
> restart:

Pullbacks of maps to Euclidean spaces.
R. M. Kiehn

Updated 12/03/2001

The transformation properties of Maxwell's Electrodynamics in terms of D E B and H are carried out
in detail for euclidean translations and euclidean rotations. Contrary to current dogma, in all cases

proper transformations of the field components yield invariant formalisms for the PDE's that
generate the Maxwell-Faraday and the Maxwell-Ampere equations. The relative motions do not
change the PDE's but do modify the constitutive relations between E,B and D,H. Motions can induce
currents that produce D and H field components, which are NOT associated with E and B field
components.

When the components of the fields with respect to the independent variables are written with respect

to the PullBack transformation schemes (E B are components of a pair form. D and H are

components of a impair form) then the PDE's of Maxwell are invariant in format.

 = + ()curl ,E [], ,x y z










∂

∂

t
B 0.

 = ()div ,B [], ,x y z 0

 = − ()curl ,H [], ,x y z










∂

∂

t
D J

 = ()div ,D [], ,x y z ρ

PULLBACK Initial state Maxwell Equations with independent variables [r,theta,z,t] and fields
E_PB,B_PB,D_PB,H_PB

 = + ()curl ,E_PB [], ,r θ z










∂

∂

t
B_PB 0.

 = ()div ,B_PB [], ,r θ z 0

 = − ()curl ,H_PB [], ,r θ z










∂

∂

t
D_PB J_PB

 = ()div ,D_PB [], ,r θ z rho_PB

TRANSLATIONS at Constant Velocity.
A: The initial state motion is assumed to be parallel to the direction of the current on the final state.
B: The initial state motion is assumed to be orthogonal to the direction of the current on the final

state.

> restart;with(linalg):with(liesymm):with(difforms):defform(L=0,f=0,u=0,x=0,y=0

,z=0,t=0,lambda=0,C=const,B=const,Phi=0,FF=0,phi=0,f1=0,f2=0,f3=0,JX=0,JY=0,J

Z=0,Vx=const,Vy=const,Vz=const,AX=0,AY=0,AZ=0,A4=0,ax=const,DX=0,DY=0,DZ=0,HX

=0,HY=0,HZ=0,j1=0,j2=0,j3=0,j4=0,rho=0,k=const,omega=const,JT=0,a=const,b=con

st,mu=const,epsilon=const,e=const,n=const,Omega=const,c=const,X=0,Y=0,Z=0,T=0

,r=0,alpha=0,beta=0,theta=0,ZR=const):

Warning, the protected names norm and trace have been redefined and unprotected

Warning, the protected name close has been redefined and unprotected

Warning, the names &^, d and wdegree have been redefined

The following is the procedure for computing EM fields and currents given the
potentials on the variety [x,y,z,t], with the constitutive assumption D = epsilon E, B
= mu H. The procedure also evalutes the forms A, F, G, J on the final state.
USEFUL OUTPUT FUNCTIONS ARE
AF=vector potential
SP = scalar potential
EF = E field intensity
BF = B field intensity
DF = D field excitation
HF = H field excitation
JD = current density
CD = charge density
SPC = spin current
SPD = spin density
TFC = Torsion flux
HEL = Helicity
TF = Torsion field 4 components
SP = Spin field density 4 components
P1 = First Poincare invariant density
P2 = Second Poincare invariant
A1form = pair 1-form of potentials
F2form = pair 2-form of E, B field intensities
G2form = impair 2-form of D, H excitation densities
J3form = impair 3 form of charge current densities

> JCM:=proc(Ax,Ay,Az,phi)\

 local
A,A1,A2,A3,A4,BFC,EF1,EF2,EF3,JAC,JDC,ExBC,JTOT,Jcurl,Jt,Jh,Jd,Jdt,TFCa,SFCa:

 global
A1form,AF,SP,BF,EF,TF,HEL,P1,P2,DF,HF,CD,JA,JD,SPD,SF,SFD,ExB,G2form,F2form,J3f

orm,JTT,TFC,SFC:

 A1:=Ax:A2:=Ay:A3:=Az;A4:=phi:

A:=[A1,A2,A3]:AF:=factor(simplify(A)):SP:=simplify(phi):

A1form:=A1*d(x)+A2*d(y)+A3*d(z)-A4*d(t):

 EF1:=evalm(-grad(phi,[x,y,z])):
 EF2:=-[diff(A1,t),diff(A2,t),diff(A3,t)];
EF3:=[factor(EF1[1]+EF2[1]),factor(EF1[2]+EF2[2]),factor(EF1[3]+EF2[3])];

 EF:=[EF3[1],EF3[2],EF3[3]];

 BFC:=(curl([A1,A2,A3],[x,y,z])):
 BF:=[factor(BFC[1]),factor(BFC[2]),factor(BFC[3])];
HEL:=factor(innerprod(AF,BF));TFCa:=evalm(crossprod(EF,AF)+BF*phi);

 TF:=[factor(TFCa[1]),factor(TFCa[2]),factor(TFCa[3]),HEL];

P2:=-2*factor(innerprod(EF,BF));TFC:=[factor(TFCa[1]),factor(TFCa[2]),factor(TF

Ca[3])];

 HF:=[factor(BFC[1]/mu),factor(BFC[2]/mu),factor(BFC[3]/mu)];
DF:=[factor(epsilon*EF3[1]),factor(epsilon*EF3[2]),factor(epsilon*EF3[3])];

CD:=factor(diverge([DF[1],DF[2],DF[3]],[x,y,z]));

Jcurl:=curl([HF[1],HF[2],HF[3]],[x,y,z]);

 Jh:=[factor(Jcurl[1]),factor(Jcurl[2]),factor(Jcurl[3])];

Jdt:=-[diff(DF[1],t),diff(DF[2],t),diff(DF[3],t)];

Jd:=[factor(Jdt[1]),factor(Jdt[2]),factor(Jdt[3])];JTOT:=Jh+Jd:JD:=[factor(JTOT

[1]),factor(JTOT[2]),factor(JTOT[3])];

JTT:=[factor(JD[1]),factor(JD[2]),factor(JD[3]),CD];

F2form:=evalm(innerprod(BF,[d(y)&^d(z),-d(x)&^d(z),d(x)&^d(y)])+innerprod(EF,[d

(x)&^d(t),d(y)&^d(t),d(z)&^d(t)]));

SPD:=factor(innerprod(A,DF));G2form:=(HF[1]*d(x)&^d(t)+HF[2]*d(y)&^d(t)+HF[3]*d

(z)&^d(t)-DF[1]*d(y)&^d(z)+DF[2]*d(x)&^d(z)-DF[3]*d(x)&^d(y));J3form:=innerprod

(JTT,[d(y)&^d(z)&^d(t),-d(x)&^d(z)&^d(t),d(x)&^d(y)&^d(t),-d(x)&^d(y)&^d(z)]);

SFCa:=evalm(crossprod(AF,HF)+DF*phi);SFC:=[factor(SFCa[1]),factor(SFCa[2]),fact

or(SFCa[3])];

 SFD:=[factor(SFC[1]),factor(SFC[2]),factor(SFC[3]),SPD];
 P1:=innerprod(BF,HF)-innerprod(DF,EF)-innerprod(AF,JD)+CD*phi;

ExBC:=crossprod(EF,BF);ExB:=[factor(ExBC[1]),factor(ExBC[2]),factor(ExBC[3])];

 end proc:
> MAP:=proc(X,Y,Z,T,x,y,z,t) global JAC,ADJAC,DET,TRJAC,Map:

Map:=[x,y,z,t]:JAC:=simplify(jacobian(Map,[X,Y,Z,T])):DET:=factor(simplify(de

t(JAC))):TRJAC:=simplify(transpose(JAC)):ADJAC:=simplify(adjoint(JAC)): end

proc:

>

>

TRANSLATION PARALLEL TO CURRENT

Consider a final state of independent variables, [x,y,z,t],
and a map from an initial state of cartesian variables [X,Y,Z,T].
Assert the existence of an additional constraint that represents a kinematic translation at constant
velocity along the z axiz. Hence d(Z)/d(T) = Vz = constant.
The electromagnetic Action 1-form A will be given in terms of abstract functions Ax,Ay,Az,Phi, on the
final state, with arguments in terms of [x,y,z,t].
The pair 2-form F = dA and its coefficients on the final state will be evaluated to yield E and B, the
field intensities.
The final state will be presumed to be a euclidean space with classic constitutive properties in the
sense that D = epsilon E and B = mu H.
Hence, on the final state, given the potentials, the field intensities can be computed, the field
excitations D, H, can be evaluated to give the impair 2-form G.
From this hypothesis (or constraint) the impair 3-form of 4 current density will be computed from the
impair 2-form G, such that J=dG.
The results on the final state then will be pulled back by the combined actions of functional
substitution for the independent variables and their differentials, into the differential forms for A, F,
G and J on the initial state.
For 1-forms and N-1 form densities, the pullbacks are particularly simple:
The 1-forms pull back by means of the transpose of the Jacobian matrix of the mapping.
The N-1 form densities pull back via the adjoint of the Jacobian matrix of the mapping.
The matrix elements of the Jacobian matrix need not be global constants.
>

> b:=0:c:=0:

