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Abstract

A formal correspondence is established between the curvature theory
of generalized implicit hypersurfaces, the classical theory of electromag-
netism as expressed in terms of exterior di®erential systems, and thermo-
dynamics. Starting with a generalized implicit surface whose normal ¯eld
is represented by an exterior di®erential 1-form, it is possible to deduce
the curvature invariants of the implicit surface and to construct a globally
closed vector density in terms of the Jacobian properties of the normal ¯eld.
When the closed vector density is assigned the role of an intrinsic charge
current density, and the components of the normal ¯eld are assigned the
roles of the electromagnetic potentials, the theory is formally equivalent to
an exterior di®erential system that generates the PDE's of both the Maxwell
Faraday equations and the Maxwell Ampere equations. The interaction
energy density between the potentials and the induced closed charge current
density is exactly the similarity curvature invariant of highest degree (N-1)
for the implicit surface. Although developed without direct contact with
M-brane theory, these ideas of generalized implicit surfaces should have
application to the study of p-branes that can have multiple components
and envelopes. The theory suggests that gravitational collapse of mass
energy density should include terms that involve the interaction between
charge-current densities and electromagnetic potentials.



1. Introduction

1.1. An overview

The origin of charge has long been a mystery to physical theory, perhaps even
more illusive than the concept of inertial mass. A major objective of this article
is to examine the conjecture that the charge-current density of electromagnetism
may have its origins in the di®erential geometry and topology of curvature and
torsion, in a sense similar to the idea that mass density and gravity have their
origins in the concept of curvature. The curvatures of interest are not those gener-
ated by a symmetric metric, but instead are those similarity invariants associated
with a generalized implicit hypersurface. The generalized implicit hypersurfaces
considered may not admit a global foliation as their normal ¯elds need not satisfy
the Frobenius integrability conditions. Hence such generalized hypersurfaces can
support topological torsion as well as curvature.
An arbitrary 1-form of Action, A0;whose coe±cient functions may be consid-

ered as a set of electromagnetic potentials; when suitably scaled, can also play the
role of the normal ¯eld to a generalized implicit hypersurface. The closure of the
exterior di®erential system, F0 ¡ dA0 = 0, always generates a system of PDE's
which contain the Maxwell-Faraday equations. When the 1-form of Action is
rescaled by use of a Holder norm, ¸; such that resulting 1-form A = A0=¸; is ho-
mogeneous of degree zero in its coe±cient functions, the curvature features of the
implicit hypersurface are completely speci¯ed in terms of the similarity invariants
of the Jacobian matrix constructed from the components of teh renormalized 1-
from, A: The curvature similarity invariant of highest degree (N-1) is de¯ned as
the Adjoint curvature, and is equal to the trace of the Jacobian Adjoint matrix.
It is now well known that given any non-closed 1-form, A0;of twice di®eren-

tiable functions, it is possible to deduce a 2-form of ¯eld intensities, F0; and to
show that the Maxwell-Faraday equations are always satis¯ed. However, without
additional assumptions, how to produce or de¯ne a globally closed charge-current
density is another matter. An algorithm from implicit surface theory will be
used herein to construct, from the intrinsic properties of the implicit surface,
such a globally closed N-1 form charge current density. The techniques thereby
demonstrate the connection between implicit surface theory and the theory of
electromagnetism. Although the Jacobian matrix to be constructed is globally
singular, it is always possible to construct algebraically the matrix of cofactors
transposed, de¯ned as the Jacobian Adjoint matrix. Remarkably, multiplication
of the covariant components of A by this singular Adjoint matrix yields an N-1
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form density, or current, Js, which is globally closed. The result is universally
valid if the coe±cients of the 1-form, A; are homogeneous of degree zero in its
component functions. The global closure implies that there exists an N-2 form
Gs such that Js ¡ dGs = 0: The conclusion is valid for any Holder norm of any
signature, of arbitrary isotropic index p, and of homogeneity index n =1. The
PDE's associated with this exterior di®erential system are known to contain the
Maxwell-Ampere equations.
These two Maxwell exterior di®erential systems lead to another N-1 form den-

sity, previously de¯ned [1] in the four dimensional case as Topological Spin, A^Gs:
This N-1 form always satis¯es the equation

d(A^Gs) = F^Gs ¡A^Js; (1.1)

and demonstrates that twice the di®erence between the magnetic and electric
energy densities of the ¯eld is cohomologous with the interaction energy density,
A^Js, generated by interaction of the Potentials and the Charge-Current density.
(It has been suggested that this formula can be put into correspondence with
the principle of equivalence, where the Field energy density F^G plays the role
of the gavitational ¯eld and the interaction energy density, A^J; plays the role
of inertial energy density [2]). If the Holder norm used to make the initial 1-
form homogeneous of degree 1 in its component functions is specialized to be of
euclidean signature, isotropic index p = 2, and homogeneity index n =1 (which
de¯nes the Gauss map), then the N-1 form Js is uniquely determined. It is a
major result of this article to show that interaction energy density, A^Js; is then
always proportional to Adjoint curvature of the implicit hypersurface constructed
from the 1-form of Action Potentials. On a four dimensional variety, A^Js is
cubic in the principle curvatures.
With respect to a process de¯ned by the induced charge-current density, Car-

tan's magic formula of topological evolution demonstrates a formal correspon-
dence to the ¯rst law of thermodynamics [3]. The internal energy density of the
physical system described by the 1-form, A; evolving in the direction ¯eld of the
closed charge-current density, Js, is exactly the coe±cient of the Interaction en-
ergy N-form, A^Js: This coe±cient is exactly equal to the Adjoint curvature of
the implicit surface. Hence a correspondence is established between the curvature
theory of implicit hypersurfaces, the charge-current density interaction, and the
internal energy of a thermodynamic system.
The implicit hypersurfaces can be put into equivalence classes depending upon

the Pfa® dimension or class of the generating 1-form. Examples indicate that,
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depending upon the Pfa® dimension, the charge current densities are proportional
to the adjoint curvatures and/or the topological torsion induced by the generalized
implicit hypersurface.

