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 Pullbacks of maps to Euclidean spaces.
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The transformation properties of Maxwell's Electrodynamics in terms of D E B and H are carried out
in detail for euclidean translations and euclidean rotations. Contrary to current dogma, in all cases

proper transformations of the field components yield invariant formalisms for the PDE's that
generate the Maxwell-Faraday and the Maxwell-Ampere equations. The relative motions do not
change the PDE's but do modify the constitutive relations between E,B and D,H. Motions can induce
currents that produce D and H field components, which are NOT associated with E and B field
components.

When the components of the fields with respect to the independent variables are written with respect
to the PullBack transformation schemes (E B are components of a pair form. D and H are
components of a impair form) then the PDE's of Maxwell are invariant in format.
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TRANSLATIONS at Constant Velocity.

A: The initial state motion is assumed to be parallel to the direction of the current on the final state.
B: The initial state motion is assumed to be orthogonal to the direction of the current on the final
state.

> restart;with(linalg):with(liesym):with(difforns):defforn(L=0,f=0,u=0,x=0,y=0
, 2=0, t =0, | anbda=0, C=const , B=const , Phi =0, FF=0, phi =0, f 1=0, f 2=0, f 3=0, JX=0, JY=0, J
Z=0, Vx=const, W=const , Vz=const, AX=0, AY=0, AZ=0, A4=0, ax=const , DX=0, DY=0, DZ=0, HX
=0, HY=0, Hz=0, j 1=0, j 2=0, j 3=0, j 4=0, r ho=0, k=const , onega=const, JT=0, a=const , b=con
st, mu=const, epsi | on=const, e=const, n=const , Orega=const, c=const, X=0, Y=0, Z=0, T=0
, =0, al pha=0, bet a=0, t het a=0, ZR=const ) :




Warni ng, the protected nanes normand trace have been redefined and unprotected
Warni ng, the protected nane cl ose has been redefined and unprotected

Warni ng, the nanes &', d and wdegree have been redefined

The following is the procedure for computing EM fields and currents given the
potentials on the variety [X,y,z,t], with the constitutive assumption D = epsilon E, B
=mu H. The procedure also evalutes the forms A, F, G, J on the final state.
USEFUL OUTPUT FUNCTIONS ARE

AF=vector potential

SP = scalar potential

EF = E field intensity

BF = B field intensity

DF = D field excitation

HF = H field excitation

JD = current density

CD = charge density

SPC = spin current

SPD = spin density

TFC = Torsion flux

HEL = Helicity

TF = Torsion field 4 components

SP = Spin field density 4 components

P1 = First Poincare invariant density

P2 = Second Poincare invariant

Alform = pair 1-form of potentials

F2form = pair 2-form of E, B field intensities

G2form = impair 2-form of D, H excitation densities

J3form = impair 3 form of charge current densities

> JCM =proc( Ax, Ay, Az, phi)\
| ocal
A Al, A2, A3, A4, BFC, EF1, EF2, EF3, JAC, JDC, EXBC, JTOT, Jcur |, Jt, Jh, Jd, Jdt, TFCa, SFCa:
gl obal
Alf or m AF, SP, BF, EF, TF, HEL, P1, P2, DF, HF, CD, JA, JD, SPD, SF, SFD, ExB, GQf or m F2f or m J3f
orm JTT, TFC, SFC:
Al: =AX: A2: =Ay: A3: =Az; Ad: =phi :
A =[ Al, A2, A3] : AF: =factor(sinplify(A)):SP:=sinplify(phi):
Alf or m =AL1*d( x) +A2*d(y) +A3*d(z) - Ad*d(t):
EF1: =eval n(-grad(phi,[x,y,z])):
EF2: =-[di ff (AL t),diff(A2,t),diff(A3,t)];
EF3: =[factor (EF1[ 1] +EF2[ 1] ), fact or (EF1[ 2] +EF2[ 2] ), factor (EF1[ 3] +EF2[ 3])];
EF: =[ EF3[ 1], EF3[ 2] , EF3[ 3] ] ;
BFC:. =(curl ([ AL, A2, A3],[X,VY,2z])):
BF: =[factor(BFC 1] ), factor(BFC[ 2]),factor(BFC 3])];
HEL: =f act or (i nner pr od( AF, BF) ) ; TFCa: =eval n( cr osspr od( EF, AF) +BF*phi ) ;
TF:. =[factor (TFCa[ 1] ), factor (TFCa[ 2] ), factor (TFCa[ 3] ), HEL];

P2: =-2*factor (i nnerprod(EF, BF)); TFC. =[factor (TFCa[ 1] ), factor (TFCa[ 2] ), factor ( TF
Ca[3])];



HF: =[ fact or (BFC 1]/ mu), factor (BFC[ 2]/ nu) , fact or (BFC[ 3]/ nu) ] ;
DF: =[factor(epsilon*EF3[ 1] ), factor(epsilon*EF3[2]),factor(epsilon*EF3[3])];
CD: =factor(di verge([DF[ 1] ,DF[ 2], DF[3]],[X,VY,2]));
Jeurl:=curl ([HF[1],HF[ 2], HF[3]],[X,Y, 2]);

Jh: =[factor(Jcurl[1]),factor(Jcurl[2]),factor(Jcurl[3])];
Jdt:=-[diff(DF[1],t),diff(DF[2],t),diff(DF[3],t)];
Jd: =s[factor(Jdt[1]),factor(Jdt[2]),factor(Jdt[3])];JTOT: =Jh+Jd: JD:. =[fact or (JTOT
[1]),factor(JTOT[2]),factor (JTOT[3])];
JTT: =[factor(JD[1]),factor(J)2]),factor(JD[3]), CDl;
F2f or m =eval n(i nner prod(BF, [d(y) &d(z), -d(x)&d(z),d(x)&d(y)])+i nnerprod(EF,[d
(x) &\d(t), d(y)&\d(t),d(z)&d(t)]));
SPD: =f act or (i nner prod(A, DF)); Gf orm =( HF[ 1] *d( x) &\d(t) +HF[ 2] *d(y) &\d(t) +HF[ 3] *d
(z)&d(t)-DF[ 1] *d(y) &\ d(z) +DF[ 2] *d(x) &\ d(z) - DF[ 3] *d(x) &\d(y)); J3f orm =i nner pr od
(JTT, [d(y) & d(z) & \d(t),-d(x)&d(z)& d(t),d(x)&d(y)& d(t),-d(x)&\d(y)&d(z)]);

SFCa: =eval nm( cr osspr od( AF, HF) +DF* phi ) ; SFC. =[ f act or (SFCa[ 1] ), fact or (SFCa[ 2] ), f act
or (SFCa[ 3])1];
SFD: =[factor (SFC[ 1]),factor (SFC 2]), factor (SFC[ 3]), SPD] ;
P1: =i nner pr od( BF, HF) - i nner pr od( DF, EF) - i nner pr od( AF, JD) +CD* phi ;
ExBC. =cr osspr od( EF, BF) ; ExB: =[ fact or (ExB([ 1]), fact or (ExB([ 2] ), fact or (ExB([ 3])];
| end proc:
> MAP: =proc(X,Y,Z,T,X,y,z,t) global JAC ADJAC, DET, TRIAC, Map:
Map: =[ X, Yy, z,t]:JAC. =si npl i fy(jacobian(Map,[ X, Y, Z, T])): DET: =factor (sinplify(de
t (JAC))): TRIAC. =si nplify(transpose(JAC)): ADJIAC. =si npli fy(adjoint(JAC)): end
proc:
>
>

TRANSLATION PARALLEL TO CURRENT

LI O IO

Consider a final state of independent variables, [X,y,z,1],

and a map from an initial state of cartesian variables [X,Y,Z,T].

Assert the existence of an additional constraint that represents a kinematic translation at constant
velocity along the z axiz. Hence d(Z2)/d(T) = Vz = constant.

The electromagnetic Action 1-form A will be given in terms of abstract functions Ax,Ay,Az,Phi, on the
final state, with arguments in terms of [X,y,z,t].

The pair 2-form F = dA and its coefficients on the final state will be evaluated to yield E and B, the
field intensities.

The final state will be presumed to be a euclidean space with classic constitutive properties in the
sense that D = epsilon E and B = mu H.

Hence, on the final state, given the potentials, the field intensities can be computed, the field
excitations D, H, can be evaluated to give the impair 2-form G.

From this hypothesis (or constraint) the impair 3-form of 4 current density will be computed from the
impair 2-form G, such that J=dG.

The results on the final state then will be pulled back by the combined actions of functional
substitution for the independent variables and their differentials, into the differential forms for A, F,
G and J on the initial state.

For 1-forms and N-1 form densities, the pullbacks are particularly simple:

The 1-forms pull back by means of the transpose of the Jacobian matrix of the mapping.

The N-1 form densities pull back via the adjoint of the Jacobian matrix of the mapping.

The matrix elements of the Jacobian matrix need not be global constants.