> rr:=(x^2+y^2)^(1/2):AAA:=[z^2*y*b,-z^2*x*b,1-k^2*rr^2,c*z*y*x+omega*(1-k^2*rr

^2)/k]:

> JCM(AAA[1],AAA[2],AAA[3],AAA[4]):

The exterior differential forms as specified on the final state.
> A1form:=wcollect(factor(simplify(A1form)));F2form:=

wcollect(factor(simplify(F2form)));G2form:=

wcollect(factor(simplify(G2form)));J3form:=

wcollect(factor(simplify(J3form)));

 := A1form + () − − 1 k2 x2 k2 y2 ()d z
ω ()− + + 1 k2 x2 k2 y2 ()d t

k

 := F2form − − + + 2 k2 y ()()d y &^ ()d z 2 k2 x ()()d x &^ ()d z 2 ω k x ()()d x &^ ()d t 2 ω k y ()()d y &^ ()d t

G2form :=

− + − + 2
k2 y ()()d x &^ ()d t

µ

2 k2 x ()()d y &^ ()d t

µ
2 ε ω k x ()()d y &^ ()d z 2 ε ω k y ()()d x &^ ()d z

 := J3form − 4
k2 ()&^ , ,()d x ()d y ()d t

µ
4 k ε ω ()&^ , ,()d x ()d y ()d z

The fields in engineering format on the final state
> R:=[x,y,z,t];Vector_potential:=AF;Scalar_potential:=factor(SP);E_field:=EF;B_

field:=BF;Poincare2:=factor(P2);D_field:=DF;H_field:=HF;rho_charge_density:=C

D;J_current_density:=(simplify(JD));;Poincare1:=factor(P1);PoyntingVector=ExB

;Torsion_flux:=factor(evalm(TFC));Helicity:=HEL;Spin_current:=factor((SFC));S

pin_density:=factor(SPD);Lagrangian_field_energy_density:=factor(simplify(inn

erprod(HF,BF)-innerprod(DF,EF)));Interaction_energy_density:=factor(AF[1]*JD[

1]+AF[2]*JD[2]+AF[3]*JD[3]-CD*SP);

 := R [], , ,x y z t

 := Vector_potential [], ,0 0 − − 1 k2 x2 k2 y2

 := Scalar_potential −
ω ()− + + 1 k2 x2 k2 y2

k

 := E_field [], ,2 ω k x 2 ω k y 0

 := B_field [], ,−2 k2 y 2 k2 x 0

 := Poincare2 0

 := D_field [], ,2 ε ω k x 2 ε ω k y 0

 := H_field








, ,−2

k2 y

µ
2

k2 x

µ
0

 := rho_charge_density 4 ε ω k

 := J_current_density








, ,0 0 4

k2

µ

 := Poincare1 4
() + − 2 k2 x2 2 k2 y2 1 () − k2 ω2 ε µ

µ

 = PoyntingVector [], ,0 0 4 k3 ω () + x2 y2

 := Torsion_flux [], ,0 0 0

 := Helicity 0

 := Spin_current








, ,2

()− + + 1 k2 x2 k2 y2 x () − k2 ω2 ε µ

µ
2

()− + + 1 k2 x2 k2 y2 y () − k2 ω2 ε µ

µ
0

 := Spin_density 0

 := Lagrangian_field_energy_density 4
k2 () + x2 y2 () − k2 ω2 ε µ

µ

 := Interaction_energy_density −4
()− + + 1 k2 x2 k2 y2 () − k2 ω2 ε µ

µ
> R_final_variables:=R;

 := R_final_variables [], , ,x y z t

Variables on Initial State:
> X:=X:Y:=Y:Z:=Z:T:=T:

>

Define the mapping functions here
TRANSLATION PARALLEL TO CURRENT
> x:=X:y:=Y:z:=Z-Vz*T:t:=T:

>

> R_initial_variables:=[X,Y,Z,T];

 := R_initial_variables [], , ,X Y Z T
> MAP(X,Y,Z,T,x,y,z,t):Mapping_functions:=Map;

 := Mapping_functions [], , ,X Y − Z Vz T T
> Jacobian:=evalm(JAC):DET:=DET:Adjoint:=evalm(ADJAC):

The map represents a translation along the Z axis.

Evaluate the exterior forms on the initial state by functional
substitution and pullback:
> A1form:=wcollect(factor(simplify(A1form)));F2form:=

wcollect(factor(simplify(F2form)));G2form:=

wcollect(factor(simplify(G2form)));J3form:=

wcollect(factor(simplify(J3form)));

 := A1form − +
()− + + 1 k2 X2 k2 Y2 ()− − k Vz ω ()d T

k
() − − 1 k2 X2 k2 Y2 ()d Z

F2form 2 k ()− − k Y Vz ω Y ()()d Y &^ ()d T 2 k2 Y ()()d Y &^ ()d Z 2 k2 X ()()d X &^ ()d Z− − − :=

2 k ()− − k X Vz ω X ()()d X &^ ()d T −

G2form 2
k () + ε ω X µ Vz k X ()()d Y &^ ()d T

µ
2 k ε ω X ()()d Y &^ ()d Z 2 k ε ω Y ()()d X &^ ()d Z − + :=

2 k ()− − k Y ε ω Y µ Vz ()()d X &^ ()d T

µ
 +

 := J3form − + 4 ε ω k ()&^ , ,()d X ()d Y ()d Z
4 k () + k Vz µ ω ε ()&^ , ,()d X ()d Y ()d T

µ
> Spin3form:=(A1form&^G2form);Torsion3form:=(A1form&^F2form);

Spin3form 2
()− + + 1 k2 X2 k2 Y2 X () − k2 ω2 ε µ ()&^ , ,()d T ()d Y ()d Z

µ
 :=

2 ()− + + 1 k2 X2 k2 Y2 Y () − k2 ω2 ε µ ()&^ , ,()d T ()d X ()d Z

µ
 −

 := Torsion3form 0
> SP;

−
ω ()− + + 1 k2 X2 k2 Y2

k

Pullback field Components on the initial state:
> AF_PB:=innerprod(TRJAC,[AF[1],AF[2],AF[3],-SP]);VPotential_PB:=simplify([AF_P

B[1],AF_PB[2],AF_PB[3]]);ScalarPot_PB:=simplify(-AF_PB[4]);EF_PB:=factor(simp

lify((evalm(-grad(ScalarPot_PB,[X,Y,Z])-diff(VPotential_PB,T)))));BF_PB:=fact

or(simplify(curl(VPotential_PB,[X,Y,Z])));D1:=-getcoeff(G2form&^d(X)&^d(T)):D

2:=getcoeff(G2form&^d(Y)&^d(T)):D3:=-getcoeff(G2form&^d(Z)&^d(T)):H1:=getcoef

f(G2form&^d(Y)&^d(Z)):H2:=getcoeff(G2form&^d(X)&^d(Z)):H3:=-getcoeff(G2form&^

d(X)&^d(Y)):DF_PB:=[factor(simplify(D1)),factor(simplify(D2)),factor(simplify

(D3))];HF_PB:=[factor(simplify(H1)),factor(simplify(H2)),factor(simplify(H3))

];JTPB:=innerprod(ADJAC,JTT):JD_PB:=[JTPB[1],JTPB[2],JTPB[3]];JC_PB:=JTPB[4];

Poincare2_PB:=Poincare2;Poincare1_PB:=factor(simplify(DET*Poincare1));DET:=DE

T;factor(simplify(innerprod(BF,HF)-innerprod(EF,DF))):M_F:=evalm(curl(EF_PB,[

X,Y,Z])+[diff(BF_PB[1],T),diff(BF_PB[2],T),diff(BF_PB[3],T)]);M_A:=evalm(curl

(HF_PB,[X,Y,Z])-[diff(DF_PB[1],T),diff(DF_PB[2],T),diff(DF_PB[3],T)]);M_FdivB

:=diverge(BF_PB,[X,Y,Z]);M_AdivD:=diverge(DF_PB,[X,Y,Z]);

 := AF_PB








, , ,0 0 − − 1 k2 X2 k2 Y2 ()− + + 1 k2 X2 k2 Y2 () + k Vz ω

k

 := VPotential_PB [], ,0 0 − − 1 k2 X2 k2 Y2

 := ScalarPot_PB −
()− + + 1 k2 X2 k2 Y2 () + k Vz ω

k

 := EF_PB [], ,2 k X () + k Vz ω 2 k Y () + k Vz ω 0

 := BF_PB [], ,−2 k2 Y 2 k2 X 0

 := DF_PB [], ,2 k ε ω X 2 k ε ω Y 0

 := HF_PB








, ,−2

k Y () + k Vz µ ω ε

µ
2

k X () + k Vz µ ω ε

µ
0

 := JD_PB








, ,0 0 4

k () + k Vz µ ω ε

µ

 := JC_PB 4 ε ω k

 := Poincare2_PB 0

 := Poincare1_PB 4
() + − 2 k2 X2 2 k2 Y2 1 () − k2 ω2 ε µ

µ

 := DET 1

 := M_F [], ,0 0 0

 := M_A








, ,0 0 4

k () + k Vz µ ω ε

µ

 := M_FdivB 0

 := M_AdivD 4 ε ω k
Note that the constitutive relations between D and E and B and H on the initial state are not the
same as for the final state.
The D fields are equal to epsilon E times the DET of the transformation, there by converting a tensor
into a tensor density.
Simlarly the H fields are B divided by mu times the DET of the transformation -- almost.
There appears another term in the H fields on the final state due to the translation Vz. Indeed,
motion along the z axis adds to the existing Current density in the fixed frame a component that is
proportional to the moving charge density. This motion induces a component to the H field that
encircles the z axis, but DOES NOT affect the associated B fields.