It is important to realize that the method to be discussed involves curvatures,
torsion and energy densities, but does not depend explicitly upon a metric, gauge
constraints, or the Einstein ¯eld equations. In section 2 some topological and
thermodynamic features of electromagnetism will be discussed. In section 3,
the theory of generalized implicit hypersurfaces will be developed. In section 4
a number of examples will be summarized for generalized implicit hypersurfaces
in N=3 and N=4 dimensions, demonstrating the claim that an intrinsic current
exists, and that the intrinsic charge-current interaction with the potentials is equal
to the N-1 similarity invariant of the hypersurface. The Maple programs that
generated the examples can be downloaded from the internet [4]

1.2. Some Topological and Geometrical Features of Electromagnetism

1.2.1. Charge counting, conductors and insulators

From experience it is known that a given electromagnetic charge-current density
J is conserved: dJ = 0 (the 4 vector density has zero divergence). However, a
more important result is the observation of global charge neutrality, which can
be attributed to a topological idea. As dJ = 0; is a global statement, there
exists an N-2 form, G; such that J ¡ dG = 0. This exterior di®erential system
[2] is equivalent to the Maxwell-Ampere system of partial di®erential equations.
The integral of G over a closed cycle in domains where dG = 0 yields values
whose ratios are rational (Gauss' law of counting charges). When the closed
integration domain is a boundary, the net charge enclosed is zero, yielding charge
neutrality. These topological aspects can be used to distinguish insulators from
conductors. Three dimensional insulators can be separated in the presence of
an external E ¯eld into two physical components with each component interior
enclosed by a two dimensional boundary. The external ¯eld distorts the internal
charge distribution to produce a dipole ¯eld. Each physical component remains
charge neutral when the external ¯eld is removed. Similarly three dimensional
conductors can be separated into two physical components, but the presence of
a remnant exterior electromagnetic ¯eld between the components indicates that
the closed two dimensional varieties of each component are cycles, not necessarily
boundaries. The components are said to be charged.
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1.2.2. Domains of support

It has long been respected that physical work is required to produce charge sep-
aration, and that such charge separation leads to a potential di®erence between
the charged components that can be used to produce useful work. In fact, the
conventional physics approach to understanding electromagnetism is to start with
some given distribution of charge currents and compute by some set of rules the
associated potentials. In this article, the opposite procedure is exploited. The
starting point will be given in terms of a set of potentials (functions), which can
be used to construct a 1-form of Action, A0;on a variety of independent variables.
For C2 functions, exterior di®erentiation generates the exterior di®erential system,
F0 ¡ dA0 = 0: The closure of this system is always equivalent to the system of
PDE's that are known as the Maxwell-Faraday equations. The Maxwell-Faraday
exterior di®erential system indicates that the domain of support for the 2-form
of ¯eld intensities is usually open, or compact with boundary. The only possible
exceptions are the torus and the Klein bottle. However these exceptions fail if
the 2-form is of rank 4.
In this article an algorithm is presented whereby the potentials will lead to a

well de¯ned set of charge-currents, a procedure which is opposite to the conven-
tional methods. However, the new method exploited herein has geometric and
topological signi¯cance. The 1-form of Action Potentials will be made homo-
geneous of degree zero by division by a suitable Holder norm, ¸; leading to the
expression, A = A0=¸. The Jacobian matrix of A will be constructed, as well
as its Adjoint (matrix of cofactors transposed). In this sense, the components of
1-form A can be interpreted as the normal ¯eld to an implicit hypersurface. The
similarity invariants of the Jacobian matrix determine the important curvature
features of the hypersurface. The Jacobian matrix so constructed will always be
singular and often is of maximal rank, N-1. The similarity invariant of highest
degree, N-1, is equal to the trace of the Adjoint Jacobian matrix, and is therefor
de¯ned herein as the Adjoint curvature. The adjoint curvature plays a dominant
part in the discussion that follows.
Multiplication of the components of A by the Adjoint matrix permit the con-

struction of a closed N-1 form density, which will play the role of a deduced
electromagnetic charge current density, Js: The notation (with a subscript s) is
such as to remind the reader that this current density was created from the singu-
lar Adjoint matrix generated from the 1-form of Potentials. As this N-1 form is
closed (has zero divergence globally) there exists a Gs such that Js¡dGs = 0: The
PDE's created by this exterior di®erential system are equivalent to the Maxwell-
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Ampere equations. In a space of 4 dimensions the properties of the N-2=2 form
Gs are not the same as the properties of the 2-form F0: The domain of support
for the 2-form F0 is not compact without boundary, while the domain of support
for Gs can be compact without boundary.

1.2.3. Interaction energy density

In addition, the interaction energy density, de¯ned as the N-form density,

A^Js = F^Gs ¡ d(A^Gs); (1.2)

will be computed. The term A^G in electromagnetic systems has been previously
de¯ned as "Topological Spin" [1] for it has the physical dimensions of joule-s in
electromagnetic systems. The term F^G represents twice the di®erence between
magnetic and electric energy density and changes sign from a plasma to an elec-
trostatic state. The equation is a statement of the cohomology of the two forms
of energy density. In regions where A^G is closed, the closed 3 dimensional inte-
grals of A^G have values whose ratios are rational [3] and are therefore countable.
It will be demonstrated below that this interaction density is precisely equal to
the Adjoint curvature of the hypersurface whose normal ¯eld is generated by the
1-form, A: On a variety of four dimensions, this result implies that interaction
energy between the 4 potentials and the deduced (or intrinsic) charge current
density is related to a cubic polynomial of the hypersurface curvatures, while the
Gaussian sectional curvature (and therefor mass energy density) is quadratic in
the surface curvatures. When the Jacobian matrix is of maximal rank N-2, the
interaction energy vanishes. Note that if the interaction energy density is zero,
the charge current density need not be zero. A special case exists such that if
Js is proportional to the Topological Torsion 3 form, A^dA; then the interaction
energy density vanishes due to orthogonality of its two components. This special
case will be discussed further below.