>




> b: =0:c: =0:
> rr:=(xM2+yn2) M1/ 2) : AAAL =[ zA2*y* b, - zM2* x* b, 1- k" 2*rr”2, c*z*y*x+omega* (1- kKN2*rr
~N2) K] :

[ > JOMAAA[ 1], AAA[ 2], AAA[ 3], AAA[ 4] ) :
| The exterior differential forms as specified on the final state.
> Alform =wcol | ect (factor(sinmplify(Alform)); F2form =
weol l ect (factor(sinplify(F2form)); &form
weol I ect (factor(sinplify(&form));J3form
weol | ect (factor(sinplify(J3form));

w(-1+Kx+Ky)d(t)
k
F2form:=-2Ky (d(y) & d(z)) - 2k x (d(x) & d(z)) + 2wk x (d(x) & d(t)) + 2wk y (d(y) & d(t))
G2form :=
5 K’y (d(x) & d(t)) N 2K x (d(y) & d(t))
m m
K &"(d(x), d(y), d(t))

J3form:=4 - - 4kew&"(d(x), d(y), d(z))

| The fields in engineering format on the final state
> R =[x,y,z,t];Vector_potential : =AF; Scal ar _potential : =factor (SP); E_fi el d: =EF; B_
fi el d: =BF; Poi ncare2: =factor (P2); D_fiel d: =DF; H_fi el d: =HF; rho_char ge_density: =C
D;J current _density: =(sinmplify(JD));; Poincarel:=factor(P1l); Poynti ngVect or =ExB
; Torsion_flux:=factor(eval M TFC)); Hel i city: =HEL; Spi n_current:=factor((SFC)); S
pi n_density: =factor (SPD); Lagrangi an_fi el d_energy_density: =factor(sinplify(inn
er prod( HF, BF) -i nnerprod(DF, EF))); I nteracti on_energy_density: =factor (AF[ 1] *JM
1] +AF[ 2] *JD( 2] +AF[ 3] *JD[ 3] - CD*SP) ;
R:=[xY,zt]

Vector_potential := [0, 0, 1- kK X*- K*y*]

w(-1+Kx+Ky)
k

E field:=[2wkXx, 2wky, 0]
B field:=[-2K'y, 2K’ X, 0]

Alform:=(1- K x*- Ky d(z) +

2ewkx(d(y) &"d(z)) +2ewky (d(x) &*d(z))

Scalar_potential ;= -

Poincare2 := 0
D_field:=[2ewkXx, 2ewky, 0]
_ ¢ Ky Kx U
H_field:=8-2—,2——, 0Y
€ m m U

rho_charge density :=4ewk

é u
J_current_density := €0, 0, 4—H
€ mu

A (212 + 21y - 1) (K- wem)

m

Poincarel :=

PoyntingVector =[0, 0, 4 K2 w (3¢ + y*)]
Torsion_flux:=[0, 0, 0]
Helicity := 0
€ (-1+IExX+IY) x (K- wem) ) -1+ +IEV) y (K- wem)

Spin_current ;= gz

u
L OH
m m a

Soin_density := 0




12 (x* +¥?) (I - W’ em)
m
-1+ KX+ IV (K- wem)

m

Lagrangian_field energy density :=4

Interaction_energy_density := - 4

> R final _variables: =R;
R final_variables:=[X,Y, z t]

Variables on Initial State:
> X=XY:.=.Z.=Z.T. =T:
>

[ R

Define the mapping functions here
TRANSLATION PARALLEL TO CURRENT
> x:=Xy:=Y:z:=Z-Vz*T: t: =T:
>
> Rinitial _variables:=[X Y, Z T];
R initial_variables:=[X, Y, Z, T]
> MAP(X, Y, Z, T,x,y, z,t): Mappi ng_functi ons: =Map;
Mapping_functions:=[X, Y, Z- VzT, T]
> Jacobi an: =eval m( JAC) : DET: =DET: Adj oi nt : =eval m{ ADJAC) :
The map represents a translation along the Z axis.
Evaluate the exterior forms on the initial state by functional

 substitution and pullback:
> Alf orm =wcol | ect (factor(sinmplify(Alform)); F2form =
weol l ect (factor(sinplify(F2form)); &form
weol I ect (factor(sinplify(&form));J3form
weol | ect (factor(sinplify(J3form));
(-1+KXP+KY) (-kVz- w) d(T)

Alform:= - " +(1- KX- KY)d(2)

F2form:=-2k (-kYVz- wY) (d(Y) & d(T)) - 2K Y (d(Y) & d(Z)) - 2K X (d(X) &* d(Z))
- 2K (-kXVz- wX) (d(X) &> d(T))
k (ew X mVz+kX) (d(Y) & d(T))
G2form:=2 m - 2kewX (d(Y) & d(Z)) + 2kew Y (d(X) & d(Z))
L 2K(kY- ewYmVz) (d(X) & d(T))
m

[ R

| N

4k (k+Vzmwe) &(d(X), d(Y), d(T))

L m
[ > Spi n3f orm =( ALf or & G2f or n) ; Tor si on3f or m =( ALf or m&*F2f or n) ;

-1+ KX+ IEY?) X (K- wem) & (d(T), d(Y), d(2))
m

J3form:=-4ewk &*(d(X), d(Y), d(Z)) +

Soin3form := 2

2 -1+ X+ Y)Y (K- wem) &(d(T), d(X), d(Z))
m

Torsion3form:=0

> SP,
w(-1+KX+KY?)
k

| Pullback field Components on the initial state:
[ > AF_PB: =i nner prod( TRJIAC, [ AF[ 1], AF[ 2] , AF[ 3],-SP]); VPotenti al _PB: =simplify([ AF_P
B[ 1] , AF_PB[ 2], AF_PB[ 3]]); Scal ar Pot _PB: =si npl i fy(-AF_PB[4]); EF_PB: =factor (si np




lify((eval n(-grad(ScalarPot_PB,[X Y, Z])-diff(VPotential _PB,T))))); BF_PB: =fact
or(sinmplify(curl (VPotential _PB,[X Y,Z])));Dl: =-get coef f (&f or m&d(X) &d(T)):D
2: =get coef f (@R2f or m&Ad(Y) &'d(T)): D3: =- get coef f (&2f or m&d(Z2) &'d(T)) : HL: =get coef
f(&@f or m& A d(Y) &\d(2)): H2: =get coef f ( Rf or m&d( X) &'d( 2) ) : H3: =- get coef f ( &2f or m&*
d(X)&d(Y)):DF_PB: =[factor(sinplify(D1)),factor(sinplify(D2)),factor(sinplify
(D3))];HF_PB:=[factor(sinmplify(Hl)),factor(sinplify(H2)),factor(sinplify(H3))
]; JTPB: =i nner prod( ADJAC, JTT) : JD_PB: =[ JTPB[ 1], JTPB[ 2], JTPB[ 3] ]; JC_PB: =JTPB[ 4] ;
Poi ncar e2_PB: =Poi ncar e2; Poi ncarel_PB: =f act or (si npl i f y( DET*Poi ncar el)); DET: =DE
T; factor (sinplify(innerprod(BF, HF) -i nner prod( EF, DF))): M F: =eval m(curl (EF_PB, [
X, Y, Z])+[diff(BF_PB[1],T),diff(BF_PB[2],T),diff(BF_PB[3],T)]); M A =eval n{curl
(HF_PB, [ X Y,Z])-[diff(DF_PB[1],T),diff(DF_PB[2],T),diff(DF_PB[3],T)]); M FdivB
:=diverge(BF_PB, [ X, Y, Z]); M Adi vD: =di verge(DF_PB, [ X, Y, Z] ) ;
, FL+IEX+KEY?) (kVz+w) U
v " i
VPotential PB:=[0,0,1- k*X*- K Y*]
(-1+KX2+KY?) (kVz+w)
k
EF PB:=[2kX (kVz+w), 2kY (kVz+w), 0]
BF PB:=[-2K’Y, 2K X, 0]
DF_PB:=[2kewX,2kewY, 0]

€ kY(k+Vzmwe) kX (k+Vzmwe)
HF_PB = §-2 2

é
AF_PB:= go, 0,1-KX-¥K

ScalarPot_PB :=-

u
,0H
m m u
é k(k+Vzmwe) U
JO_PB:=80,0,4—————
<} u
JC PB:=4ewk
Poincare2 PB:=0

A (2KX2+2K Y- 1) (K- wem)

Poincarel_PB :=

m
DET:=1
M_F:=[0,0,0]

é k(k+Vzmwe) U
M_A:=§0 0 4————=
€ a
M_FdivB :=0

M_AdivD :=4ewk
Note that the constitutive relations between D and E and B and H on the initial state are not the
same as for the final state.
The D fields are equal to epsilon E times the DET of the transformation, there by converting a tensor
into a tensor density.
Simlarly the H fields are B divided by mu times the DET of the transformation -- almost.
There appears another term in the H fields on the final state due to the translation Vz. Indeed,
motion along the z axis adds to the existing Current density in the fixed frame a component that is
proportional to the moving charge density. This motion induces a component to the H field that
encircles the z axis, but DOES NOT affect the associated B fields.