THE PULLED BACK FIELD COMPONENTS E,B satisfy the MAXWELL - FARADAY PDE's in terms
of the independent variables [X,Y,Z,T] with the constraint that d(Z)/d(T) = Vz.
THE PULLED BACK FIELD COMPONENTS D,H also satisfy the MAXWELL - AMPERE PDE's in in
terms of the independent variables [X,Y,Z,T] with the constraint that d(Z)/d(T) = Vz.

**

TRANSLATION ORTHOGONAL TO CURRENT
> restart;with(linalg):with(liesymm):with(difforms):defform(L=0,f=0,u=0,x=0,y=0

,z=0,t=0,lambda=0,C=const,B=const,Phi=0,FF=0,phi=0,f1=0,f2=0,f3=0,JX=0,JY=0,J

Z=0,Vx=const,Vy=const,Vz=const,AX=0,AY=0,AZ=0,A4=0,ax=const,DX=0,DY=0,DZ=0,HX

=0,HY=0,HZ=0,j1=0,j2=0,j3=0,j4=0,rho=0,k=const,omega=const,JT=0,a=const,b=con

st,mu=const,epsilon=const,e=const,n=const,Omega=const,c=const,X=0,Y=0,Z=0,T=0

,r=0,alpha=0,beta=0,theta=0,ZR=const):
Warning, the protected names norm and trace have been redefined and unprotected

Warning, the protected name close has been redefined and unprotected

Warning, the names &^, d and wdegree have been redefined

>

Consider a final state of independent variables, [x,y,z,t],
and a map from an initial state of cartesian variables [X,Y,Z,T].
Assert the existence of an additional constraint that represents a kinematic translation at constant
velocity along the z axiz. Hence d(X)/d(T) = Vx = constant.
The electromagnetic Action 1-form A will be given in terms of abstract functions Ax,Ay,Az,Phi, on the
final state, with arguments in terms of [x,y,z,t].
The pair 2-form F = dA and its coefficients on the final state will be evaluated to yield E and B, the
field intensities.
The final state will be presumed to be a euclidean space with classic constitutive properties in the
sense that D = epsilon E and B = mu H.
Hence, on the final state, given the potentials, the field intensities can be computed, the field
excitations D, H, can be evaluated to give the impair 2-form G.
From this hypothesis (or constraint) the impair 3-form of 4 current density will be computed from the
impair 2-form G, such that J=dG.
The results on the final state then will be pulled back by the combined actions of functional
substitution for the independent variables and their differentials, into the differential forms for A, F,
G and J on the initial state.
For 1-forms and N-1 form densities, the pullbacks are particularly simple:
The 1-forms pull back by means of the transpose of the Jacobian matrix of the mapping.
The N-1 form densities pull back via the adjoint of the Jacobian matrix of the mapping.
The matrix elements of the Jacobian matrix need not be global constants.

> JCM:=proc(Ax,Ay,Az,phi)\

 local
A,A1,A2,A3,A4,BFC,EF1,EF2,EF3,JAC,JDC,ExBC,JTOT,Jcurl,Jt,Jh,Jd,Jdt,TFCa,SFCa:

 global
A1form,AF,SP,BF,EF,TF,HEL,P1,P2,DF,HF,CD,JA,JD,SPD,SF,SFD,ExB,G2form,F2form,J3f

orm,JTT,TFC,SFC:

 A1:=Ax:A2:=Ay:A3:=Az;A4:=phi:

A:=[A1,A2,A3]:AF:=factor(simplify(A)):SP:=simplify(phi):

A1form:=A1*d(x)+A2*d(y)+A3*d(z)-A4*d(t):

 EF1:=evalm(-grad(phi,[x,y,z])):
 EF2:=-[diff(A1,t),diff(A2,t),diff(A3,t)];
EF3:=[factor(EF1[1]+EF2[1]),factor(EF1[2]+EF2[2]),factor(EF1[3]+EF2[3])];

 EF:=[EF3[1],EF3[2],EF3[3]];

 BFC:=(curl([A1,A2,A3],[x,y,z])):

 BF:=[factor(BFC[1]),factor(BFC[2]),factor(BFC[3])];
HEL:=factor(innerprod(AF,BF));TFCa:=evalm(crossprod(EF,AF)+BF*phi);

 TF:=[factor(TFCa[1]),factor(TFCa[2]),factor(TFCa[3]),HEL];

P2:=-2*factor(innerprod(EF,BF));TFC:=[factor(TFCa[1]),factor(TFCa[2]),factor(TF

Ca[3])];

 HF:=[factor(BFC[1]/mu),factor(BFC[2]/mu),factor(BFC[3]/mu)];
DF:=[factor(epsilon*EF3[1]),factor(epsilon*EF3[2]),factor(epsilon*EF3[3])];

CD:=factor(diverge([DF[1],DF[2],DF[3]],[x,y,z]));

Jcurl:=curl([HF[1],HF[2],HF[3]],[x,y,z]);

 Jh:=[factor(Jcurl[1]),factor(Jcurl[2]),factor(Jcurl[3])];

Jdt:=-[diff(DF[1],t),diff(DF[2],t),diff(DF[3],t)];

Jd:=[factor(Jdt[1]),factor(Jdt[2]),factor(Jdt[3])];JTOT:=Jh+Jd:JD:=[factor(JTOT

[1]),factor(JTOT[2]),factor(JTOT[3])];

JTT:=[factor(JD[1]),factor(JD[2]),factor(JD[3]),CD];

F2form:=evalm(innerprod(BF,[d(y)&^d(z),-d(x)&^d(z),d(x)&^d(y)])+innerprod(EF,[d

(x)&^d(t),d(y)&^d(t),d(z)&^d(t)]));

SPD:=factor(innerprod(A,DF));G2form:=(HF[1]*d(x)&^d(t)+HF[2]*d(y)&^d(t)+HF[3]*d

(z)&^d(t)-DF[1]*d(y)&^d(z)+DF[2]*d(x)&^d(z)-DF[3]*d(x)&^d(y));J3form:=innerprod

(JTT,[d(y)&^d(z)&^d(t),-d(x)&^d(z)&^d(t),d(x)&^d(y)&^d(t),-d(x)&^d(y)&^d(z)]);

SFCa:=evalm(crossprod(AF,HF)+DF*phi);SFC:=[factor(SFCa[1]),factor(SFCa[2]),fact

or(SFCa[3])];

 SFD:=[factor(SFC[1]),factor(SFC[2]),factor(SFC[3]),SPD];
 P1:=innerprod(BF,HF)-innerprod(DF,EF)-innerprod(AF,JD)+CD*phi;

ExBC:=crossprod(EF,BF);ExB:=[factor(ExBC[1]),factor(ExBC[2]),factor(ExBC[3])];

 end proc:
> MAP:=proc(X,Y,Z,T,x,y,z,t) global JAC,ADJAC,DET,TRJAC,Map:

Map:=[x,y,z,t]:JAC:=simplify(jacobian(Map,[X,Y,Z,T])):DET:=factor(simplify(de

t(JAC))):TRJAC:=simplify(transpose(JAC)):ADJAC:=simplify(adjoint(JAC)): end

proc:

>

>

>

> b:=0:c:=0:

> rr:=(x^2+y^2)^(1/2):AAA:=[z^2*y*b,-z^2*x*b,1-k^2*rr^2,c*z*y*x+omega*(1-k^2*rr

^2)/k]:

> JCM(AAA[1],AAA[2],AAA[3],AAA[4]):

The exterior differential forms as specified on the final state.
> A1form:=wcollect(factor(simplify(A1form)));F2form:=

wcollect(factor(simplify(F2form)));G2form:=

wcollect(factor(simplify(G2form)));J3form:=

wcollect(factor(simplify(J3form)));

 := A1form + () − − 1 k2 x2 k2 y2 ()d z
ω ()− + + 1 k2 x2 k2 y2 ()d t

k

 := F2form − − + + 2 k2 y ()()d y &^ ()d z 2 k2 x ()()d x &^ ()d z 2 ω k x ()()d x &^ ()d t 2 ω k y ()()d y &^ ()d t

G2form :=

− + − + 2
k2 y ()()d x &^ ()d t

µ

2 k2 x ()()d y &^ ()d t

µ
2 ε ω k x ()()d y &^ ()d z 2 ε ω k y ()()d x &^ ()d z

 := J3form − + 4 ε ω k ()&^ , ,()d x ()d y ()d z
4 k2 ()&^ , ,()d x ()d y ()d t

µ

The fields in engineering format on the final state
> R:=[x,y,z,t];Vector_potential:=AF;Scalar_potential:=factor(SP);E_field:=EF;B_

field:=BF;Poincare2:=factor(P2);D_field:=DF;H_field:=HF;rho_charge_density:=C

D;J_current_density:=(simplify(JD));;Poincare1:=factor(P1);PoyntingVector=ExB

;Torsion_flux:=factor(evalm(TFC));Helicity:=HEL;Spin_current:=factor((SFC));S

pin_density:=factor(SPD);Lagrangian_field_energy_density:=factor(simplify(inn

erprod(HF,BF)-innerprod(DF,EF)));Interaction_energy_density:=factor(AF[1]*JD[

1]+AF[2]*JD[2]+AF[3]*JD[3]-CD*SP);

