +AoB

The table is NOT the consistent with the charge current density table of this
subsection. But that is what would be expected as A"F is formed from the
product of a 1-form and a 2-form, creating a 3-form and not a 3-form density..

3.7. 7. Discrete Symmetry behavior of A°G (a density)

(AxH+D¢) AoD
P: —(AxH+D¢) +AoD (3.11)
T: +(AxH+D¢) —AoD

This table has the same properties as the charge current table in this section,
which is pleasing as it is a product of a differential form and a differential form
density. A"G can be distinguished from A" F under P and T.

3.8. 8. The Hall Impedance is impair.

If the Hall impedance Zj,; is defined in terms of the ratio of the 1-form A to the
2-form density G, then the physical dimension of the Hall impedance is h/e? and
it is impair. Alternately, if the Hall Impedance is defined in terms of the ratio



of the 3-form A" F to the 3-form density, A"G, [5] then the physical dimension of
the Hall impedance is h/e? and it is impair.

Zan
P: — ZHall (3 12)
T: —Zyu

3.9. 9. The Free space Impedance is pair.

If the Free Space impedance is defined as the ratio of \/g , and as both € and p
are impair, it follows that Z,cespace = \/g and is pair.

Zfreespace

P +Zfreespace (313)
T: +Zfreespace

3.10. 10. The fine structure constant is impair.

To within a factor of 2 the ratio of the Hall impedance to the Free Space impedance
is equal to the fine structure constant. Hence it follows that the fine structure is
impair.

a
P: -« (3.14)
T: —«

So starting from the classical electron radius, which is pair, the electron Comp-
ton wavelength is impair, and the electron Bohr orbit is pair.

4. Conclusion: Post is correct.

Post’s concept of charge as a pseudo scalar [2] requires that differential form den-
sities behave differently than do differential forms under P or T transformations
in 4D. These ideas are in agreement with the fact that tensor densities involve the
determinant of the transformation (not the magnitude of the determinant). The
results given above are NOT in agreement with the standard Sakurai - Henley
model [3], but have a credence level built on topological ideas and diffeomorphic
invariance, and not upon geometrical constraints of metric and connection.
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