THE PULLED BACK FIELD COMPONENTS E,B satisfy the MAXWELL - FARADAY PDE's in terms
of the independent variables [X,Y,Z,T] with the constraint that d(Z)/d(T) = Vz.

THE PULLED BACK FIELD COMPONENTS D,H also satisfy the MAXWELL - AMPERE PDE's in in
terms of the independent variables [X,Y,Z,T] with the constraint that d(2)/d(T) = Vz.
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[ TRANSLATION ORTHOGONAL TO CURRENT
> restart;with(linalg):with(liesym):wth(difforns):defforn(L=0,f=0,u=0,x=0,y=0
, 2=0, t =0, | anbda=0, C=const , B=const , Phi =0, FF=0, phi =0, f 1=0, f 2=0, f 3=0, JX=0, JY=0, J
Z=0, Vx=const, W=const , Vz=const, AX=0, AY=0, AZ=0, A4=0, ax=const , DX=0, DY=0, DZ=0, HX
=0, HY=0, HZ=0, j 1=0, j 2=0, j 3=0, j 4=0, r ho=0, k=const , onega=const, JT=0, a=const, b=con
st, mu=const, epsi | on=const, e=const, n=const , Orega=const, c=const, X=0, Y=0, Z=0, T=0
, r =0, al pha=0, bet a=0, t het a=0, ZR=const):
Warning, the protected nanes normand trace have been redefined and unprotected

Warning, the protected nane close has been redefined and unprotected

Warni ng, the nanes &', d and wdegree have been redefined

[ >

Consider a final state of independent variables, [X,y,z,1],

and a map from an initial state of cartesian variables [X,Y,Z,T].

Assert the existence of an additional constraint that represents a kinematic translation at constant
velocity along the z axiz. Hence d(X)/d(T) = Vx = constant.

The electromagnetic Action 1-form A will be given in terms of abstract functions Ax,Ay,Az,Phi, on the
final state, with arguments in terms of [X,y,z,t].

The pair 2-form F = dA and its coefficients on the final state will be evaluated to yield E and B, the
field intensities.

The final state will be presumed to be a euclidean space with classic constitutive properties in the
sense that D = epsilon E and B = mu H.

Hence, on the final state, given the potentials, the field intensities can be computed, the field
excitations D, H, can be evaluated to give the impair 2-form G.

From this hypothesis (or constraint) the impair 3-form of 4 current density will be computed from the
impair 2-form G, such that J=dG.

The results on the final state then will be pulled back by the combined actions of functional
substitution for the independent variables and their differentials, into the differential forms for A, F,
G and J on the initial state.

For 1-forms and N-1 form densities, the pullbacks are particularly simple:

The 1-forms pull back by means of the transpose of the Jacobian matrix of the mapping.

The N-1 form densities pull back via the adjoint of the Jacobian matrix of the mapping.

The matrix elements of the Jacobian matrix need not be global constants.

L
> JCM =proc(Ax, Ay, Az, phi )\
| ocal
A Al, A2, A3, A4, BFC, EF1, EF2, EF3, JAC, JDC, EXBC, JTOT, Jcurl , Jt, Jh, Jd, Jdt, TFCa, SFCa:
gl obal

Alf orm AF, SP, BF, EF, TF, HEL, P1, P2, DF, HF, CD, JA, JD, SPD, SF, SFD, ExB, Gf or m F2f or m J3f
orm JTT, TFC, SFC.
Al: =Ax: A2: =Ay: A3: =Az; A4: =phi :
A =[Al, A2, A3] : AF: =factor (sinmplify(A)): SP:=sinmplify(phi):
Alf orm =Al*d( x) +A2*d(y) +A3*d(z) - Ad*d(t):
EF1: =eval n(-grad(phi,[x,y,z])):
EF2: =-[di ff (AL t),diff(A2,t),diff(A3,t)];
EF3: =[factor (EF1[ 1] +EF2[ 1] ), fact or (EF1[ 2] +EF2[ 2] ), factor (EF1[ 3] +EF2[ 3])];
EF: =[ EF3[ 1], EF3[ 2], EF3[ 3]];
BFC:. =(curl ([ AL, A2, A3],[X,VY,2z])):




| N

V V. V V V

BF: =[ factor (BF( 1] ), factor(BFC[ 2] ), factor (BFC 3])];
HEL: =f act or (i nner pr od( AF, BF) ) ; TFCa: =eval n{ cr osspr od( EF, AF) +BF* phi ) ;
TF: =[factor(TFCa[1] ), factor(TFCa[2]), factor(TFCa[ 3] ), HEL] ;

pP2: =-2*factor (i nnerprod( EF, BF)); TFC. =[factor (TFCa[ 1] ), factor (TFCa[ 2]), factor (TF
Ca[3])];

HF: =[ fact or (BFC] 1]/ mu), fact or (BFC[ 2]/ mu) , fact or (BFC[ 3]/ mu) ] ;
DF: =[ fact or (epsil on*EF3[ 1] ), factor(epsil on*EF3[ 2] ), factor(epsilon*EF3[3])];
CD: =factor (diverge([DF[ 1], DF[ 2], DF[ 3]].,[Xx,V¥,2]));
Jeurl:=curl ([HF[1],HF[ 2], HF[3]],[X,Y, 2]);

Jh: =[factor(Jcurl[1]),factor(Jcurl[2]),factor(Jcurl[3])];
Jdt: =-[diff(DF[1],t),diff(DF[2],t),diff(DF[3],t)];
Jd: =s[factor(Jdt[1]),factor(Jdt[2]),factor(Jdt[3])];JTOT: =Jh+Jd: JD:. =[fact or (JTOT
[1]),factor(JTOT[2]),factor (JTOT[3])];
JTT: =[factor(JD[1]),factor(J)2]),factor(JD3]),CD];
F2f or m =eval n{i nner prod(BF, [ d(y) &d(z), -d(x)&d(z), d(x)&"d(y)]) +i nnerprod(EF, [d
(x) &\d(t), d(y)&\d(t),d(z)&d(t)]));
SPD: =f act or (i nner prod(A, DF)); Gf orm =( HF[ 1] *d( x) &\d(t) +HF[ 2] *d(y) &\d(t) +HF[ 3] *d
(z)&d(t)-DF[ 1] *d(y) & d(z) +DF[ 2] *d(x) &\ d(z) - DF[ 3] *d(x) &\d(y)); J3f orm =i nner pr od
(JTT, [d(y) & d(z) & \d(t),-d(x)&d(z)&d(t),d(x)&d(y)& d(t),-d(x)&\d(y)&d(z)]);

SFCa: =eval nm( cr osspr od( AF, HF) +DF* phi ) ; SFC. =[ f act or (SFCa[ 1] ), fact or (SFCa[ 2] ), f act
or(SFCa[ 3])1];

SFD: =[factor(SFC 1] ), factor (SFC 2]), factor (SFC[ 3]), SPD] ;

P1: =i nner pr od( BF, HF) - i nner pr od( DF, EF) - i nner pr od( AF, JD) +CD* phi ;
ExBC: =cr ossprod( EF, BF) ; ExB: =[ fact or (ExB([ 1] ), factor (ExB([ 2] ), factor (ExB([ 3])1];
| end proc:
> MAP: =proc(X,Y,Z,T,X,y,z,t) global JAC ADJAC, DET, TRIAC, Map:
Map: =[ X, Y, z,t]: JAC. =si npl i fy(jacobi an(Map, [ X, Y, Z, T])): DET: =fact or (si npl i fy(de
t (JAC))): TRIAC. =si nplify(transpose(JAC)): ADJAC. =si npli fy(adjoint(JAC)): end
proc:

b: =0: c: =0:

rr:=(x"2+y"2) "1/ 2): AAA: =[ z"2*y* Db, - z"2*x* b, 1- k"2*rr "2, c*z*y*x+onega* (1- k" 2*rr

N2) 1K) :

[ > JCMAAA[ 1], AAA[ 2], AAA 3], AAA[ 4] ) :

| The exterior differential forms as specified on the final state.