 := R [], , ,x y z t

 := Vector_potential [], ,0 0 − − 1 k2 x2 k2 y2

 := Scalar_potential −
ω ()− + + 1 k2 x2 k2 y2

k

 := E_field [], ,2 ω k x 2 ω k y 0

 := B_field [], ,−2 k2 y 2 k2 x 0

 := Poincare2 0

 := D_field [], ,2 ε ω k x 2 ε ω k y 0

 := H_field








, ,−2

k2 y

µ
2

k2 x

µ
0

 := rho_charge_density 4 ε ω k

 := J_current_density








, ,0 0 4

k2

µ

 := Poincare1 −4
() + − 2 k2 x2 2 k2 y2 1 ()− + k2 ω2 ε µ

µ

 = PoyntingVector [], ,0 0 4 ω k3 () + x2 y2

 := Torsion_flux [], ,0 0 0

 := Helicity 0

 := Spin_current








, ,−2

()− + + 1 k2 x2 k2 y2 x ()− + k2 ω2 ε µ

µ
−2

()− + + 1 k2 x2 k2 y2 y ()− + k2 ω2 ε µ

µ
0

 := Spin_density 0

 := Lagrangian_field_energy_density −4
k2 () + x2 y2 ()− + k2 ω2 ε µ

µ

 := Interaction_energy_density 4
()− + + 1 k2 x2 k2 y2 ()− + k2 ω2 ε µ

µ
> R_final_variables:=R;

 := R_final_variables [], , ,x y z t

Variables on Initial State:
> X:=X:Y:=Y:Z:=Z:T:=T:

>

Define the mapping functions here
ORTHOGONAL TO CURRENT TRANSLATION
> x:=X-Vx*T:y:=Y:z:=Z:t:=T:

>

> R_initial_variables:=[X,Y,Z,T];

 := R_initial_variables [], , ,X Y Z T
> MAP(X,Y,Z,T,x,y,z,t):Mapping_functions:=Map;Jacobian:=evalm(JAC):DET:=DET:Adj

oint:=evalm(ADJAC):

 := Mapping_functions [], , , − X Vx T Y Z T
The map represents a translation along the X axis.

Evaluate the exterior forms on the initial state by functional
substitution and pullback:
> A1form:=wcollect(factor(simplify(A1form)));F2form:=

wcollect(factor(simplify(F2form)));d(F2form);G2form:=

wcollect(factor(simplify(G2form)));J3form:=

wcollect(factor(simplify(J3form)));

A1form :=

 + () − + − − 1 k2 X2 2 k2 X Vx T k2 Vx2 T2 k2 Y2 ()d Z
ω ()− + − + + 1 k2 X2 2 k2 X Vx T k2 Vx2 T2 k2 Y2 ()d T

k

F2form 2 k () − k Vx T k X ()()d X &^ ()d Z 2 k () − k X Vx k Vx2 T ()()d T &^ ()d Z + :=

2 k2 Y ()()d Y &^ ()d Z 2 k ()− + ω Vx T ω X ()()d X &^ ()d T 2 ω k Y ()()d Y &^ ()d T − + +

0

G2form 2 k ε ω Y ()()d X &^ ()d Z 2 k ε ω Y Vx ()()d T &^ ()d Z − :=

2 k () − ε ω µ X ε ω µ Vx T ()()d Y &^ ()d Z

µ

2 k2 Y ()()d X &^ ()d T

µ

2 k () − k Vx T k X ()()d Y &^ ()d T

µ
 − − −

 := J3form − + 4
k2 ()&^ , ,()d X ()d Y ()d T

µ
4 ε ω k ()&^ , ,()d X ()d Y ()d Z 4 k ε ω Vx ()&^ , ,()d T ()d Y ()d Z

> factor(wcollect(d(A1form)-F2form));

0
> Spin3form:=(A1form&^G2form);Torsion3form:=(A1form&^F2form);

Spin3form 2
()− + − + + 1 k2 X2 2 k2 X Vx T k2 Vx2 T2 k2 Y2 () − X Vx T ()− + k2 ω2 ε µ ()&^ , ,()d Z ()d Y ()d T

µ
 :=

2 ()− + − + + 1 k2 X2 2 k2 X Vx T k2 Vx2 T2 k2 Y2 Y ()− + k2 ω2 ε µ ()&^ , ,()d Z ()d X ()d T

µ
 −

 := Torsion3form 0
> Spin3form :=

-2*(-1+k^2*X^2-2*k^2*X*Vx*T+k^2*Vx^2*T^2+k^2*Y^2)*(Vx*T-X)*(-k^2+omega^2*epsi

lon*mu)/mu*`&^`(d(Z),d(Y),d(T))-2*(-1+k^2*X^2-2*k^2*X*Vx*T+k^2*Vx^2*T^2+k^2*Y

^2)*Y*(-k^2+omega^2*epsilon*mu)/mu*`&^`(d(Z),d(X),d(T));

Spin3form 2
()− + − + + 1 k2 X2 2 k2 X Vx T k2 Vx2 T2 k2 Y2 () − Vx T X ()− + k2 ω2 ε µ ()&^ , ,()d Z ()d Y ()d T

µ
− :=

2 ()− + − + + 1 k2 X2 2 k2 X Vx T k2 Vx2 T2 k2 Y2 Y ()− + k2 ω2 ε µ ()&^ , ,()d Z ()d X ()d T

µ
 −

>

Pullback field Components on the initial state:
> AF_PB:=innerprod(TRJAC,[AF[1],AF[2],AF[3],-SP]);VPotential_PB:=simplify([AF_P

B[1],AF_PB[2],AF_PB[3]]);ScalarPot_PB:=simplify(-AF_PB[4]);EF_PB:=factor(simp

lify((evalm(-grad(ScalarPot_PB,[X,Y,Z])-diff(VPotential_PB,T)))));BF_PB:=fact

or(simplify(curl(VPotential_PB,[X,Y,Z])));D1:=-getcoeff(G2form&^d(X)&^d(T)):D

2:=getcoeff(G2form&^d(Y)&^d(T)):D3:=-getcoeff(G2form&^d(Z)&^d(T)):H1:=getcoef

f(G2form&^d(Y)&^d(Z)):H2:=getcoeff(G2form&^d(X)&^d(Z)):H3:=-getcoeff(G2form&^

d(X)&^d(Y)):DF_PB:=[factor(simplify(D1)),factor(simplify(D2)),factor(simplify

(D3))];HF_PB:=[factor(simplify(H1)),factor(simplify(H2)),factor(simplify(H3))

];JTPB:=innerprod(ADJAC,JTT):JD_PB:=[JTPB[1],JTPB[2],JTPB[3]];JC_PB:=JTPB[4];

Poincare2_PB:=Poincare2;Poincare1_PB:=factor(simplify(DET*Poincare1));DET:=DE

T;M_F:=evalm(curl(EF_PB,[X,Y,Z])+[diff(BF_PB[1],T),diff(BF_PB[2],T),diff(BF_P

B[3],T)]);M_A:=evalm(curl(HF_PB,[X,Y,Z])-[diff(DF_PB[1],T),diff(DF_PB[2],T),d

iff(DF_PB[3],T)]);M_FdivB:=diverge(BF_PB,[X,Y,Z]);M_AdivD:=diverge(DF_PB,[X,Y

,Z]);

 := AF_PB








, , ,0 0 − + − − 1 k2 X2 2 k2 X Vx T k2 Vx2 T2 k2 Y2

ω ()− + − + + 1 k2 X2 2 k2 X Vx T k2 Vx2 T2 k2 Y2

k

 := VPotential_PB [], ,0 0 − + − − 1 k2 X2 2 k2 X Vx T k2 Vx2 T2 k2 Y2

 := ScalarPot_PB −
ω ()− + − + + 1 k2 X2 2 k2 X Vx T k2 Vx2 T2 k2 Y2

k

 := EF_PB [], ,2 ω k () − X Vx T 2 ω k Y − + 2 k2 X Vx 2 k2 Vx2 T

 := BF_PB [], ,−2 k2 Y − 2 k2 X 2 k2 Vx T 0

 := DF_PB [], ,2 k ε ω () − X Vx T 2 k ε ω Y 0

 := HF_PB








, ,−2

k2 Y

µ
2

k2 () − X Vx T

µ
2 k ε ω Y Vx

 := JD_PB








, ,4 Vx ε ω k 0 4

k2

µ

 := JC_PB 4 ε ω k

 := Poincare2_PB 0

 := Poincare1_PB −4
() − + + − 2 k2 X2 4 k2 X Vx T 2 k2 Vx2 T2 2 k2 Y2 1 ()− + k2 ω2 ε µ

µ

 := DET 1

 := M_F [], ,0 0 0

 := M_A








, ,4 Vx ε ω k 0 4

k2

µ

 := M_FdivB 0

 := M_AdivD 4 ε ω k

Note that the constitutive relations between D and E and B and H on the initial state are not the same
as for the final state.
The D fields are equal to epsilon E times the DET of the transformation, there by converting a tensor
into a tensor density.
Simlarly the H fields are B divided by mu times the DET of the transformation -- almost.
There appears another term in the H fields on the final state due to the translation Vz. Indeed, motion
along the z axis adds to the existing Current density in the fixed frame a component that is proportional
to the moving charge density. This motion induces a component to the H field that encircles the z axis,
but DOES NOT affect the associated B fields.