1.2.4. Topological evolution and internal energy density

Given a 1-form of Action A and a closed charge current density J; it is possi-
ble to use Cartan's magic formula [4] of topological evolution to demonstrate a
correspondence between the implicit surface theory and the ¯rst law of thermody-
namics. For evolutionary processes in the direction of the charge current density,
Cartan's magic formula becomes

L(J)A = i(J)dA+ d(i(J)A) = W + dU = Q (1.3)
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Using electromagnetic notation, on a variety fx; y; z; tg the (virtual) work 1-form
becomes

W = i(J)dA = (½E+ J£B)kdxk + (J ±E)dt (1.4)

which is recognized as the product of the Lorentz force density times the di®er-
ential displacement plus the dissipative power density times the increment dt.
In certain cases the induced charge current density, Js will be proportional to

the Topological Torsion ¯eld, A^dA = i(T )dx^dy^dz^dt: (An example of this case
is presented below). In such cases, it follows that the evolution of the implicit
surface is given by the expression,

L(J)A = L(T )A = i(T )dA+ 0 = (¡) A = (E ±B)A = Q: (1.5)

It follows that the heat 3 form and the Topological Torsion 3 form are proportional:

Q^dQ = (E ±B)2A^dA: (1.6)

From classical thermodynamics, when the process produces a heat 1-form Q which
does not admit an integrating factor, such a process is thermodynamically irre-
versible. If the coe±cient (the second Poincare invariant which is related to the
4 form F^F ) is not zero, then irreversible processes exist when the topological
torsion of the implicit surface is not zero. In order for Q to admit an integrating
factor, the Frobenius integrability condition must be satis¯ed, or Q^dQ = 0: But
if the surface 1-form is of Pfa® dimension 4, then A^dA 6= 0 , and E:B 6= 0: It
follows Q^dQ 6= 0; and such irreversible processes are artifacts of 4 dimensions.
Similarly, evaluation of the internal energy density for a process de¯ned by the

dynamics of the charge-current density becomes

U = (i(J)A) = A ± J¡ ½Á: (1.7)

which in classical ¯eld theory is de¯ned as the interaction energy density. From
the discussion above it is apparent that internal energy density is equivalent to the
coe±cient of the N form A^J , and at the same time is equal to the Adjoint curva-
ture of the implicit hypersurface. It appears that the charge current interaction
energy density, the thermodynamic internal energy density, and the adjoint cur-
vature of the implicit surface generated by the 1-form of potentials are equivalent
concepts.
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1.2.5. Gauge constraints are not used.

It is to be noted that given an N-1 form, Js; the N-2 form Gs that satis¯es the
exterior di®erential system Js ¡ dGs = 0 is not unique. Any closed N-2 form,
q; such that dq = 0, may be added to Gs without changing the result of the
exterior di®erential system. The same can be said for the 2-form F0; there are
many closed 1-forms °; such that d° = 0, that can be added to the 1-form A0
and yet the exterior di®erential system yields the same values for F0: It is the
closed integrals of the closed but not exact components of q that determine the
quantized charges. It is the closed integrals of closed but not exact components
of ° that determine the quantized °ux quanta. These concepts of ambiguity and
non-uniqueness are often parlayed into speci¯c theories, called gauge theories,
where the non-uniqueness is restricted in form to some equivalence class. These
problems of speci¯c gauge equivalence class are not pertinent herein, for the results
are formulated to be valid without a speci¯cation of gauge.
Classic Maxwell theory, as written in terms of the ¯elds E and B only, is often

said to be a U(1) gauge theory. However, when written in the language of exte-
rior di®erential forms, Maxwell theory is not a U(1) gauge theory. The solution
¯elds are not limited to those that can be constructed from complex functions.
The topological Maxwell formulation is well behaved with respect to the general
linear group, and with respect to di®erentiable maps without inverse. It is the
imposition of zero charge current density (no interaction energy density) and the
Lorentz constitutive constraint that reduces the general Maxwell theory to a U(1)
gauge group theory [5]. The usual constraints are such that the both F^G and
A^J vanish simultaneously. The constitutive constraints typically imposed are
of the form B = ¹H and D = ²E with the understanding that ²¹c2 = 1 and
B ± B¡ E ±E=c2 = 0: An alternate formulation by Bateman [6] and Whittaker
leads to the constitutive constraint,D = ®B andH = ¯E; with the understanding
that (®¡¯) (E ±B) = 0, The ¯rst case can be extended to include birefringence
and Faraday rotation, while the second case generalizes to include rotational ac-
celeration (Sagnac) e®ects and Optical Activity. Both simple formulations lead
to the result that F^G = 0; which implies that the N-1 form A^G is closed.
Hence (subject to the constraints) over closed N-1 manifolds which are cycles, the
integrals of the Topological Spin N-1=3 form can have ratios which are rational.
The closed integrals are evolutionary deformation invariants, and thereby carry
topological information.
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1.2.6. Dissipation

It is of some importance to note, in certain topological circumstances, that the
Jacobian induced currents, Js; occur without the presence of E or B ¯elds, (when
dA0 = F0 = 0) or for other situations where E or B ¯elds are present (where
F0 6= 0); but where the dissipation coe±cient J:E is zero. The implicit hyper-
surface method thereby seems to o®er an alternative, non-quantum mechanical,
understanding of what otherwise would be called superconducting currents. In
the ¯rst case, the B ¯eld is excluded (Meisner e®ect) from the superconducting
region, and in the second case (Hall e®ect) a large B ¯eld is present along with a
non-dissipative current.
If the adjoint curvature of the generalized hypersurface is zero, then either

the charge current density is zero, or the charge current density resides in the
hypersurface, and thereby is orthogonal to the surface normal. In the latter
special case, the direction ¯eld of the charge current density is proportional to the
Topological Torsion vector [2] generated by the 3-form A^dA. Examples below
indicate that there is a correlation between non-zero adjoint curvature and/or
topological torsion and the existence of a charge current density.

2. Implicit Hypersurfaces

The algebra of the processes to be described can be staggering, especially for older
folks who do not see too well. Hence a Maple program [9] has been provided to
make the computation of examples a bit faster.

2.1. The normal and tangent ¯elds

The classic implicit surface is generated by assigning a constant value to a function,
Á(x; y; z::): It is important to recall that an implicit surface, in contrast to a
parametric surface, can consist of more than one disconnected components. The
gradient ¯eld to the given function represents a normal ¯eld to the surface, and
tangent vectors which reside on the surface are orthogonal to the normal ¯eld
at all points. As the normal ¯eld for the classic implicit surface is a gradient
¯eld, its associated 1-form is exact. If this normal gradient ¯eld is rescaled by
a factor such that is homogeneous of degree zero in its functional arguments,
then the Jacobian matrix of the rescaled normal ¯eld can be used to generate the
curvatures of the implicit surface.
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This procedure can be extended to the study of generalized implicit surfaces
whose normal ¯eld is not representable by an exact 1-form. The 1-form represent-
ing the normal ¯eld can have arbitrary Pfa® dimension. If the Pfa® dimension
of the 1-form is greater than 2, then the implicit surface can support topological
torsion, A^dA 6= 0: It is necessary that the Pfa® dimension be greater than 2
if the implicit surface admits an envelope. A N-1 tangent vector basis can be
constructed algebraically from the 1-form that represents the normal ¯eld. In
the language of exterior di®erential forms, the tangent vectors, e, have been de-
scribed as the associate vectors relative to the 1-form A0, and satisfy the equation,
i(e)A0 = 0: The array of tangent vectors and the normal ¯eld can be used to
form a ND basis at any point in the implicit surface.