> Alform =wcol | ect (factor(sinmplify(Alforn))); F2form =

weol I ect (factor(sinplify(F2form)); &form =

weol I ect(factor(sinplify(&form));J3form =

weol | ect (factor(sinplify(J3form));

w(-1+Kx+Ky)d(t)
k

F2form:=-2Ky (d(y) & d(z)) - 2k x (d(x) & d(z)) + 2wk x (d(x) & d(t)) + 2wk y (d(y) & d(t))

G2form:=

5 K’y (d(x) &~ d(t)) N 2K x (d(y) & d(t))
m m

Alform:=(1- K x*- Ky d(z) +

2ewkx(d(y) &"d(z)) +2ewky (d(x) &*d(z))



4K &M(d(x), d(y), d(t))
L m
| The fields in engineering format on the final state
> R =[x,y,z,t];Vector_potential : =AF; Scal ar _potential : =factor (SP); E_fi el d: =EF; B_
fi el d: =BF; Poi ncare2: =factor (P2); D_fiel d: =DF; H_fi el d: =HF; r ho_char ge_density: =C
D;J current _density: =(sinmplify(JD));; Poincarel:=factor(P1l); Poynti ngVect or =ExB
; Torsion_flux:=factor(eval M TFC)); Hel i city: =HEL; Spi n_current:=factor((SFC)); S
pi n_density: =factor (SPD); Lagrangi an_fi el d_energy_density: =factor(sinplify(inn
er prod( HF, BF) -i nnerprod(DF, EF)));Interaction_energy density:=factor( AF[ 1] *JO0
1] +AF[ 2] *JD( 2] +AF[ 3] *JD[ 3] - CD*SP) ;
R:=[xY,zt]

Vector_potential := [0, 0, 1- kKX - k*y*]

w(-1+ KX +KYy)
k

E field:=[2wkXx, 2wk, 0]
B field:=[-2K'y, 2K X, 0]

J3form:=-4ewk &\(d(x), d(y), d(z)) +

Scalar_potential := -

Poincare2 := 0
D_field:=[2ewkXx, 2ewky, 0]
_ ¢ Ky Kx U
H_field:=8-2— 2——, 0f
€ m u

rho_charge density :=4ewk
) é KU
J_current_density :=£0, 0, 4—H
€ mu

A KX +2KYy - 1) (-K+wem)

m

Poincarel := -

PoyntingVector =[0, 0, 4wk’ (x* + y*)]
Torsion_flux:=[0, 0, 0]
Helicity := 0
é ) -1+ KX+ Y) x (- K +wem) > -1+ KX+ y(-K+wem)

Spin_current := g—

N
,OH
m m u
Soin_density := 0
I (X +Y?) (- K +w em)
m

-1+ KX+ Y (- K+ W em)

m

Lagrangian_field energy density :=-4

Interaction_energy_density := 4

> R final _variables: =R
R final_variables:=[X,Y, z t]

| Variables on Initial State:

[ > X=X VY=Y 2. =2 T: =T

>

Define the mapping functions here
ORTHOGONAL TO CURRENT TRANSLATION
> X =X-W*Ty: =Y. z:=Z:t: =T:

>

> Rinitial _variables:=[X Y, Z T];

101 (|



L R initial_variables:=[X, Y, Z, T]
> MAP(X Y, Z T,Xx,y,z,t): Mappi ng_functi ons: =Map; Jacobi an: =eval m( JAC) : DET: =DET: Adj
oi nt: =eval n{ ADJAC) :
L Mapping_functions:=[X- WxT,Y, Z, T]
[ The map represents a translation along the X axis.
- Evaluate the exterior forms on the initial state by functional
. substitution and pullback:
> Alf orm =wcol | ect (factor(sinplify(Alform)); F2form =

weol l ect (factor(sinplify(F2form)); d(F2forn); &form =

weol I ect (factor(sinplify(&form));J3form =

weol | ect (factor(sinplify(J3form));
Alform:=
W(-1+KX- 2IEXXT+KWE T + K Y?) d(T)

k
F2form:= 2k (kX T- kX) (d(X) & d(Z)) + 2k (kX Vx- KV T) (d(T) & d(Z))
- 2K Y (A(Y) &M d(Z)) + 2k (-wVX T+wX) (d(X) &M d(T)) + 2wk Y (d(Y) & d(T))
0
Gzform:=2kewY (d(X) & d(Z))- 2kewYVx (d(T) &*d(Z))
2k(ewmX- ewmVxT) (d(Y)&*d(Z)) 2KY(d(X)&Md(T)) 2k(kVxT- kX) (d(Y)&"d(T))
m m m

K2 &M(d(X), d(Y), d(T))
4 . - 4ewk &M(d(X), d(Y), d(Z)) + 4 kew Vx &M(d(T), d(Y), d(Z))

> factor(wcol |l ect (d(Alform-F2form);

(1- KCXC+2IEXWXT- KW T - KY)d(Z) +

J3form =

L 0
[ > Spi n3f orm =( ALf or & G2f or n) ; Tor si on3f or m =( ALf or m&*F2f or n) ;

(F1+IPX- 2IEX X T+IEWE T2+ IEY?) (X - WXT) (- I+ W em) &MN(d(Z), d(Y), d(T))
m

Soin3form := 2

] 2(-1+IEX- 2IRXWKT+IEWE TP+ I YY) Y (- KK+ W em) &7(d(Z), d(X), d(T))
m

Torsion3form:=0

> Spin3form:=

- 2% (- 14+KA2* XA 2- 2 KA 2% X* Vx* THKA2* VXA 2% TA2+KA2* YA2) * (Vx* T- X) * (- kA 2+omega” 2* epsi
Lon*mu) / mu*> & (d(2), d(Y), d(T))-2%(-1+kA2* XA 2- 2% KA2* X* Vx* T+KA 2% VXA 2% TA2+KkA2* Y
N2) *Y* (- kN2+onmegatr2*epsi l on*mu) / mu* T &\ (d(2),d(X),d(T));

(F1+IEX- 2IRXUXT+IEWE TP+ K Y2) (WX T - X) (- +wem) &Md(Z), d(Y), d(T))
m
2(-1+IX2- 2IRX WX T+IEWE T+ I Y?) Y (- I + W em) &MN(d(Z), d(X), d(T))
m

Soin3form := - 2

[ >

| Pullback field Components on the initial state:

[ > AF_PB: =i nner prod( TRJIAC, [ AF[ 1], AF[ 2] , AF[ 3],-SP]); VPotenti al _PB: =simplify([ AF_P
B[ 1], AF_PB[ 2], AF_PB[ 3]]); Scal ar Pot _PB: =si npl i fy(-AF_PB[ 4]); EF_PB: =factor (si np
lify((eval n(-grad(ScalarPot_PB,[X Y, Z])-diff(VPotential _PB,T))))); BF_PB: =fact
or(sinmplify(curl (VPotential _PB,[X Y,Z])));Dl: =-get coef f (&f or m&d(X) &d(T)):D
2: =get coef f (R2f or m&Ad(Y) &'d(T)): D3: =- get coef f (&2f or m&d( Z2) &'d(T)): HL: =get coef
f(&Xf or m& d(Y) &\d(2)): H2: =get coef f (R2f or m&d( X) &'d( 2) ) : H3: =- get coef f ( &2f or m&*
d(X)&d(Y)):DF_PB: =[factor(sinplify(D1)),factor(sinplify(D2)),factor(sinplify
(D3))];HF_PB:=[factor(sinmplify(Hl)),factor(sinplify(H2)),factor(sinplify(H3))




]; JTPB: =i nner prod( ADJAC, JTT) : JD_PB: =[ JTPB[ 1], JTPB[ 2], JTPB[ 3] ]; JC_PB: =JTPB[ 4] ;
Poi ncar e2_PB: =Poi ncar e2; Poi ncarel_PB: =f act or (si npl i f y( DET* Poi ncar el)); DET: =DE
T; M F: =eval n{curl (EF_PB, [ X, Y, Z])+[diff(BF_PB[1],T),diff(BF_PB[2],T),diff(BF_P
B[3],T)]); MA =eval n{curl (HF_PB,[ X, Y, Z])-[diff(DF_PB[1],T),diff(DF_PB[2],T),d
i ff(DF_PB[3],T)]); M FdivB: =di verge(BF_PB, [ X, Y, Z]); M_Adi vD: =di verge(DF_PB, [ X, Y
1)
A 2 2 2\ 1
AF_PB::EO, 0,1- RX2+2IEXVXT- RV T - Y2 WLt iex ZkZX\IZXTJrkZVXZT +k2Y)E
VPotential PB:=[0,0,1- KX*+2IEXVXT- KW T - K Y]
W(-1+KX- 2IRXUXT+KWE T + K Y?)
k
EF PB:=[2wk(X- VXT),2wKkY, -2 KX Vx+ 2K V¥ T]
BF PB:=[-2KY,2K X- 2k*VxT, 0]
DF_PB:=[2kew(X- VxT),2kewY,0]
K'Y ) I (X- VXT)

é U
HF_PB:=§-2 , ,2kewYVxH
e m m u

ScalarPot_PB .= -

é KU
JD_PB:=€4Vxewk, 0,4—H
€ mu

JC PB:=4ewk
Poincare2 PB:=0
(21X - ARXVXT+2IRVE T+ 21K Y- 1) (- K +wWem)
m

Poincarel PB:=-4

DET:=1
M_F:=[0,0,0]

é K U
M_A:=84Vxewk, 0,4—H
€ mu

M_FdivB :=0
L M_AdivD :=4ewk
Note that the constitutive relations between D and E and B and H on the initial state are not the same
as for the final state.
The D fields are equal to epsilon E times the DET of the transformation, there by converting a tensor
into a tensor density.
Simlarly the H fields are B divided by mu times the DET of the transformation -- almost.
There appears another term in the H fields on the final state due to the translation Vz. Indeed, motion
along the z axis adds to the existing Current density in the fixed frame a component that is proportional
to the moving charge density. This motion induces a component to the H field that encircles the z axis,
but DOES NOT affect the associated B fields.