THE PULLED BACK FIELD COMPONENTS E,B satisfy the MAXWELL - FARADAY PDE's in terms
of the independent variables [X,Y,Z,T] with the constraint that d(Z)/d(T) = Vz.
THE PULLED BACK FIELD COMPONENTS D,H also satisfy the MAXWELL - AMPERE PDE's in in
terms of the independent variables [X,Y,Z,T] with the constraint that d(Z)/d(T) = Vz.
> restart;with(linalg):with(liesymm):with(difforms):defform(L=0,f=0,u=0,x=0,y=0

,z=0,t=0,lambda=0,C=const,B=const,Phi=0,FF=0,phi=0,f1=0,f2=0,f3=0,JX=0,JY=0,J

Z=0,Vx=const,Vy=const,Vz=const,AX=0,AY=0,AZ=0,A4=0,ax=const,DX=0,DY=0,DZ=0,HX

=0,HY=0,HZ=0,j1=0,j2=0,j3=0,j4=0,rho=0,k=const,omega=const,JT=0,a=const,b=con

st,mu=const,epsilon=const,e=const,n=const,Omega=const,c=const,X=0,Y=0,Z=0,T=0

,r=0,alpha=0,beta=0,theta=0,ZR=const):
Warning, the protected names norm and trace have been redefined and unprotected

Warning, the protected name close has been redefined and unprotected

Warning, the names &^, d and wdegree have been redefined

>

Pullbacks of maps to Euclidean spaces.
 Rotations

R. M. Kiehn
Updated 12/03/2001

Consider a final state of independent variables, [x,y,z,t],
and a map from cartesian variables [r,theta,z,t] with the additional constraint that represents a
kinematic rotation at constant angular velocity about the z axiz. Hence d(theta)/d(t) = Omega =
constant. The electromagnetic Action 1-form A will be given in terms of abstract functions
Ax,Ay,Az,Phi, on the final state with arguments in terms of [x,y,z,t]. The pair 2-form F = dA and its
coefficients on the final state will be evaluated to yield E and B, the field intensities.
The final state will be presumed to be a euclidean space with constitutive properties in the sense that
D = epsilon E and B = mu H. Hence, on the final state, given the potentials, the field intensities can
be computed, the field excitations D, H, can be evaluated to give the impair 2-form G. From this
hypothesis (or constraint) the impair 3-form of 4 current density will be computed from the impair
2-form G, such that J=dG.
The results on the final state then will be pulled back by the combined actions of functional
substitution for the independent variables and their differentials. into the differential forms for A, F,
G and J.
For 1-forms and N-1 form densities, the pullbacks are particularly simple:
The 1-forms pull back by means of the transpose of the Jacobian matrix of the mapping.
The N-1 form densities pull back via the adjoint of the Jacobian matrix of the mapping.
The matrix elements of the Jacobian matrix need not be global constants.

The following is the procedure for computing EM fields and currents given the
potentials on the variety [x,y,z,t], with the constitutive assumption D = epsilon E, B
= mu H. The procedure also evalutes the forms A, F, G, J on the final state.
USEFUL OUTPUT FUNCTIONS ARE
AF=vector potential
SP = scalar potential
EF = E field intensity
BF = B field intensity
DF = D field excitation
HF = H field excitation
JD = current density
CD = charge density
SPC = spin current
SPD = spin density
TFC = Torsion flux
HEL = Helicity

TF = Torsion field 4 components
SP = Spin field density 4 components
P1 = First Poincare invariant density
P2 = Second Poincare invariant
A1form = pair 1-form of potentials
F2form = pair 2-form of E, B field intensities
G2form = impair 2-form of D, H excitation densities
J3form = impair 3 form of charge current densities

> JCM:=proc(Ax,Ay,Az,phi)\

 local
A,A1,A2,A3,A4,BFC,EF1,EF2,EF3,JAC,JDC,ExBC,JTOT,Jcurl,Jt,Jh,Jd,Jdt,TFCa,SFCa:

 global
A1form,AF,SP,BF,EF,TF,HEL,P1,P2,DF,HF,CD,JA,JD,SPD,SF,SFD,ExB,G2form,F2form,J3f

orm,JTT,TFC,SFC:

 A1:=Ax:A2:=Ay:A3:=Az;A4:=phi:

A:=[A1,A2,A3]:AF:=factor(simplify(A)):SP:=simplify(phi):

A1form:=A1*d(x)+A2*d(y)+A3*d(z)-A4*d(t):

 EF1:=evalm(-grad(phi,[x,y,z])):
 EF2:=-[diff(A1,t),diff(A2,t),diff(A3,t)];
EF3:=[factor(EF1[1]+EF2[1]),factor(EF1[2]+EF2[2]),factor(EF1[3]+EF2[3])];

 EF:=[EF3[1],EF3[2],EF3[3]];

 BFC:=(curl([A1,A2,A3],[x,y,z])):
 BF:=[factor(BFC[1]),factor(BFC[2]),factor(BFC[3])];
HEL:=factor(innerprod(AF,BF));TFCa:=evalm(crossprod(EF,AF)+BF*phi);

 TF:=[factor(TFCa[1]),factor(TFCa[2]),factor(TFCa[3]),HEL];

P2:=-2*factor(innerprod(EF,BF));TFC:=[factor(TFCa[1]),factor(TFCa[2]),factor(TF

Ca[3])];

 HF:=[factor(BFC[1]/mu),factor(BFC[2]/mu),factor(BFC[3]/mu)];
DF:=[factor(epsilon*EF3[1]),factor(epsilon*EF3[2]),factor(epsilon*EF3[3])];

CD:=factor(diverge([DF[1],DF[2],DF[3]],[x,y,z]));

Jcurl:=curl([HF[1],HF[2],HF[3]],[x,y,z]);

 Jh:=[factor(Jcurl[1]),factor(Jcurl[2]),factor(Jcurl[3])];

Jdt:=-[diff(DF[1],t),diff(DF[2],t),diff(DF[3],t)];

Jd:=[factor(Jdt[1]),factor(Jdt[2]),factor(Jdt[3])];JTOT:=Jh+Jd:JD:=[factor(JTOT

[1]),factor(JTOT[2]),factor(JTOT[3])];

JTT:=[factor(JD[1]),factor(JD[2]),factor(JD[3]),CD];

F2form:=evalm(innerprod(BF,[d(y)&^d(z),-d(x)&^d(z),d(x)&^d(y)])+innerprod(EF,[d

(x)&^d(t),d(y)&^d(t),d(z)&^d(t)]));

SPD:=factor(innerprod(A,DF));G2form:=(HF[1]*d(x)&^d(t)+HF[2]*d(y)&^d(t)+HF[3]*d

(z)&^d(t)-DF[1]*d(y)&^d(z)+DF[2]*d(x)&^d(z)-DF[3]*d(x)&^d(y));J3form:=innerprod

(JTT,[d(y)&^d(z)&^d(t),-d(x)&^d(z)&^d(t),d(x)&^d(y)&^d(t),-d(x)&^d(y)&^d(z)]);

SFCa:=evalm(crossprod(AF,HF)+DF*phi);SFC:=[factor(SFCa[1]),factor(SFCa[2]),fact

or(SFCa[3])];

 SFD:=[factor(SFC[1]),factor(SFC[2]),factor(SFC[3]),SPD];
 P1:=innerprod(BF,HF)-innerprod(DF,EF)-innerprod(AF,JD)+CD*phi;

ExBC:=crossprod(EF,BF);ExB:=[factor(ExBC[1]),factor(ExBC[2]),factor(ExBC[3])];

 end proc:
> MAP:=proc(X,Y,Z,T,x,y,z,t) global JAC,ADJAC,DET,TRJAC,Map:

Map:=[x,y,z,t]:JAC:=simplify(jacobian(Map,[X,Y,Z,T])):DET:=factor(simplify(de

t(JAC))):TRJAC:=simplify(transpose(JAC)):ADJAC:=simplify(adjoint(JAC)): end

proc:

>

>

>

> b:=0:c:=0:

> rr:=(x^2+y^2)^(1/2):AAA:=[z^2*y*b,-z^2*x*b,1-k^2*rr^2,c*z*y*x+omega*(1-k^2*rr

^2)/k]:

> JCM(AAA[1],AAA[2],AAA[3],AAA[4]):

The exterior differential forms as specified on the final state.
> A1form:=wcollect(factor(simplify(A1form)));F2form:=

wcollect(factor(simplify(F2form)));G2form:=

wcollect(factor(simplify(G2form)));J3form:=

wcollect(factor(simplify(J3form)));