In fact it follows that starting from an arbitrary 1-form, de¯ned herein as the
Action 1-form of Potentials, A0; on a variety of independent variables (x; y; z; :::);
it is possible to develop the curvature properties of the generalized implicit surface
algebraically after admitting only one di®erentiation process. The components
of A0 will play the role of the normal ¯eld.

2.2. The homogeneous Holder norm and similarity curvature invariants.

After division by a suitable function of the coe±cient potentials, ¸; the original
1-form of Action

A0 = (U(x; y; z; :::)dx+ V (x; y; z; :::)dy +W (x; y; z; :::)dz:::); (2.1)

can be made homogeneous of degree zero in terms of those coe±cient functions
that de¯ne the potentials. It is to be emphasized that the homogeneity condi-
tion is not on the arguments of the coe±cients, but on the coe±cient functions
themselves. The scaling function of choice, ¸; is a Holder norm and is de¯ned in
terms of the covariant coe±cients of the 1-form:

¸ = (aUp + bV p + cW p + :::)n=p: (2.2)

The index n will be de¯ned as the homogeneity index; the index p will be described
herein as the isotropic index, and the constants (a; b; c:::) are constant scale factors
whose signs determine the signature. By choosing the index n to be unity, n = 1,
the 1-form, A, de¯ned as

A = A0=¸ = (Udx+ V dy +Wdz:::)=¸ = Akdx
k (2.3)
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becomes homogeneous of degree zero in its coe±cients. That is if every coe±-
cient function is increased by a factor ¯ then the coe±cient function Ak does not
change. This homogeneous degree zero 1-form, A0=¸; is used to de¯ne an im-
plicit hypersurface in the variety, whose geometrical properties can be expressed
classically in terms of the similarity invariants of the associated singular Jaco-
bian dyadic (or matrix). Classically these similarity invariants are "symmetric"
functions of the surface curvatures. Examples are given below.
The doubly covariant Jacobian dyadic of coe±cients is de¯ned as the matrix

of functions

Jacobian(A) = [@Am=@x
n] = [JAC(A)]mn = [J] (2.4)

The determinant of the Jacobian matrix so constructed (n = 1, any a; b; c:::; p) )
is always zero, indicating the existence of at least one zero eigen value (curvature
or reciprocal radius). Hence the Jacobian matrix so constructed is singular, and
induces a singular metric on the variety via the pullback [g] = [J]Transpose ± [J]:
The zero determinant result also implies the existence of a global N-1 dimen-
sional variety which in e®ect de¯nes the implicit (hyper) surface. It is a standard
geometrical procedure to construct the symmetric similarity invariants of the Ja-
cobian matrix by forming the Cayley-Hamilton characteristic polynomial. Note
that the induced symmetric metric [g] does not carry the complete story of the
surface properties inherent in the Jacobian dyadic, for the Jacobian matrix is not
necessarily symmetric. As pointed out by Brand [7], the anti-symmetric compo-
nents of the Jacobian dyadic also have important invariance properties. These
additional invariants are developed in terms of the 2-form F = dA:

2.3. A globally closed current from the adjoint matrix

Next construct the doubly contravariant matrix
h
bJ
i
equal to the adjoint (matrix

of co-factors transposed) of the doubly covariant Jacobian matrix. This adjoint
matrix exists algebraically, even though the inverse of the singular Jacobian ma-
trix, and the inverse of the induced singular metric does not. Use the adjoint
matrix to construct the contravariant vector current, jJsi ;

jJsi = [ADJ(A)]mn ± jAi = [bJ]nm ± jAi ; (2.5)

and the N-1 form density, Js :
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Js = i(Js)dx^dy^dz::: (2.6)

Remarkably for any Holder norm with n = 1, arbitrary signature, arbitrary scale
factors, and arbitrary exponent p, the N-1 form, Js, is closed.

dJs = 0 for n = 1 (2.7)

As this closure result is global, it follows that Js ¡ dGs = 0; : which is equivalent
to the Maxwell-Ampere equations. The subscript s is used to distinguish the
fact that Js has been deduced from the singular Jacobian matrix, and does not
explicitly depend upon the ¯eld intensities, F0 = dA0 and some arbitrary consti-
tutive constraint between F and G: Note that given a Js the corresponding Gs is
not uniquely determined. The N-2 form density, Gs; may have closed and exact
components as well as closed non-exact components, neither of which contribute
to a speci¯c Charge-Current.

It is to be noted the induced metric is singular and therefor cannot be used to
de¯ne a raising tensor as an inverse metric. Yet a raising tensor ¯eld [bJ]nm can
be functionally well de¯ned in terms of the Adjoint of the Jacobian matrix. This
raising tensor ¯eld, unlike a non-singular metric inverse ¯eld, is not symmetric.
Moreover the Adjoint method applies to 1-forms (and therefor hypersurfaces) that
do not satisfy the Frobenius condition of unique integrability. Hence, topological
torsion, de¯ned as the 3-form, A0^dA0; need not be zero. It will be demonstrated
below that when the Holder norm is specialized to the Gauss map, a = b = c =
::: = 1; p = 2; n = 1; then the coe±cient of the interaction N form density,
A^Js; is equal to the (N ¡ 1)th similarity invariant of the Jacobian ¯eld. For all
implicit surfaces, simple or not, this similarity invariant is equal to the trace of
the Jacobian Adjoint matrix and is equal to the sum of all possible products of
degree N-1 of the eigen values of the Jacobian matrix. This similarity invariant
will be de¯ned as the Adjoint Curvature of the implicit surface. In 3 dimensions
the Adjoint curvature of simple implicit surfaces is equal to the Gauss sectional
curvature.