THE PULLED BACK FIELD COMPONENTS E,B satisfy the MAXWELL - FARADAY PDE's in terms

of the independent variables [X,Y,Z,T] with the constraint that d(Z)/d(T) = Vz.

THE PULLED BACK FIELD COMPONENTS D,H also satisfy the MAXWELL - AMPERE PDE's in in

terms of the independent variables [X,Y,Z,T] with the constraint that d(2)/d(T) = Vz.

> restart;with(linalg):with(liesym):with(difforns):defforn(L=0,f=0,u=0,x=0,y=0
, 2=0, t =0, | anbda=0, C=const , B=const , Phi =0, FF=0, phi =0, f 1=0, f 2=0, f 3=0, JX=0, JY=0, J
Z=0, Vx=const, W=const, Vz=const, AX=0, AY=0, AZ=0, A4=0, ax=const , DX=0, DY=0, DZ=0, HX
=0, HY=0, HZ=0, j 1=0, j 2=0, j 3=0, j 4=0, r ho=0, k=const , onega=const, JT=0, a=const, b=con
st, mu=const, epsi | on=const, e=const, n=const , Orega=const, c=const, X=0, Y=0, Z=0, T=0




11T

, =0, al pha=0, bet a=0, t het a=0, ZR=const) :
Warni ng, the protected nanes normand trace have been redefined and unprotected

Warni ng, the protected nane cl ose has been redefined and unprotected

Warni ng, the names &', d and wdegree have been redefined

Pullbacks of maps to Euclidean spaces.
Rotations

R. M. Kiehn
Updated 12/03/2001

**k%k

Consider a final state of independent variables, [X,y,z,1],

and a map from cartesian variables [r,theta,z,t] with the additional constraint that represents a
kinematic rotation at constant angular velocity about the z axiz. Hence d(theta)/d(t) = Omega =
constant. The electromagnetic Action 1-form A will be given in terms of abstract functions
AXx,Ay,Az,Phi, on the final state with arguments in terms of [X,y,z,t]. The pair 2-form F = dA and its
coefficients on the final state will be evaluated to yield E and B, the field intensities.

The final state will be presumed to be a euclidean space with constitutive properties in the sense that
D =epsilon E and B = mu H. Hence, on the final state, given the potentials, the field intensities can
be computed, the field excitations D, H, can be evaluated to give the impair 2-form G. From this
hypothesis (or constraint) the impair 3-form of 4 current density will be computed from the impair
2-form G, such that J=dG.

The results on the final state then will be pulled back by the combined actions of functional
substitution for the independent variables and their differentials. into the differential forms for A, F,
G and J.

For 1-forms and N-1 form densities, the pullbacks are particularly simple:

The 1-forms pull back by means of the transpose of the Jacobian matrix of the mapping.

The N-1 form densities pull back via the adjoint of the Jacobian matrix of the mapping.

The matrix elements of the Jacobian matrix need not be global constants.

The following is the procedure for computing EM fields and currents given the
potentials on the variety [X,y,z,t], with the constitutive assumption D = epsilon E, B
=mu H. The procedure also evalutes the forms A, F, G, J on the final state.
USEFUL OUTPUT FUNCTIONS ARE

AF=vector potential

SP = scalar potential

EF = E field intensity

BF = B field intensity

DF = D field excitation

HF = H field excitation

JD = current density

CD = charge density

SPC = spin current

SPD = spin density

TFC = Torsion flux

HEL = Helicity



TF = Torsion field 4 components

SP = Spin field density 4 components

P1 = First Poincare invariant density

P2 = Second Poincare invariant

Alform = pair 1-form of potentials

F2form = pair 2-form of E, B field intensities
G2form = impair 2-form of D, H excitation densities
J3form = impair 3 form of charge current densities

> JCM =proc(Ax, Ay, Az, phi)\
| ocal
A Al, A2, A3, A4, BFC, EF1, EF2, EF3, JAC, JDC, ExBC, JTOT, Jcurl , Jt, Jh, Jd, Jdt, TFCa, SFCa:
gl obal
Alf or m AF, SP, BF, EF, TF, HEL, P1, P2, DF, HF, CD, JA, JD, SPD, SF, SFD, ExB, &f or m F2f or m J3f
orm JTT, TFC, SFC.
Al: =AX: A2: =Ay: A3: =Az; Ad: =phi :
A =[ Al, A2, A3] : AF: =factor(sinplify(A)):SP:=sinplify(phi):
Alf or m =AL1*d(x) +A2*d(y) +A3*d(z) - Ad*d(t):
EF1: =eval m(-grad(phi,[Xx,y,z])):
EF2: =-[diff (AL t),diff(A2,t),diff(A3,t)];
EF3: =[factor (EF1[ 1] +EF2[ 1] ), fact or (EF1[ 2] +EF2[ 2] ), factor (EF1[ 3] +EF2[ 3] )];
EF: =[ EF3[ 1], EF3[ 2], EF3[ 3]];
BFC. =(curl ([ AL, A2, A3],[X,VY,2z])):
BF: =[ factor (BF( 1] ), factor(BFC[ 2] ), factor (BFC 3])];
HEL: =f act or (i nner pr od( AF, BF) ) ; TFCa: =eval n( cr osspr od( EF, AF) +BF* phi ) ;
TF:. =[factor (TFCa[ 1] ), factor (TFCa[ 2] ), factor (TFCa[ 3] ), HEL];

pP2: =-2*factor (i nnerprod( EF, BF)); TFC. =[factor (TFCa[ 1] ), factor (TFCa[ 2]), factor (TF
Ca[3])];

HF: =[ fact or (BFC] 1]/ mu), fact or (BFC[ 2]/ mu) , fact or (BFC[ 3]/ mu) ] ;
DF: =[ fact or (epsil on*EF3[ 1] ), factor(epsil on*EF3[2]), factor(epsilon*EF3[3])];
CD: =factor (diverge([DF[ 1], DF[ 2], DF[ 3]].,[Xx,VY,2]));
Jeurl:=curl ([HF[1],HF[ 2] ,HF[3]],[X,Y, 2]);

Jh: =[factor(Jcurl[1]),factor(Jcurl[2]),factor(Jcurl[3])];
Jdt: =-[diff(DF[1],t),diff(DF[2],t),diff(DF[3],t)];
Jd: =s[factor(Jdt[1]),factor(Jdt[2]),factor(Jdt[3])];JTOT: =Jh+Jd: JD:. =[fact or (JTOT
[1]),factor(JTOI[2]),factor (JTOT[3])];
JTT: =[factor(JD1]),factor(JO)2]),factor(JD[3]), CDl;
F2f or m =eval n{i nner prod(BF, [ d(y) &d(z), -d(x)&d(z), d(x)&"d(y)]) +i nnerprod(EF, [d
(x) &\d(t), d(y)&\d(t),d(z)&d(t)]));
SPD: =f act or (i nner prod(A, DF)); Gf orm =( HF[ 1] *d( x) &\d(t) +HF[ 2] *d(y) &\d(t) +HF[ 3] *d
(z)&d(t)-DF[ 1] *d(y) &\ d(z) +DF[ 2] *d(x) &\ d(z) - DF[ 3] *d(x) &\d(y)); J3f orm =i nner pr od
(JTT, [d(y) &'d(z) &d(t),-d(x) & d(z) & d(t),d(x)& d(y)& d(t),-d(x)& d(y)& d(z)]);

SFCa: =eval nm( cr osspr od( AF, HF) +DF* phi ) ; SFC. =[ f act or (SFCa[ 1] ), fact or (SFCa[ 2] ), f act
or (SFCa[3])];

SFD: =[factor (SFC[ 1] ), factor (SFC 2]), factor (SFC[ 3]), SPD] ;

P1: =i nner pr od( BF, HF) - i nner pr od( DF, EF) - i nner pr od( AF, JD) +CD* phi ;
ExBC: =cr ossprod( EF, BF) ; ExB: =[ fact or (ExB([ 1] ), factor (ExB([ 2] ), factor (ExB( 3])];
| end proc:
( > MAP: =proc(X,Y,ZT,X,y,z,t) global JAC ADJAC, DET, TRIAC, Map:




Map: =[x, y, z,t]:JAC. =si nplify(jacobian(Map,[X Y, Z, T])): DET: =factor (sinplify(de
t (JAC))): TRIAC. =si nplify(transpose(JAC)): ADJAC. =si npli fy(adjoint(JAC)): end
proc:

1 Al s M
vV V V

> b: =0: c: =0:
> rr:s(XM2+y"2) M1 2) D AAA [ zA2*y* b, - zN 2% X* b, 1- kKN 2*rr A2, c* zry*x+omega*r (1- kKA 2*rr
L "2)/K]:
[ > JCMAAA[ 1], AAA[ 2], AAA 3], AAA[ 4] ) :
[ The exterior differential forms as specified on the final state.
> Alf orm =wcol | ect (factor(sinmplify(Alform)); F2form =
weol I ect (factor(sinplify(F2form)); &form =
weol I ect(factor(sinplify(&form));J3form =
weol | ect (factor(sinplify(J3form));
w(-1+Kx+Ky)d(t)
k
F2form:=-2Ky (d(y) & d(z)) - 2K x (d(x) & d(z)) + 2wk x (d(x) & d(t)) +2wky (d(y) & d(t))