 := A1form + () − − 1 k2 x2 k2 y2 ()d z
ω ()− + + 1 k2 x2 k2 y2 ()d t

k

 := F2form − − + + 2 k2 y ()()d y &^ ()d z 2 k2 x ()()d x &^ ()d z 2 ω k x ()()d x &^ ()d t 2 ω k y ()()d y &^ ()d t

G2form :=

− + − + 2
k2 y ()()d x &^ ()d t

µ

2 k2 x ()()d y &^ ()d t

µ
2 ε ω k x ()()d y &^ ()d z 2 ε ω k y ()()d x &^ ()d z

 := J3form − + 4 ε ω k ()&^ , ,()d x ()d y ()d z
4 k2 ()&^ , ,()d x ()d y ()d t

µ
The fields in engineering format on the final state
> R:=[x,y,z,t];Vector_potential:=AF;Scalar_potential:=factor(SP);E_field:=EF;B_

field:=BF;Poincare2:=factor(P2);D_field:=DF;H_field:=HF;rho_charge_density:=C

D;J_current_density:=(simplify(JD));;Poincare1:=factor(P1);PoyntingVector=ExB

;Torsion_flux:=factor(evalm(TFC));Helicity:=HEL;Spin_current:=factor((SFC));S

pin_density:=factor(SPD);Lagrangian_field_energy_density:=factor(simplify(inn

erprod(HF,BF)-innerprod(DF,EF)));Interaction_energy_density:=factor(AF[1]*JD[

1]+AF[2]*JD[2]+AF[3]*JD[3]-CD*SP);

 := R [], , ,x y z t

 := Vector_potential [], ,0 0 − − 1 k2 x2 k2 y2

 := Scalar_potential −
ω ()− + + 1 k2 x2 k2 y2

k

 := E_field [], ,2 ω k x 2 ω k y 0

 := B_field [], ,−2 k2 y 2 k2 x 0

 := Poincare2 0

 := D_field [], ,2 ε ω k x 2 ε ω k y 0

 := H_field








, ,−2

k2 y

µ
2

k2 x

µ
0

 := rho_charge_density 4 ε ω k

 := J_current_density








, ,0 0 4

k2

µ

 := Poincare1 −4
() + − 2 k2 x2 2 k2 y2 1 ()− + k2 ω2 ε µ

µ

 = PoyntingVector [], ,0 0 4 ω k3 () + x2 y2

 := Torsion_flux [], ,0 0 0

 := Helicity 0

 := Spin_current








, ,−2

()− + + 1 k2 x2 k2 y2 x ()− + k2 ω2 ε µ

µ
−2

()− + + 1 k2 x2 k2 y2 y ()− + k2 ω2 ε µ

µ
0

 := Spin_density 0

 := Lagrangian_field_energy_density −4
k2 () + x2 y2 ()− + k2 ω2 ε µ

µ

 := Interaction_energy_density 4
()− + + 1 k2 x2 k2 y2 ()− + k2 ω2 ε µ

µ
> R_final_variables:=R;

 := R_final_variables [], , ,x y z t

Variables on Initial State:
> X:=r:Y:=theta:Z:=z:T:=t:

>

Define the mapping functions here
ROTATION ABOUT z axis
> x:=r*cos(theta-Omega*t):y:=r*sin(theta-Omega*t):z:=z:t:=T:

>

> R_initial_variables:=[X,Y,Z,T];

 := R_initial_variables [], , ,r θ z t
> MAP(X,Y,Z,T,x,y,z,t):Mapping_fucntions:=Map;Jacobian:=evalm(JAC):DET:=DET:Adj

oint:=evalm(ADJAC);

 := Mapping_fucntions [], , ,r ()cos − + θ Ω t −r ()sin − + θ Ω t z t

 := Adjoint





















r ()cos − + θ Ω t −r ()sin − + θ Ω t 0 0
()sin − + θ Ω t ()cos − + θ Ω t 0 r Ω

0 0 r 0
0 0 0 r

The mapping represents a rotation about the z axis.

Evaluate the exterior forms on the initial state by functional
substitution and pullback:
> A1form:=wcollect(factor(simplify(A1form)));F2form:=

wcollect(factor(simplify(F2form)));G2form:=

wcollect(factor(simplify(G2form)));J3form:=

wcollect(factor(simplify(J3form)));

 := A1form − + () − k r 1 () + k r 1 ()d z
() − k r 1 () + k r 1 ω ()d t

k

 := F2form − + 2 k2 r ()()d r &^ ()d z 2 k r ω ()()d r &^ ()d t

 := G2form − + 2 k r2 ε ω Ω ()()d t &^ ()d z 2 k r2 ε ω ()()d θ &^ ()d z
2 k2 r2 ()()d θ &^ ()d t

µ

 := J3form − + 4
k2 r ()&^ , ,()d r ()d θ ()d t

µ
4 k r ε ω ()&^ , ,()d r ()d θ ()d z 4 k r ε ω ()&^ , ,()d r ()d t ()d z Ω

> Spin3form:=(A1form&^G2form);Torsion3form:=(A1form&^F2form);

 := Spin3form 2
() − k r 1 () + k r 1 r2 ()− + k2 ω2 ε µ ()&^ , ,()d z ()d θ ()d t

µ

 := Torsion3form 0
> AF_PB:=innerprod(TRJAC,[AF[1],AF[2],AF[3],-SP]);VPotential_PB:=simplify([AF_P

B[1],AF_PB[2],AF_PB[3]]);ScalarPot_PB:=simplify(-AF_PB[4]);EF_PB:=factor(simp

lify((evalm(-grad(ScalarPot_PB,[X,Y,Z])-diff(VPotential_PB,T)))));BF_PB:=fact

or(simplify(curl(VPotential_PB,[X,Y,Z])));D1:=-getcoeff(G2form&^d(X)&^d(T)):D

2:=getcoeff(G2form&^d(Y)&^d(T)):D3:=-getcoeff(G2form&^d(Z)&^d(T)):H1:=getcoef

f(G2form&^d(Y)&^d(Z)):H2:=getcoeff(G2form&^d(X)&^d(Z)):H3:=-getcoeff(G2form&^

d(X)&^d(Y)):DF_PB:=[factor(simplify(D1)),factor(simplify(D2)),factor(simplify

(D3))];HF_PB:=[factor(simplify(H1)),factor(simplify(H2)),factor(simplify(H3))

];JTPB:=innerprod(ADJAC,JTT):JD_PB:=[JTPB[1],JTPB[2],JTPB[3]];JC_PB:=JTPB[4];

Poincare2_PB:=Poincare2;Poincare1_PB:=factor(simplify(DET*Poincare1));DET:=DE

T;M_F:=evalm(curl(EF_PB,[X,Y,Z])+[diff(BF_PB[1],T),diff(BF_PB[2],T),diff(BF_P

B[3],T)]);M_A:=evalm(curl(HF_PB,[X,Y,Z])-[diff(DF_PB[1],T),diff(DF_PB[2],T),d

iff(DF_PB[3],T)]);M_FdivB:=diverge(BF_PB,[X,Y,Z]);M_AdivD:=diverge(DF_PB,[X,Y

,Z]);

AF_PB :=









, , ,0 0 − − 1 k2 r2 ()cos − + θ Ω t 2 k2 r2 ()sin − + θ Ω t 2

ω ()− + + 1 k2 r2 ()cos − + θ Ω t 2 k2 r2 ()sin − + θ Ω t 2

k

 := VPotential_PB [], ,0 0 − 1 k2 r2

 := ScalarPot_PB −
ω ()− + 1 k2 r2

k

 := EF_PB [], ,2 k r ω 0 0

 := BF_PB [], ,0 2 k2 r 0

 := DF_PB [], ,2 k r2 ε ω 0 0

 := HF_PB








, ,0 2

k2 r2

µ
−2 k r2 ε ω Ω

 := JD_PB








, ,0 4 r Ω ε ω k 4

k2 r

µ

 := JC_PB 4 k r ε ω

 := Poincare2_PB 0

 := Poincare1_PB −4
r () − 2 k2 r2 1 ()− + k2 ω2 ε µ

µ

 := DET r

 := M_F [], ,0 0 0

 := M_A








, ,0 4 r Ω ε ω k 4

k2 r

µ

 := M_FdivB 0

 := M_AdivD 4 k r ε ω

>

>

Note that the constitutive relations between D and E and B and H on the initial state are not the
same as for the final state.
The D fields are equal to epsilon E times the DET of the transformation, there by converting a tensor
into a tensor density.
Simlarly the H fields are B divided by mu times the DET of the transformation -- almost.
There appears another term in the H fields on the final state due to the rotation Omega. Indeed,
motion of the charge density about the z axis appears to create a contribution to the current density
that encircles the z axis. Such a current density induces a component of H along the z axis and
related to the rotation rate.
This rotational motion of the charge density influences the H field, but DOES NOT affect the
associated B fields.

THE PULLED BACK FIELD COMPONENTS E,B satisfy the MAXWELL - FARADAY PDE's in terms
of the independent variables [r,theta,z,t] with the constraint that d(theta)/d(t) = Omega.
THE PULLED BACK FIELD COMPONENTS D,H also satisfy the MAXWELL - AMPERE PDE's in in
terms of the independent variables [r,theta,z,t] with the constraint that d(theta)/d(t) = Omega.