2.4. The adjoint curvature and the interaction energy

In summary, a well de¯ned procedure has been implemented to deduce a consistent
exterior di®erential system in Maxwell - Electromagnetic format, starting from a
set of potentials that de¯ne the coe±cients of a 1-form of Action, A0: It follows
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that the exterior di®erential system F ¡ dA = 0 is always equivalent to the
system of PDE's known as the Maxwell-Faraday equations. The induced system
described above, Js ¡ dGs = 0; generates the system of PDE's known as the
Maxwell-Ampere equations. Note that no constitutive or duality constraints
have been subsumed. It is known that the two combined exterior di®erential
systems lead to a N-1 form, previously de¯ned as topological spin, A^G; and a
third exterior di®erential system, d(A^G) ¡ F^G + A^J = 0: The last term,
de¯ned as the interaction energy and equal to A^Js; can be evaluated in terms of
the curvature invariants of the implicit hypersurface generated by the 1-form of
Action Potentials. It is remarkable that the term A^Js is equal to the volume
element multiplied by the (N ¡ 1)th similarity invariant, de¯ned as the Trace[bJ]:

Interaction energy = A^Js = Trace[bJ]dx^dy^dz::: (2.8)

As the (N ¡ 1)th similarity invariant can be interpreted in terms of a polynomial
cubic in the curvatures of the hypersurface in 4D, it would appear that concept of
the interaction energy between the charge current density and the potentials can
be related to an expression cubic in the curvatures of the associated hypersurface.

3. Examples

The following examples will display some of the features of the theory of general-
ized implicit hypersurfaces in 3 and 4 dimensions. The 3D examples can be of two
physically interesting categories based on the coordinate sets fx; y; zg and fx; y; tg
From an electromagnetic interpretation, the ¯rst category has the properties of a
3D plasma. The second category admits an E ¯eld as well as a B ¯eld. Each
of these 3D categories can be viewed as special cases of the 4D category based
on coordinate variables of the type fx; y; z; tg In addition there is a topologi-
cal re¯nement of the categories which depend upon the Pfa® dimension of the
1-form, A0; used to model the normal direction ¯eld of the implicit hypersurface.
Most classical developments of implicit simple surface theory study those cases
where the Pfa® dimension of the 1-form,.A, is unity. Such spaces do not support
topological torsion. A rotating spherical surface does not support torsion. An
expanding spherical surface does not support torsion. However an expanding and
rotating spherical surface does support topological torsion.
Make sure you are aware that symbolic math programs using Maple programs

[9] have been provided for you to check the details and extend the examples
presented below.
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3.1. Simple surfaces of one component in 3D.

For simplicity, consider those surfaces generated by ¯xed values assigned to func-
tions of the form Á = f(x; y) ¡ z: Such surfaces are of a single component and
do not support a non-zero 2-form The di®erential of the function Á generates the
exact 1-form

A0 = (@Á=@x)dx+(@Á=@y)dy+(@Á=@z)dz = (@f=@x)dx+(@f=@y)dy¡dz (3.1)

The 1-form associated with such surfaces is of Pfa® dimension 1. Choose the
Holder norm equivalent to the Gauss map

¸ = f(@f=@x)2 + (@f=@y)2 + 1g1=2: (3.2)

and construct the homogenous of degree zero 1-form

A = A0=¸: (3.3)

The homogeneous 1-form, A, can be of Pfa® dimension 2. Form the Jacobian
matrix, [@Am=@x

n] = [J] ; of the covariant components of the 1-form, A;and con-
struct the similarity invariants, and the induced current. For this simple surface
it is assumed that Á is linear in z. The determinant of the Jacobian matrix
vanishes, which implies that the Jacobian matrix is singular and has no inverse.
The remaining similarity invariants are:

Mean Curvature = ¡1=2f(@2f=@x2)(1 + (@f=@y)2) + (@2f=@y2)(1 + (@f=@x)2)
¡2(@f=@x)(@f=@y)@2f=@x@yg=¸3 (3.4)

and

Adjoint Gauss Curvature = Trace[bJ]
= f(@2f=@x2)(@2f=@y2)¡ (@2f=@x@y)2g=¸4(3.5)

The induced current is of the form, [0; 0; Jz] where

Jz = f(@2f=@x2)(@2f=@y2)¡ (@2f=@x@y)2g=¸3: (3.6)

It follows that the N-form A^J becomes
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A^Js = (Adjoint Gauss Curvature) dx^dy^dz

= f(@2f=@x2)(@2f=@y2)¡ (@2f=@x@y)2gdx^dy^dz=¸4 (3.7)

and the coe±cient of the interaction is precisely equal to the Adjoint curvature,
which is equivalent to the classic Gauss curvature of the implicit surface in the 3
dimensional variety.
For exact 1-forms, the 2-form F0 = dA0 vanishes. Hence the general formula

A0^Js = F0^Gs ¡ d(A0^Gs) (3.8)

becomes

A^Js = ¡d(A0^Gs)=¸: (3.9)

This result is equivalent to the Chern statement of the Gauss-Bonnet theorem:
the Gauss curvature is integrable [9].
The singular induced (pullback) metric is given by the expression,

[g] =

2
4
(@2f=@x2)2 + (@2f=@x@y)2 (@2f=@x@y)(@2f=@x2 + @2f=@y2) 0
(@2f=@x@y)(@2f=@x2 + @2Á=@y2) (@2f=@y2)2 + (@2f=@x@y)2 0
0 0 0

3
5 =¸2;

(3.10)
and can be used to construct a line element, (ds)2 on the two dimensional sub-
space.

3.2. Classical Implicit Surfaces with more than one component in 3D.

The classic implicit surface is de¯ned by ¯xed values assigned to non-linear func-
tions of the form Á(x; y; z): The di®erential of the function Á generates the exact
1-form of Pfa® dimension 1:

A0 = (@Á=@x)dx+ (@Á=@y)dy + (@Á=@z)dz: (3.11)

As before, choose the Holder norm equivalent to the Gauss map

¸ = f(@Á=@x)2 + (@Á=@y)2 + (@Á=@z)2g1=2: (3.12)
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and construct the homogenous of degree zero 1-form (which can be of Pfa® di-
mension 2):

A = A0=¸: (3.13)

Create the Jacobian matrix, [@Am=@x
n] ; of the covariant components of the 1-

form, A;and construct the similarity invariants, and the induced current. Note
that the Jacobian matrix is symmetric. The determinant of the Jacobian van-
ishes indicating the matrix is singular and without inverse. Then the remaining
similarity invariants are constructed from the trace of the Jacobian matrix and
the trace of the Adjoint matrix. The curvature formulas are best computed via
a symbolic math program such as Maple [9].