G2form :=

5 K’y (d(x) &~ d(t)) N 2K x (d(y) &"d(t))

m m

Alform:=(1- K x*- Ky d(z) +

- 2ewkx(d(y) &*d(z)) +2ewky (d(x) &*d(z))

41 &N(d(x), d(y), d(t))
m

J3form:=-4 ewk &(d(x), d(y), d(z)) +

[ The fields in engineering format on the final state
> R=[x,y,z,t]; Vector_potential : =AF; Scal ar _potential:=factor(SP); E field:=EF;,B_
fi el d: =BF; Poi ncare2: =factor (P2); D _fiel d: =DF; H_fi el d: =HF; rho_char ge_density: =C
D;J current _density: =(sinmplify(JD));; Poincarel:=factor(P1l); Poynti ngVect or =ExB
; Torsion_flux:=factor(eval M TFC)); Hel i city: =HEL; Spi n_current:=factor((SFC)); S
pi n_density: =factor (SPD); Lagrangi an_fi el d_energy_density: =factor(sinplify(inn
er prod( HF, BF) -i nnerprod(DF, EF))); I nteracti on_energy_density: =factor (AF[ 1] *JM
1] +AF[ 2] *JD( 2] +AF[ 3] *JD[ 3] - CD*SP) ;
R:=[x Y, z ]

Vector_potential := [0, 0, 1- kK X*- K*y*]

w(-1+Kx+Ky)
k

E field:=[2wkXx, 2wKkYy, 0]
B field:=[-2K'y, 2K X, 0]

Scalar_potential ;= -

Poincare2 := 0
D_field:=[2ewkXx, 2ewky, 0]
_ ¢ Ky Kx U
H_field:=8-2—,2——, 0H
€ m m U

rho_charge density :=4ewk
] é KU
J_current_density := &0, 0, 4—H
€ mu

A (2K +2K Y- 1) (-IKK+Wem)
m

PoyntingVector =[0, 0, 4wk (X* +y)]

Torsion_flux:=[0, 0, 0]

Poincarel := -




Helicity :=0
€ (-1+KkX+KY)x(-K+wem) > -1+ KX+ y(-K+wem)

Spin_current := g- 2

N
, O
m m u
Soin_density := 0
I (X +Y?) (- K +w em)
m

-1+ KX+ Y (- K +wW em)

m

Lagrangian_field energy density :=-4

Interaction_energy_density := 4

> R final _variables: =R;
R final variables:=[X,Y, z t]

Variables on Initial State:
> X=r:VY:=theta: Z:=z: T: =t:
>
Define the mapping functions here
ROTATION ABOUT z axis
> X:=r*cos(theta-Orega*t):y:=r*sin(theta-Orega*t):z:=z:t:=T:
>
> Rinitial _variables:=[X Y, Z T];
R initial_variables:={r, q, z t]

> MAP(X, Y, Z, T, Xx,Y,2z,t): Mappi ng_fucnti ons: =Map; Jacobi an: =eval m( JAC) : DET: =DET: Adj

oi nt: =eval n( ADJAC) ;

Mapping_fucntions :=[r cos(- ¢ + Wt), -r sin(-q + Wt), z t]

LI | [

gcos(-q+Wt) -rsin(-g+Wt) 0 O0u

.. esn(-qg+Wt) cos(-g+Wt) O r\/\/hl
Adjoint := & u
g 0 0 r OH

e 0 0 O ru

[ The mapping represents a rotation about the z axis.
- Evaluate the exterior forms on the initial state by functional
. substitution and pullback:
> Alf orm =wcol | ect (factor(sinmplify(Alform)); F2form =

weol I ect (factor(sinplify(F2form)); &form =

weol I ect (factor(sinplify(&form));J3form =

weol | ect (factor(sinplify(J3form));
(kr-1)(kr+1)wd(t)

k
F2form:=-2Kr (d(r) & d(z)) + 2krw (d(r) & d(t))
2K r* (d(q) &~ d(t))
m

Alform:=-(kr- 1) (kr+1)d(z) +

G2form:=2kr’ewW (d(t) & d(z)) - 2kr’ew (d(q) &*d(z)) +

4 K’ r &~(d(r), d(q), d(t))
m
> Spi n3f or m =( ALf or & G2f or n) ; Tor si on3f or m =( ALf or m&*F2f or n) ;

(kr- 1) (kr+1)r?(-I¢+w em) &(d(z), d(q), d(t))
m

J3form := - 4krew&Md(r),d(q),d(z)) +4krew&"d(r), d(t), d(z)) W

Soin3form := 2

Torsion3form:= 0
> AF_PB: =i nner pr od( TRJIAC, [ AF[ 1] , AF[ 2] , AF[ 3] ,-SP]); VPotenti al _PB: =si mplify([ AF_P
B[ 1], AF_PB[ 2], AF_PB[ 3]]); Scal ar Pot _PB: =si npl i fy(-AF_PB[ 4]); EF_PB: =fact or (si np
lify((eval n(-grad(ScalarPot_PB,[X Y, Z])-diff(VPotential _PB,T))))); BF_PB: =fact




LI O O O

or(sinmplify(curl (VPotential _PB,[X Y,Z])));Dl: =-get coef f (&f or m&d(X) &d(T)):D
2: =get coef f (R2f or m&Ad(Y) &'d(T)): D3: =- get coef f (&R2f or m&*d( Z2) &'d(T)): HL: =get coef
f(&@f or m& A d(Y) &\d(2)): H2: =get coef f ( &f or m&d( X) &'d( 2) ) : H3: =- get coef f ( &2f or m&*
d(X)&d(Y)):DF_PB: =[factor(sinplify(D1)),factor(sinplify(D2)),factor(sinplify
(D3))];HF_PB:=[factor(sinmplify(Hl)),factor(sinplify(H2)),factor(sinplify(H3))
]; JTPB: =i nner prod( ADJAC, JTT) : JD_PB: =[ JTPB[ 1], JTPB[ 2], JTPB[ 3] ]; JC_PB: =JTPB[ 4] ;
Poi ncar e2_PB: =Poi ncar e2; Poi ncarel_PB: =f act or (si npl i f y( DET*Poi ncar el)); DET: =DE
T; M F: =eval n{curl (EF_PB, [ X, Y, Z])+[diff(BF_PB[1],T),diff(BF_PB[2],T),diff(BF_P
B[3],T)]); MA =eval n{curl (HF_PB,[ X, Y, Z])-[diff(DF_PB[1],T),diff(DF_PB[2],T),d
i ff(DF_PB[3],T)]); M FdivB: =di verge(BF_PB, [ X, Y, Z] ); M_Adi vD: =di verge(DF_PB, [ X, Y
AP
AF_PB:=
W(-1+kzrzcos(-q+Wt)2+k2rzsin(-q+Wt)2)g
k u

e
go, 0,1- Kr’cos(-q+Wt)*- Kr’sin(-q + Wt)?

VPotential PB:=[0,0,1- K*r’]
w(-1+Kr?)
k
EF_PB:=[2krw,0,0]
BF PB:=[0,2Kr, 0]
DF PB:=[2kr’ew,0,0]

2

r 5 u
,-2krrewWH
m u

ScalarPot_PB ;= -

e
HF_PB := €0, 2

é Kru
JD _PB:=E0,4r Wewk, 4—H
€ m U

JC PB:=4krew
Poincare2_PB :=0
r2Kr’- 1) (- k¥ +w’em)

m

Poincarel PB:=-4

DET :=r
M F:=[0,0,0]

é Kru
M_A:=EO0,4r Wewk, 4—H
€ m U

M_FdivB :=0

M_AdivD :=4krew
>
>
Note that the constitutive relations between D and E and B and H on the initial state are not the
same as for the final state.
The D fields are equal to epsilon E times the DET of the transformation, there by converting a tensor
into a tensor density.
Simlarly the H fields are B divided by mu times the DET of the transformation -- almost.
There appears another term in the H fields on the final state due to the rotation Omega. Indeed,
motion of the charge density about the z axis appears to create a contribution to the current density
that encircles the z axis. Such a current density induces a component of H along the z axis and
related to the rotation rate.

This rotational motion of the charge density influences the H field, but DOES NOT affect the
associated B fields.
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THE PULLED BACK FIELD COMPONENTS E,B satisfy the MAXWELL - FARADAY PDE's in terms
of the independent variables [r,theta,z,t] with the constraint that d(theta)/d(t) = Omega.

THE PULLED BACK FIELD COMPONENTS D,H also satisfy the MAXWELL - AMPERE PDE's in in
terms of the independent variables [r,theta,z,t] with the constraint that d(theta)/d(t) = Omega.