> restart;with(linalg):with(liesymm):with(difforms):defform(L=0,f=0,u=0,x=0,y=0

,z=0,t=0,lambda=0,C=const,B=const,Phi=0,FF=0,phi=0,f1=0,f2=0,f3=0,JX=0,JY=0,J

Z=0,Vx=const,Vy=const,Vz=const,AX=0,AY=0,AZ=0,A4=0,ax=const,DX=0,DY=0,DZ=0,HX

=0,HY=0,HZ=0,j1=0,j2=0,j3=0,j4=0,rho=0,k=const,omega=const,JT=0,a=const,b=con

st,mu=const,epsilon=const,e=const,n=const,Omega=const,c=const,X=0,Y=0,Z=0,T=0

,r=0,alpha=0,beta=0,theta=0,ZR=const,zz=0,tt=0):
Warning, the protected names norm and trace have been redefined and unprotected

Warning, the protected name close has been redefined and unprotected

Warning, the names &^, d and wdegree have been redefined

>

Pullbacks of maps to Euclidean spaces.
 Rotations + Translations

R. M. Kiehn
Updated 12/03/2001

Consider a final state of independent variables, [x,y,z,t],
and a map from cartesian variables [r,theta,z,t] with the additional constraint that represents a
kinematic rotation at constant angular velocity about the z axiz. Hence d(theta)/d(t) = Omega =
constant. The electromagnetic Action 1-form A will be given in terms of abstract functions
Ax,Ay,Az,Phi, on the final state with arguments in terms of [x,y,z,t]. The pair 2-form F = dA and its
coefficients on the final state will be evaluated to yield E and B, the field intensities.
The final state will be presumed to be a euclidean space with constitutive properties in the sense that
D = epsilon E and B = mu H. Hence, on the final state, given the potentials, the field intensities can
be computed, the field excitations D, H, can be evaluated to give the impair 2-form G. From this
hypothesis (or constraint) the impair 3-form of 4 current density will be computed from the impair
2-form G, such that J=dG.
The results on the final state then will be pulled back by the combined actions of functional
substitution for the independent variables and their differentials. into the differential forms for A, F,
G and J.
For 1-forms and N-1 form densities, the pullbacks are particularly simple:
The 1-forms pull back by means of the transpose of the Jacobian matrix of the mapping.
The N-1 form densities pull back via the adjoint of the Jacobian matrix of the mapping.
The matrix elements of the Jacobian matrix need not be global constants.

The following is the procedure for computing EM fields and currents given the
potentials on the variety [x,y,z,t], with the constitutive assumption D = epsilon E, B
= mu H. The procedure also evalutes the forms A, F, G, J on the final state.
USEFUL OUTPUT FUNCTIONS ARE

AF=vector potential
SP = scalar potential
EF = E field intensity
BF = B field intensity
DF = D field excitation
HF = H field excitation
JD = current density
CD = charge density
SPC = spin current
SPD = spin density
TFC = Torsion flux
HEL = Helicity
TF = Torsion field 4 components
SP = Spin field density 4 components
P1 = First Poincare invariant density
P2 = Second Poincare invariant
A1form = pair 1-form of potentials
F2form = pair 2-form of E, B field intensities
G2form = impair 2-form of D, H excitation densities
J3form = impair 3 form of charge current densities

> JCM:=proc(Ax,Ay,Az,phi)\

 local
A,A1,A2,A3,A4,BFC,EF1,EF2,EF3,JAC,JDC,ExBC,JTOT,Jcurl,Jt,Jh,Jd,Jdt,TFCa,SFCa:

 global
A1form,AF,SP,BF,EF,TF,HEL,P1,P2,DF,HF,CD,JA,JD,SPD,SF,SFD,ExB,G2form,F2form,J3f

orm,JTT,TFC,SFC:

 A1:=Ax:A2:=Ay:A3:=Az;A4:=phi:

A:=[A1,A2,A3]:AF:=factor(simplify(A)):SP:=simplify(phi):

A1form:=A1*d(x)+A2*d(y)+A3*d(z)-A4*d(t):

 EF1:=evalm(-grad(phi,[x,y,z])):
 EF2:=-[diff(A1,t),diff(A2,t),diff(A3,t)];
EF3:=[factor(EF1[1]+EF2[1]),factor(EF1[2]+EF2[2]),factor(EF1[3]+EF2[3])];

 EF:=[EF3[1],EF3[2],EF3[3]];

 BFC:=(curl([A1,A2,A3],[x,y,z])):
 BF:=[factor(BFC[1]),factor(BFC[2]),factor(BFC[3])];
HEL:=factor(innerprod(AF,BF));TFCa:=evalm(crossprod(EF,AF)+BF*phi);

 TF:=[factor(TFCa[1]),factor(TFCa[2]),factor(TFCa[3]),HEL];

P2:=-2*factor(innerprod(EF,BF));TFC:=[factor(TFCa[1]),factor(TFCa[2]),factor(TF

Ca[3])];

 HF:=[factor(BFC[1]/mu),factor(BFC[2]/mu),factor(BFC[3]/mu)];
DF:=[factor(epsilon*EF3[1]),factor(epsilon*EF3[2]),factor(epsilon*EF3[3])];

CD:=factor(diverge([DF[1],DF[2],DF[3]],[x,y,z]));

Jcurl:=curl([HF[1],HF[2],HF[3]],[x,y,z]);

 Jh:=[factor(Jcurl[1]),factor(Jcurl[2]),factor(Jcurl[3])];

Jdt:=-[diff(DF[1],t),diff(DF[2],t),diff(DF[3],t)];

Jd:=[factor(Jdt[1]),factor(Jdt[2]),factor(Jdt[3])];JTOT:=Jh+Jd:JD:=[factor(JTOT

[1]),factor(JTOT[2]),factor(JTOT[3])];

JTT:=[factor(JD[1]),factor(JD[2]),factor(JD[3]),CD];

F2form:=evalm(innerprod(BF,[d(y)&^d(z),-d(x)&^d(z),d(x)&^d(y)])+innerprod(EF,[d

(x)&^d(t),d(y)&^d(t),d(z)&^d(t)]));

SPD:=factor(innerprod(A,DF));G2form:=(HF[1]*d(x)&^d(t)+HF[2]*d(y)&^d(t)+HF[3]*d

(z)&^d(t)-DF[1]*d(y)&^d(z)+DF[2]*d(x)&^d(z)-DF[3]*d(x)&^d(y));J3form:=innerprod

(JTT,[d(y)&^d(z)&^d(t),-d(x)&^d(z)&^d(t),d(x)&^d(y)&^d(t),-d(x)&^d(y)&^d(z)]);

SFCa:=evalm(crossprod(AF,HF)+DF*phi);SFC:=[factor(SFCa[1]),factor(SFCa[2]),fact

or(SFCa[3])];

 SFD:=[factor(SFC[1]),factor(SFC[2]),factor(SFC[3]),SPD];
 P1:=innerprod(BF,HF)-innerprod(DF,EF)-innerprod(AF,JD)+CD*phi;

ExBC:=crossprod(EF,BF);ExB:=[factor(ExBC[1]),factor(ExBC[2]),factor(ExBC[3])];

 end proc:
> MAP:=proc(X,Y,Z,T,x,y,z,t) global JAC,ADJAC,DET,TRJAC,Map:

Map:=[x,y,z,t]:JAC:=simplify(jacobian(Map,[X,Y,Z,T])):DET:=factor(simplify(de

t(JAC))):TRJAC:=simplify(transpose(JAC)):ADJAC:=simplify(adjoint(JAC)): end

proc:

>

>

>

> b:=0:c:=0:

> rr:=(x^2+y^2)^(1/2):AAA:=[z^2*y*b,-z^2*x*b,1-k^2*rr^2,c*z*y*x+omega*(1-k^2*rr

^2)/k]:

> JCM(AAA[1],AAA[2],AAA[3],AAA[4]):

The exterior differential forms as specified on the final state.
> A1form:=wcollect(factor(simplify(A1form)));F2form:=

wcollect(factor(simplify(F2form)));G2form:=

wcollect(factor(simplify(G2form)));J3form:=

wcollect(factor(simplify(J3form)));

 := A1form + () − − 1 k2 x2 k2 y2 ()d z
ω ()− + + 1 k2 x2 k2 y2 ()d t

k

 := F2form − − + + 2 k2 y ()()d y &^ ()d z 2 k2 x ()()d x &^ ()d z 2 ω k x ()()d x &^ ()d t 2 ω k y ()()d y &^ ()d t