The mean curvature becomes

Mean Curvature (3.14)

= ¡f2(@Á=@x)(@Á=@y)(@2Á=@x@y)¡ @2Á=@z2
¡
(@Á=@y)2 + (@Á=@x)2

¢

+2(@Á=@y)(@Á=@z)(@2Á=@z@y)¡ @2Á=@x2
¡
(@Á=@y)2 + (@Á=@z)2

¢

+2(@Á=@z)(@Á=@x)(@2Á=@x@z)¡ @2Á=@y2
¡
(@Á=@x)2 + (@Á=@z)2

¢
g=3¸3

and the Adjoint - Gauss curvature becomes

Adjoint¡Gauss Curvature (3.15)

= ¡f2(@Á=@x)(@Á=@y)(@2Á=@x@y)(@2Á=@z2)¡ (@2Á=@y2)(@2Á=@x2)(@Á=@z)2
+2(@Á=@y)(@Á=@z)(@2Á=@z@y)(@2Á=@x2)¡ (@2Á=@z2)(@2Á=@y2)(@Á=@x)2
+2(@Á=@z)(@Á=@x)(@2Á=@x@z)(@2Á=@y2)¡ (@2Á=@x2)(@2Á=@z2)(@Á=@y)2
+(@Á=@x)2(@2Á=@y@z)2 + (@Á=@y)2(@2Á=@z@x)2 + (@Á=@z)2(@2Á=@x@y)2

¡2(@Á=@x)(@Á=@y)(@2Á=@z@x)(@2Á=@z@y)
¡2(@Á=@y)(@Á=@z)(@2Á=@x@y)(@2Á=@x@z)
¡2(@Á=@z)(@Á=@x)(@2Á=@x@y)(@2Á=@x@z)g=¸4

The induced current Js may be computed by multiplying the components of
A with the Adjoint matrix relative to the Jacobian matrix, and it may be shown
that the interaction N form is precisely equal to the volume element multiplied
by the trace of the Adjoint matrix.

A^Js = (Adjoint Gauss Curvature) dx^dy^dz (3.16)
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3.3. Implicit surfaces of the Bateman type

A generalized implicit surface generated by a 1-form which is of Pfa® dimension
2 has a representation of the Bateman type. That is, A0 = ®(x; y; z)db(x; y; z):
The procedures are the same as above. Choose a Holder norm in the form of a
Gauss map such that

¸ = ®f(@¯=@x)2 + (@¯=@y)2 + (@¯=@z)2g1=2: (3.17)

Compute the Jacobian matrix which now can have an anti-symmetric part

3.4. Non integrable 2-surfaces in 3D

The procedure is the same as above, except now the 1-form A0 has arbitrary
coe±cients,

A0 = U(x; y; z)dx+ V (x; y; z)dy +W (x; y; z)dz = (3.18)

As before, choose the Holder norm equivalent to the Gauss map

¸ = f(U)2 + (V )2 + (W )2g1=2: (3.19)

and construct the homogenous of degree zero 1-form

A = A0=¸: (3.20)

Form the Jacobian matrix, [@Am=@x
n] ; of the covariant components of the 1-form,

A;and construct the similarity invariants, and the induced current. The results
are the same for the interaction N-form A^J::

A^Js = (Adjoint Curvature) dx^dy^dz (3.21)

It should be remarked that the same procedures are valid in dimension N. If
Vol is the N dimensional di®erential volume element, then in N dimensions,

A^Js = (Adjoint Curvature) V ol (3.22)

The computations can be lengthy, and it is advised that the symbolic math pro-
gram provided be used [9].
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3.5. An interpretation in terms of Electromagnetism

3.5.1. The 3-D Variety is Spatial: (x,y,z)

In this example, the variety of independent variables fx; y; zg; is presumed to be
independent of time. Given the 1-form A0 = Udx + V dy +Wdz; it is possible
to construct the ¯eld intensities, F0 = dA0 on the presumption that the 1-form
is the 1-form of Action potentials for an electromagnetic ¯eld. By construction
there is no time dependence and no scalar potential on the 3 D spatial domain.
The 2-form F of ¯eld intensities consists of 3 components related to the curl of
the vector potential, A0 = [U; V;W ] :

B0 = curlA0: (3.23)

By computing the Jacobian matrix of the rescaled 1-form, A; which is homoge-
neous of degree 0, the above procedures lead to a divergence free current. This
current is a globally closed N-1=2-form, and so is related to the exterior derivative
of some N-2=1-form. In this example, the 1-form of ¯eld excitations is de¯ned
by the symbolism,

G = Hxdx+Hydy +Hzdz = H ± dr: (3.24)

It follows that the induced current is of the form

Js = curlH; (3.25)

but although there is a current there is no analogue to a charge density distribution
for the time independent 3 dimensional format.
The interaction N=3-form becomes

A^Js = (Adjoint Gauss Curvature) dx^dy^dz

= (A ± Js)dx^dy^dz (3.26)

The topological Spin N{1=2 form becomes

A0^G = i(A0£H)dx^dy^dz (3.27)

and has a divergence equal to the ¯rst "Poincare" invariant,

d(A0^G) = f(B0 ±H)¡ (A ± Js)gdx^dy^dz: (3.28)
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(The symbol i(A0£H) is used for interior product operator and should not be
confused with the imaginary

p
¡1). The result is remarkable for it implies that

the closed integral of the magnetic energy density (B0 ±H) minus the Gaussian
curvature times ¸; (or A0 ±Js) of the surface created by the non-exact 1-form, A0,
is an invariant of any steady °ow process on the variety fx; y; zg:
Note that it is not apparent nor true that B0 is linearly related to H, where

curlH is the source of the Adjoint closed current. As the 1-form is not necessarily
integrable, the helicity A0 ± B0 is not necessarily zero. In hydrodynamics, the
spatial parts of the Action 1-form can be related to the °uid dynamics velocity
¯eld, and theB0 ¯eld is the °uid vorticity. In the integrable case the two direction
¯elds associated with A0 and B0 form a surface (the Lamb surface).
Note that for the non-exact hypersurfaces in 3 dimensions, the similarity in-

variant is no longer a perfect di®erential, but is modi¯ed by the presence of the
enstrophy (sqaure of the vorticity or B0 ¯eld). This example and others are
displayed in [9].