> restart;with(linalg):with(liesym):with(difforns):defforn(L=0,f=0,u=0,x=0,y=0

, 2=0, t =0, | anbda=0, C=const , B=const , Phi =0, FF=0, phi =0, f 1=0, f 2=0, f 3=0, JX=0, JY=0, J
Z=0, Vx=const, W=const , Vz=const, AX=0, AY=0, AZ=0, A4=0, ax=const , DX=0, DY=0, DZ=0, HX
=0, HY=0, Hz=0, j 1=0, j 2=0, j 3=0, j 4=0, r ho=0, k=const , onega=const, JT=0, a=const, b=con
st, mu=const, epsi | on=const, e=const, n=const , Orega=const, c=const, X=0, Y=0, Z=0, T=0
, =0, al pha=0, bet a=0, t het a=0, ZR=const, zz=0, tt =0) :

Warni ng, the protected nanes norm and trace have been redefined and unprotected

Warni ng, the protected nane cl ose has been redefined and unprotected

Warni ng, the names &', d and wdegree have been redefined

Pullbacks of maps to Euclidean spaces.
Rotations + Translations

R. M. Kiehn
Updated 12/03/2001

**k*

Consider a final state of independent variables, [X,y,z,1],

and a map from cartesian variables [r,theta,z,t] with the additional constraint that represents a
kinematic rotation at constant angular velocity about the z axiz. Hence d(theta)/d(t) = Omega =
constant. The electromagnetic Action 1-form A will be given in terms of abstract functions
AXx,Ay,Az,Phi, on the final state with arguments in terms of [X,y,z,t]. The pair 2-form F = dA and its
coefficients on the final state will be evaluated to yield E and B, the field intensities.

The final state will be presumed to be a euclidean space with constitutive properties in the sense that
D =epsilon E and B = mu H. Hence, on the final state, given the potentials, the field intensities can
be computed, the field excitations D, H, can be evaluated to give the impair 2-form G. From this
hypothesis (or constraint) the impair 3-form of 4 current density will be computed from the impair
2-form G, such that J=dG.

The results on the final state then will be pulled back by the combined actions of functional
substitution for the independent variables and their differentials. into the differential forms for A, F,
G and J.

For 1-forms and N-1 form densities, the pullbacks are particularly simple:

The 1-forms pull back by means of the transpose of the Jacobian matrix of the mapping.

The N-1 form densities pull back via the adjoint of the Jacobian matrix of the mapping.

The matrix elements of the Jacobian matrix need not be global constants.

The following is the procedure for computing EM fields and currents given the
potentials on the variety [X,y,z,t], with the constitutive assumption D = epsilon E, B
=mu H. The procedure also evalutes the forms A, F, G, J on the final state.
USEFUL OUTPUT FUNCTIONS ARE



AF=vector potential

SP = scalar potential

EF = E field intensity

BF = B field intensity

DF = D field excitation

HF = H field excitation

JD = current density

CD = charge density

SPC = spin current

SPD = spin density

TFC = Torsion flux

HEL = Helicity

TF = Torsion field 4 components

SP = Spin field density 4 components

P1 = First Poincare invariant density

P2 = Second Poincare invariant

Alform = pair 1-form of potentials

F2form = pair 2-form of E, B field intensities
G2form = impair 2-form of D, H excitation densities
J3form = impair 3 form of charge current densities

> JCM =pr oc( Ax, Ay, Az, phi )\
| ocal
A Al, A2, A3, A4, BFC, EF1, EF2, EF3, JAC, JDC, ExBC, JTOT, Jcur |, Jt, Jh, Jd, Jdt, TFCa, SFCa:
gl obal
Alf or m AF, SP, BF, EF, TF, HEL, P1, P2, DF, HF, CD, JA, JD, SPD, SF, SFD, ExB, GQf or m F2f or m J3f
orm JTT, TFC, SFC:
Al: =AX: A2: =Ay: A3: =Az; Ad: =phi :
A =[ Al, A2, A3] : AF: =factor(sinplify(A)):SP:=sinplify(phi):
Alf or m =ALl*d( x) +A2*d(y) +A3*d(z) - Ad*d(t):
EF1: =eval m(-grad(phi,[Xx,y,z])):
EF2: =-[diff (AL t),diff(A2,t),diff(A3,t)];
EF3: =[fact or (EF1[ 1] +EF2[ 1] ), fact or (EF1[ 2] +EF2[ 2] ), fact or (EF1[ 3] +EF2[ 3])];
EF: =[ EF3[ 1], EF3[ 2], EF3[ 3] ] ;
BFC. =(curl ([ AL, A2, A3],[X,VY,2])):
BF: =[ factor (BF( 1] ), factor(BFC[ 2] ), factor (BFC[ 3])];
HEL: =f act or (i nner pr od( AF, BF) ) ; TFCa: =eval n( cr osspr od( EF, AF) +BF* phi ) ;
TF:. =[factor(TFCa[ 1] ), factor (TFCa[ 2] ), factor (TFCa[ 3] ), HEL];

pP2: =-2*factor (i nnerprod( EF, BF)); TFC. =[factor (TFCa[ 1] ), factor (TFCa[ 2]), factor (TF
Ca[3])];
HF: =[ fact or (BFC] 1]/ mu), fact or (BFC[ 2]/ mu) , fact or (BFC[ 3]/ mu) ] ;
DF: =[ fact or (epsil on*EF3[ 1] ), factor(epsil on*EF3[2]), factor(epsilon*EF3[3])];
CD: =factor (diverge([DF[ 1], DF[ 2], DF[ 3]].,[X%,Y,2]));
Jeurl:=curl ([HF[1],HF[ 2], HF[3]],[X,Y, 2]);
Jh: =[factor(Jcurl[1]),factor(Jcurl[2]),factor(Jcurl[3])];
Jdt:=-[diff(DF[1],t),diff(DF[2],t),diff(DF[3],t)];
Jd: =s[factor(Jdt[1]),factor(Jdt[2]),factor(Jdt[3])];JTOT: =Jh+Jd: JD:. =[fact or (JTOT
[1]),factor (JTOI[2]),factor (JTOT[3])];
JTT: =[factor(JD1]),factor(J)2]),factor(JD[3]), CDl;
F2f or m =eval n{i nner prod(BF, [ d(y) &d(z), -d(x)&d(z), d(x)&"d(y)]) +i nnerprod(EF, [d



(x) &\d(t), d(y)&\d(t), d(z)&d(t)]));

SPD: =f act or (i nner prod(A, DF)); Qf orm =( HF[ 1] *d( x) &\d(t) +HF[ 2] *d(y) &\d(t) +HF[ 3] *d
(z)&d(t)-DF[ 1] *d(y) & d(z) +DF[ 2] *d(x) &\d(z) - DF[ 3] *d(x) &\d(y)); J3f orm =i nner pr od
(JTT, [d(y) &'d(z) &d(t),-d(x) & d(z) & d(t),d(x)& d(y)& d(t),-d(x)& d(y)& d(z)]);

SFCa: =eval n( cr osspr od( AF, HF) +DF* phi ) ; SFC. =[ f act or (SFCa[ 1] ), fact or (SFCa[ 2] ), f act
or(SFCa[ 3])];
SFD: =[factor (SFC[ 1]),factor(SFC 2]), factor (SFC[ 3]), SPD] ;
P1: =i nner pr od( BF, HF) - i nner pr od( DF, EF) - i nner pr od( AF, JD) +CD* phi ;
ExBC: =cr ossprod( EF, BF) ; ExB: =[ fact or (ExBC[ 1] ), factor (ExB([ 2] ), factor (ExB( 3])1];
L end proc:
> MAP: =proc(X,Y,Z,T,X,y,z,t) global JAC ADJAC, DET, TRIAC, Map:
Map: =[X,Y, z,t]: JAC. =si npl i fy(jacobian(Map,[ X Y, Z, T])): DET: =fact or (si nplify(de
t (JAC))): TRIAC. =si nplify(transpose(JAC)): ADJIAC. =si npli fy(adjoint(JAC)): end
proc:
>
>
>
> b: =0:c: =0:
> rr:=(xXN2+yn2) M1/ 2) : AAA =[ z7h2*y* b, - zM2* x* b, 1- k" 2*rr”2, c*z*y*x+omega* (1- kKN2*rr
L "2)/K]:
[ > JCM AAA[ 1], AAA 2], AAA[ 3], AAA[ 4] ):
[ The exterior differential forms as specified on the final state.
> Alf orm =wcol | ect (factor(sinplify(Alform)); F2form =
weol I ect (factor(sinplify(F2form)); &form
weol I ect (factor(sinplify(&form));J3form
weol | ect (factor(sinplify(J3form));

LI Y e B B A

w(-1+Kx+Ky)d(t)
k
F2form:=-2Ky (d(y) & d(z)) - 2k x (d(x) & d(z)) + 2wk x (d(x) & d(t)) + 2wk y (d(y) & d(t))
G2form:=
) K’y (d(x) &~ d(t)) N 2K x (d(y) &~ d(t))
m m

Alform:=(1- K x*- Ky d(z) +

- 2ewkx (d(y) &~ d(z)) + 2 ewky (d(x) &~ d(z))