G2form :=

− + − + 2
k2 y ()()d x &^ ()d t

µ

2 k2 x ()()d y &^ ()d t

µ
2 ε ω k x ()()d y &^ ()d z 2 ε ω k y ()()d x &^ ()d z

 := J3form − + 4 ε ω k ()&^ , ,()d x ()d y ()d z
4 k2 ()&^ , ,()d x ()d y ()d t

µ
The fields in engineering format on the final state
> R:=[x,y,z,t];Vector_potential:=AF;Scalar_potential:=factor(SP);E_field:=EF;B_

field:=BF;Poincare2:=factor(P2);D_field:=DF;H_field:=HF;rho_charge_density:=C

D;J_current_density:=(simplify(JD));;Poincare1:=factor(P1);PoyntingVector=ExB

;Torsion_flux:=factor(evalm(TFC));Helicity:=HEL;Spin_current:=factor((SFC));S

pin_density:=factor(SPD);Lagrangian_field_energy_density:=factor(simplify(inn

erprod(HF,BF)-innerprod(DF,EF)));Interaction_energy_density:=factor(AF[1]*JD[

1]+AF[2]*JD[2]+AF[3]*JD[3]-CD*SP);

 := R [], , ,x y z t

 := Vector_potential [], ,0 0 − − 1 k2 x2 k2 y2

 := Scalar_potential −
ω ()− + + 1 k2 x2 k2 y2

k

 := E_field [], ,2 ω k x 2 ω k y 0

 := B_field [], ,−2 k2 y 2 k2 x 0

 := Poincare2 0

 := D_field [], ,2 ε ω k x 2 ε ω k y 0

 := H_field








, ,−2

k2 y

µ
2

k2 x

µ
0

 := rho_charge_density 4 ε ω k

 := J_current_density








, ,0 0 4

k2

µ

 := Poincare1 −4
() + − 2 k2 x2 2 k2 y2 1 ()− + k2 ω2 ε µ

µ

 = PoyntingVector [], ,0 0 4 ω k3 () + x2 y2

 := Torsion_flux [], ,0 0 0

 := Helicity 0

 := Spin_current








, ,−2

()− + + 1 k2 x2 k2 y2 x ()− + k2 ω2 ε µ

µ
−2

()− + + 1 k2 x2 k2 y2 y ()− + k2 ω2 ε µ

µ
0

 := Spin_density 0

 := Lagrangian_field_energy_density −4
k2 () + x2 y2 ()− + k2 ω2 ε µ

µ

 := Interaction_energy_density 4
()− + + 1 k2 x2 k2 y2 ()− + k2 ω2 ε µ

µ
> R_final_variables:=R;

 := R_final_variables [], , ,x y z t

Variables on Initial State:
> X:=r:Y:=theta:Z:=zz:T:=tt:

>

Define the mapping functions here
ROTATION ABOUT z axis plus translation along z axis
> x:=r*cos(theta-Omega*T);y:=r*sin(theta-Omega*T);z:=Z-Vz*tt;t:=T;

 := x r ()cos − + θ Ω tt

 := y −r ()sin − + θ Ω tt

 := z − zz Vz tt

 := t tt
>

> R_initial_variables:=[X,Y,Z,T];

 := R_initial_variables [], , ,r θ zz tt
> MAP(X,Y,Z,T,x,y,z,t):Mapping_fucntions:=Map;Jacobian:=evalm(JAC);DET:=DET:Adj

oint:=evalm(ADJAC):

 := Mapping_fucntions [], , ,r ()cos − + θ Ω tt −r ()sin − + θ Ω tt − zz Vz tt tt

 := Jacobian





















()cos − + θ Ω tt r ()sin − + θ Ω tt 0 −r ()sin − + θ Ω tt Ω
− ()sin − + θ Ω tt r ()cos − + θ Ω tt 0 −r ()cos − + θ Ω tt Ω

0 0 1 −Vz
0 0 0 1

The mapping represents a rotation about the z axis.

Evaluate the exterior forms on the initial state by functional
substitution and pullback:
> A1form:=wcollect(factor(simplify(A1form)));F2form:=

wcollect(factor(simplify(F2form)));G2form:=

wcollect(factor(simplify(G2form)));J3form:=

wcollect(factor(simplify(J3form)));

 := A1form − − () − k r 1 () + k r 1 ()d zz
() − k r 1 () + k r 1 ()− − k Vz ω ()d tt

k

 := F2form − + 2 k2 r ()()d r &^ ()d zz 2 k r () + k Vz ω ()()d r &^ ()d tt

 := G2form − + 2
k r2 () + k ε ω µ Vz ()()d θ &^ ()d tt

µ
2 k r2 ε ω ()()d θ &^ ()d zz 2 k r2 ε ω Ω ()()d tt &^ ()d zz

J3form 4 k r ε ω ()&^ , ,()d r ()d θ ()d zz
4 k r () + k ε ω µ Vz ()&^ , ,()d r ()d θ ()d tt

µ
− + :=

4 k r ε ω ()&^ , ,()d r ()d tt ()d zz Ω +
> Spin3form:=(A1form&^G2form);Torsion3form:=(A1form&^F2form);

 := Spin3form 2
() − k r 1 () + k r 1 r2 ()− + k2 ω2 ε µ ()&^ , ,()d zz ()d θ ()d tt

µ

 := Torsion3form 0
>

Pullback field Components on initial state:
> AF_PB:=innerprod(TRJAC,[AF[1],AF[2],AF[3],-SP]);VPotential_PB:=simplify([AF_P

B[1],AF_PB[2],AF_PB[3]]);ScalarPot_PB:=simplify(-AF_PB[4]);EF_PB:=factor(simp

lify((evalm(-grad(ScalarPot_PB,[X,Y,Z])-diff(VPotential_PB,T)))));BF_PB:=fact

or(simplify(curl(VPotential_PB,[X,Y,Z])));D1:=-getcoeff(G2form&^d(X)&^d(T)):D

2:=getcoeff(G2form&^d(Y)&^d(T)):D3:=-getcoeff(G2form&^d(Z)&^d(T)):H1:=getcoef

f(G2form&^d(Y)&^d(Z)):H2:=getcoeff(G2form&^d(X)&^d(Z)):H3:=-getcoeff(G2form&^

d(X)&^d(Y)):DF_PB:=[factor(simplify(D1)),factor(simplify(D2)),factor(simplify

(D3))];HF_PB:=[factor(simplify(H1)),factor(simplify(H2)),factor(simplify(H3))

];JTT;JTPB:=innerprod(ADJAC,JTT):JD_PB:=[JTPB[1],JTPB[2],JTPB[3]];JC_PB:=JTPB

[4];Poincare2_PB:=Poincare2;Poincare1_PB:=factor(simplify(DET*Poincare1));DET

:=DET;M_F:=evalm(curl(EF_PB,[X,Y,Z])+[diff(BF_PB[1],T),diff(BF_PB[2],T),diff(

BF_PB[3],T)]);M_A:=evalm(curl(HF_PB,[X,Y,Z])-[diff(DF_PB[1],T),diff(DF_PB[2],

T),diff(DF_PB[3],T)]);M_FdivB:=diverge(BF_PB,[X,Y,Z]);M_AdivD:=diverge(DF_PB,

[X,Y,Z]);

AF_PB 0 0 − − 1 k2 r2 ()cos − + θ Ω tt 2 k2 r2 ()sin − + θ Ω tt 2, , ,



 :=

()− + + 1 k2 r2 ()cos − + θ Ω tt 2 k2 r2 ()sin − + θ Ω tt 2 () + k Vz ω

k






 := VPotential_PB [], ,0 0 − 1 k2 r2

 := ScalarPot_PB −
− − + + k Vz ω k3 r2 Vz k2 r2 ω

k

 := EF_PB [], ,2 k r () + k Vz ω 0 0

 := BF_PB [], ,0 2 k2 r 0

 := DF_PB [], ,2 k r2 ε ω 0 0

 := HF_PB








, ,0 2

k r2 () + k ε ω µ Vz

µ
−2 k r2 ε ω Ω









, , ,0 0 4

k2

µ
4 ε ω k

 := JD_PB








, ,0 4 r Ω ε ω k 4

k r () + k ε ω µ Vz

µ

 := JC_PB 4 r ε ω k

 := Poincare2_PB 0

 := Poincare1_PB −4
r () − 2 k2 r2 1 ()− + k2 ω2 ε µ

µ

 := DET r

 := M_F [], ,0 0 0

 := M_A








, ,0 4 r Ω ε ω k 4

k r () + k ε ω µ Vz

µ

 := M_FdivB 0

 := M_AdivD 4 r ε ω k
>

>

>

Note that the constitutive relations between D and E and B and H on the initial state are not the
same as for the final state.
The D fields are equal to epsilon E times the DET of the transformation, there by converting a tensor
into a tensor density.
Simlarly the H fields are B divided by mu times the DET of the transformation -- almost.
There appears another term in the H fields on the final state due to the rotation Omega. Indeed,
motion of the charge density about the z axis appears to create a contribution to the current density
that encircles the z axis. Such a current density induces a component of H along the z axis and
related to the rotation rate.
This rotational motion of the charge density influences the H field, but DOES NOT affect the
associated B fields.

THE PULLED BACK FIELD COMPONENTS E,B satisfy the MAXWELL - FARADAY PDE's in terms
of the independent variables [r,theta,z,t] with the constraint that d(theta)/d(t) = Omega.
THE PULLED BACK FIELD COMPONENTS D,H also satisfy the MAXWELL - AMPERE PDE's in in
terms of the independent variables [r,theta,z,t] with the constraint that d(theta)/d(t) = Omega.

>

>

>

>

>

>

>

>