3.5.2. The 3D Variety is 2+1 time dependent (x,y,t)

In this example, the variety of independent variables fx; y; tg; is presumed to
consist of two spatial variables and time. Given the 1-form A0 = Udx+V dY¡Ádt;
it is possible to construct the ¯eld intensities, F0 = dA0 on the presumption that
the 1-form is the 1-form of Action potentials for an electromagnetic ¯eld. Each
of the component functions can be functions of fx; y; tg and Á(x; y; t) will play
the role of the scalar potential. The 2-form of ¯eld intensities, F consists of one
magnetic component, orthogonal to the xy plane (which means that it is in the t
direction), and two electric components. In engineering format:

Bt = @V=@x¡@U=@y Ex = ¡@U=@t¡@Á=@x Ey = ¡@V=@t¡@Á=@y (3.29)
By computing the Jacobian matrix of the rescaled 1-form which is homogeneous of
degree 0, the above procedures lead to a divergence free current. This divergence
free current is a globally closed N-1=2-form, and so is related to the exterior
derivative of some N-2=1-form. In this example, the 1-form of ¯eld excitations
is de¯ned in terms of the symbols,

Gs = D
ydx¡Dxdy +H tdt: (3.30)

It follows that, in engineering notation, the induced close current has the classic
format,

Js = [@ H t=@y + @ Dx=@t; @ H t=@x+ @ Dy=@t;+@Dy=@x+ @Dx=@x](3.31)
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' [curlHt + @D=@t]

½ = divD: (3.32)

In contrast to the previous example, it is now apparent that this time dependent
system can have a non-zero charge distribution as well as a current. Note that
the format for Gs is the canonical form of the Heisenberg system.
The interaction N=3-form becomes as before,

A^Js = (Adjoint Gauss Curvature) dx^dy^dz

= (A ± Js ¡ ½Á)dx^dy^dz: (3.33)

The topological Spin N{1=2 form becomes in component form,

A0^Gs ) [A0H
t +DÁ;A ±D]; (3.34)

and has a divergence equal to the ¯rst "Poincare" invariant,

d(A0^Gs) = f(BtH t ¡D ±E)¡ (A0 ± Js ¡ ½Á0)gdx^dy^dz: (3.35)

The result is remarkable for it implies that the closed integral of the Lagrangian
energy density (BtH

t¡D:E) minus the Gaussian curvature times ¸; (or A0 ±Js¡
½Á0) of the surface created by the non-exact 1-form, A0, is an invariant of any
°ow process on the variety fx; y; tg: For details see [9].

3.6. Four Dimension Hypersurfaces

In four dimensions, the analysis above continues to be true, with the fundamental
result that the interaction density is related to the Adjoint curvature of the hy-
persurface de¯ned by the 1-form of Action with coe±cients that are homogeneous
of degree zero. However, in 4 dimensions, it is possible to distinguish between the
mean curvature, Mean, the Gauss sectional curvature, Gauss, and the Adjoint
curvature, Kubic. The set fH;M;Kg are known as the similarity invariants of
the Jacobian matrix. The Mean curvature, Mean, is proportional to the sum of
the eigen values. The Sectional Gauss curvature Gauss is related to the sum of
the three paired products of the eigenvalues of the Jacobian matrix For the 1-form
which has been made homogeneous of degree zero in its component functions, the
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Adjoint curvature Kubic is the unique product of the three non-zero eigen values
of the Jacobian matrix. . Again the interaction energy density N=4 form, A^Js
has a coe±cient exactly equal to the Adjoint similarity invariant, if the Holder
norm is equivalent to the Gauss map with isotropic index p=2 and homogeneity
index n = 1.
This observation yields a remarkable di®erence between mass energy density

(related to Gaussian sectional second order curvature) and interaction energy
density between the charge current density and the potentials (related to the
Adjoint third order curvature). There are three situations of interest: Case
1, the charge-current density is zero, so that Js = 0 and A^Js = 0 ; Case 2,
the charge-current density is not zero, so that Js 6= 0 but A^Js = 0 because of
orthogonality; Case 3, the charge current density is not zero and not orthogonal to
1-form of Action, such that A^Js 6= 0, and Js 6= 0: On a space of N = 4 dimensions
there are 3 direction ¯elds that are orthogonal to the one form of potentials. If
the 1-form A is of Pfa® dimension 4, then there is a unique vector direction ¯eld
V such that i(V )dA = ¡A; and yet V is orthogonal to A: This direction ¯eld
is determined by the topological torsion vector A^dA;with ¡ proportional to the
coe±cient of the 4 form of topological parity, dA^dA: When ¡ ) 0, the Pfa®
dimension is three, and the direction ¯eld generated by the topological torsion 3-
form, A^dA; becomes a characteristic vector ¯eld of the 1-form A: Characteristic
vector ¯elds are homeomorphisms that preserve topology.
Examples indicate that Case 1, Js = 0; is satis¯ed if the scalar potential is zero

(any vector potential) or if the vector potential is zero (any scalar potential), for
then the charge current density does not exist and the Adjoint curvature vanishes.
The case which admits only a Scalar potential yields a system with E ¯elds and
no B ¯elds. A time independent Vector potential without a scalar potential
yields the opposite situation with B ¯elds and no E ¯elds. The Time dependent
vector ¯eld case admits both B ¯elds and E ¯elds.
Examples indicate that Case 3 is usually satis¯ed if the 1-form of potentials has

both a scalar and vector components which are both time and space dependent.
A special situation occurs if the potentials are not explicitly time dependent, for
then the spatial current density is zero but the charge density is not zero. The
Adjoint curvature is not zero, and the interaction energy density does not vanish.
This example gives credence to the suggestion that the origin of charge density
is cubic curvature. The time independent case can support non zero topological
Torsion and non-zero topological Parity.
In the examples presented below, it appears that if a charge current density
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exists, and it is not related to an irreversible process, then it is related to the
third order curvature invariants of the implicit surface de¯ned by the 1-form of
Potentials. The algebra is a bit formidable. Hence a Maple program is presented
[9] for which the reader can verify the computations, and modify the program
to check his own hierarchy of examples. Only the results of the computations
are described here. Only the isotropic Holder norm equivalent to the Gauss
map, where p = 2, n =1 and with euclidean signature, is utilized in the examples
presented below unless speci¯ed otherwise. The utility of the other Holder norms,
that leace the coe±cients of the 1-form homogeneous of degree zero have not been
studied.