41 &N(d(x), d(y), d(t))
m

J3form:=-4ewk &\(d(x), d(y), d(z)) +

[ The fields in engineering format on the final state
> R=[x,y,z,t];Vector_potential : =AF; Scal ar _potential:=factor(SP);E field:=EF;,B_
fiel d: =BF; Poi ncare2: =factor (P2); D_fiel d: =DF; H_fi el d: =HF; r ho_char ge_density: =C
D;J current _density: =(sinmplify(JD));; Poincarel:=factor(P1l); Poynti ngVect or =ExB
; Torsion_flux:=factor(eval M TFC)); Hel i city: =HEL; Spi n_current:=factor((SFC)); S
pi n_density: =factor (SPD); Lagrangi an_fi el d_energy_density: =factor(sinplify(inn
er prod( HF, BF) -i nnerprod(DF, EF)));Interaction_energy density:=factor( AF[ 1] *JO0
1] +AF[ 2] *JD( 2] +AF[ 3] *JD[ 3] - CD*SP) ;
R:=[x Y, z 1]
Vector_potential := [0, 0, 1- kK X*- kK*y’]
w(-1+ KX +KYy)
k
E field:=[2wkXx, 2wKkYy, 0]
B field:=[-2K'y, 2K X, 0]
Poincare2 := 0

Scalar_potential ;= -




D_field:=[2ewkXx, 2ewky, 0]

_ ¢ Ky Kx U
H_field:=8-2—2——, 0H
€ m m’' 0
rho_charge density :=4ewk
) é KU
J_current_density :=£0, 0, 4—H
€ mu

KX +2KYy - 1) (-K+wem)
m
PoyntingVector =[0, 0, 4wk’ (X* + y*)]
Torsion_flux:=[0, 0, 0]
Helicity := 0
é ) (-1+KX+ V) x (- K +wem) S -1+ KX+ y(-K+wem)

Spin_current := g-

Poincarel :=-4

U
,OH
m m u
Soin_density :=0
I (X +Y?) (- K +w em)
m

-1+ +IEV) (- K +wWem)

m

Lagrangian_field energy density :=-4

Interaction_energy_density := 4

> R final _variables: =R;
R final_variables:=[X,Y, z t]

Variables on Initial State:
> X=r:Y.=theta: Z:=zz: T: =tt:
>
Define the mapping functions here
L ROTATION ABOUT z axis plus translation along z axis
> x:=r*cos(theta-Qrega*T);y:=r*sin(theta-Orega*T); z: =Z-Vz*tt;t: =T,
X:=r co - q+ Wit)
y:=-rsin(-q+Wtt)

z:=zz- Vztt

t=tt

[ R

>
> Rinitial _variables:=[X Y, Z T];

R initial_variables:=r, q, zz, tt]
> MAP(X Y, Z T,X,y,z,t): Mappi ng_fucnti ons: =Map; Jacobi an: =eval m( JAC) ; DET: =DET: Adj
oi nt: =eval n{ ADJAC) :

Mapping_fucntions :=[r cos(- q + Wtt), -r sin(- q + Wtt), zz- Vztt, tt]
gcos(-q+th) rsin(-g+Wtt) 0 -rsin(-q+Wtt) Wl
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Jacobian = & SN(-a+Witt) rcos(-q+Wit) 0 -rcos(-q+th)V\ﬁ
& 0 0 1 -Vz y
e O O O 1 ]

E The mapping represents a rotation about the z axis.
- Evaluate the exterior forms on the initial state by functional

 substitution and pullback:

> Alf orm =wcol | ect (factor(sinmplify(Alform)); F2form =
weol I ect (factor(sinplify(F2form)); &form
weol I ect (factor(sinplify(&form));J3form
weol | ect (factor(sinplify(J3form));




[

[

(kr-121)(kr+1)(-kVz- w)d(tt)
k
F2form:=-2Kr (d(r) & d(zz)) + 2kr (kVz+w) (d(r) &”* d(tt))
kr? (k+ewmVz) (d(q) & d(tt))
m

Alform:=-(kr- 1) (kr+1)d(z) -

G2form:=2 - 2krfew(d(q) &  d(zz)) +2krPew W (d(tt) & d(zz))

4Kkr (k+ewmVz) &M(d(r), d(q), d(tt))
m

J3form:=-4krew&"d(r), d(q), d(z)) +

+4krew&(d(r), d(tt), d(zz)) W

"> Spi n3f or m =( ALf or m&*@&2f or n) ; Tor si on3f or m =( ALf or & F2f orm ;

(kr- 1) (kr+21)r’ (- K +w em) &\(d(z), d(q), d(tt))
m

Soin3form := 2

Torsion3form:=0
>

Pullback field Components on initial state:

> AF_PB: =i nner pr od( TRJIAC, [ AF[ 1] , AF[ 2] , AF[ 3],-SP]); VPotenti al _PB: =simplify([ AF_P
B[ 1], AF_PB[ 2], AF_PB[ 3]]); Scal ar Pot _PB: =si npl i fy(-AF_PB[ 4]); EF_PB: =fact or (si np
lify((eval n(-grad(ScalarPot_PB,[X Y, Z])-diff(VPotential _PB,T))))); BF_PB: =fact
or(sinmplify(curl (VPotential _PB,[X Y,Z])));Dl: =-get coef f (&f or m&d(X) &d(T)):D
2: =get coef f (R2f or m&Ad(Y) &'d(T)): D3: =- get coef f (&R2f or m&*d( Z2) &'d(T)): HL: =get coef
f(&@f or m& d(Y) &\d(2)) : H2: =get coef f ( &f or m&d( X) &'d( 2) ) : H3: =- get coef f ( &2f or m&*
d(X)&d(Y)):DF_PB: =[factor(sinplify(D1)),factor(sinplify(D2)),factor(sinplify
(D3))]:HF_PB:=[factor(sinplify(HLl)),factor(sinplify(H2)),factor(sinplify(H3))
1;JTT; JTPB: =i nner pr od( ADJAC, JTT) : JD _PB: =[ JTPB[ 1] , JTPB[ 2] , JTPB[ 3] ] ; JC PB: =JTPB
[ 4] ; Poi ncar e2_PB: =Poi ncar e2; Poi ncarel_PB: =f act or (si npl i f y( DET*Poi ncarel)); DET
: =DET; M_F: =eval m(curl (EF_PB, [ X, Y, Z])+[di ff(BF_PB[1],T),di ff(BF_PB[2],T), diff(
BF_PB[3],T)]); M A =eval n{curl (HF_PB,[X,Y,Z])-[diff(DF_PB[1],T),diff(DF_PB[2],
T),diff(DF_PB[3],T)]); M FdivB: =di verge(BF_PB, [ X, Y, Z] ) ; M_Adi vD: =di ver ge( DF_PB,
[X Y, 2]);

e
AF_PB:= go, 0,1- K r®cos(-q+Wtt)*- Kr’sin(-q+ Wit)?,

(-1+Kr’cos(-q+Witt)’+ Kk’ r’sin(- q + Wtt)*) (k Vz+w) U
” i

VPotential PB:=[0, 0, 1- K*r’]

-kVz- w+IKer?vz+ kK riw

k

EF_PB:=[2kr (kVz+w),0,0]
BF PB:=[0,2Kr, 0]

DF PB:=[2kr’ew,0, 0]

¢  kr’(k+ewmVz) . u
HF _PB = gO,Z 0 ,-2Kkr eWWH

ScalarPot_PB := -

e k2 u
g0,0,4—,4ewkH
é m 1]

kr(k+ewmVz) u
m a

e
JD PB = go, 4r Wewk, 4

JC PB:=4rewk
Poincare2 PB:=0



LI Y e B B A

T O e A A B O A B

r2Kr’- 1) (- +w’em)

Poincarel PB:=-4

m
DET :=r
M_F:=[0,0,0]
é kr(k+ewmVz)u
M_A:=80,4r Wewk, 4
€ u
M_FdivB :=0
M_AdivD :=4rewk
>
>
>

Note that the constitutive relations between D and E and B and H on the initial state are not the
same as for the final state.

The D fields are equal to epsilon E times the DET of the transformation, there by converting a tensor
into a tensor density.

Simlarly the H fields are B divided by mu times the DET of the transformation -- almost.

There appears another term in the H fields on the final state due to the rotation Omega. Indeed,
motion of the charge density about the z axis appears to create a contribution to the current density
that encircles the z axis. Such a current density induces a component of H along the z axis and
related to the rotation rate.

This rotational motion of the charge density influences the H field, but DOES NOT affect the
associated B fields.

THE PULLED BACK FIELD COMPONENTS E,B satisfy the MAXWELL - FARADAY PDE's in terms
of the independent variables [r,theta,z,t] with the constraint that d(theta)/d(t) = Omega.

THE PULLED BACK FIELD COMPONENTS D,H also satisfy the MAXWELL - AMPERE PDE's in in
terms of the independent variables [r,theta,z,t] with the constraint that d(theta)/d(t) = Omega.
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