3.6.1. 4D Example 1, Time dependent Scalar potential only

When applied to a 1-form that consists of a single (time and spatially dependent)
scalar potential,

A0 = ¡Á(x; y; z; t) dt; (3.36)

it follows that the implicit surface is °at. All of the curvature similarity invariants
vanish. First, renormalize A0 by dividing through by a Holder norm, ¸; such as
to make the new 1-form homogeneous of degree 0. Then construct the Jacobian
matrix of the components of A = A0=¸. It follows for the example that all of the
curvature similarity invariant vanish.

Mean = 0; (3.37)

Gauss = 0 (3.38)

Kubic = 0: (3.39)

There is zero induced charge current density; Js = 0: There can be an electric
¯eld, E, but no magnetic ¯eld, B. The interaction energy as well as the Adjoint
curvature are zero; A^Js = 0. The Pfa® dimension of the 1-form is at most
2. The hypersurface may be considered to be a 3-plane orthogonal to the time
coordinate. If the scalar potential is independent from time, the problem is
related to classical electrostatics. The implicit surface is °at, without bending or
tension. The Coulomb potential falls into this class of examples.
If the Jacobian matrix is used to de¯ne a class of right Cartan connection

coe±cients, the such spaces are without structure. All of the similarity invariants
of the Frame matrix are zero. Such is the case for the euclidean (or Lorentzian)
equivalence class of spaces.
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3.6.2. 4D Example 2, Time dependent or time independent Vector po-
tentials only

In this example,the 1-form is presumed to be of the form

A0 = Ax(x; y; z; t)dx+Ay(x; y; z; t)dy +Az(x; y; z; t)dz; (3.40)

The time dependent potentials admit both a magnetic ¯eld B and an electric
¯eld E; and the time independent potentials only admit a B ¯eld.. The invariant
Adjoint Jacobian technique indicates that a charge current density is not induced,
Js = 0; and the interaction energy is identically zero, A^Js = 0. The time depen-
dent potentials are of Pfa® dimension 4, and can support non-zero Helicity and
non-zero Parity without inducing a charge current density. The time indepen-
dent potentials are Pfa® dimension 3, hence the topological parity, F^F; is zero
and the closed integrals of topological torsion have rational ratios. The Gaussian
curvature and the mean curvature are not necessarily zero, although the Adjoint
curvature is always zero; A^Js = 0. Hence the 3D hypersurface has degenerated
into a 2 dimensional surface in 4 dimensions.

Mean 6= 0; (3.41)

Gauss 6= 0 (3.42)

Kubic = 0: (3.43)

The equivalence class of spaces generated by the Jacobian as a frame matrix
are not °at, and have structure. However such spaces can be reduced to two
dimensional hypersurfaces.

3.6.3. 4D Example 3, Vector and Scalar Potentials without explicit time
dependence.

In this example,the 1-form is presumed to be of the form

A0 = Ax(x; y; z)dx+Ay(x; y; z)dy +Az(x; y; z)dz ¡ Á(x; y; z)dt: (3.44)

The results of the formalism indicate that there is no spatial current density,
but there can exist a charge density. The adjoint curvature is not necessarily
zero, A^Js 6= 0 .
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Mean 6= 0; (3.45)

Gauss 6= 0 (3.46)

Kubic 6= 0: (3.47)

The Pfa® dimension can be as high as 4, with the 1-form supporting both a
Helicity 3-form and a Parity 4 form. The similarity invariants indicate that the
equivalence class of such spaces is related to 3 dimensional hypersurfaces.

3.6.4. 4D Example 4, Bateman - Whittaker solutions

In this example,the 1-form is presumed to be of the form

A0 = ®(x; y; z; t)d¯(x; y; z; t): (3.48)

The results of the formalism indicate that there can be both a current density and
a charge density, Js 6= 0. The Pfa® dimension is 2 or less. The Helicity 3 form
and the Parity 4-form vanish. The E ¯eld and B ¯eld are always orthogonal.
However, if the function ¯ is independent from time (but ® remains explicitly time
dependent) then the Adjoint curvature and the induced charge current density also
vanish. The 3D hypersurface reduces to a 2D hypersurface that supports mean
and Gauss curvature, but not cubic curvature invariants, A^Js = 0.

Mean 6= 0; (3.49)

Gauss 6= 0 (3.50)

A^Js Kubic = 0 (3.51)

Top Torsion 6= 0 (3.52)

Js 6= 0 (3.53)

This result corresponds to what are called time harmonic solutions in the engi-
neering literature, and gives yet more credence to the idea that charge current
densities can be related to cubic curvatures.

3.6.5. 4D Example 5, A Hopf map solution.

In this example,the Hopf 1-form is presumed to be of the form

A0 = b(ydx:¡ xdy) + a(tdz ¡ zdt): (3.54)
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The 1-form of Potentials depends on the coe±cients a and b which are presumed
to take on values §1: There are two cases corresponding to left and right handed
"polarizations": a = b or a = ¡b. (There actually are 6 cases to consider,
by cyclically permuting the variables, and these can be combined to represent
spinor solutions.[2]) What is remarkable for this solution, is that both the mean
curvature and the Adjoint curvature of the implicit hypersurface in 4D vanish,
for any choice of a or b. The Gauss curvature is non-zero, positive real and is
equal to the square of the radius of a 4D euclidean sphere. The cubic interaction
energy density is zero.

Mean = 0; (3.55)

Gauss > 0 (3.56)

A^Js Kubic = 0 (3.57)

Top Torsion 6= 0 (3.58)

Js 6= 0 (3.59)

This situation occurs when the three curvatures of the implicit 3-surface are
f0;+i!;¡i!):. The Hopf surface is a 3D imaginary minimal two dimensional
hyper surface in 4D and has two non-zero imaginary curvatures! Strangely enough
the charge-current density is not zero, but it is proportional to the topological
Torsion vector that generates the 3 form A^F: The topological Parity 4 form is
not zero, and depends on the sign of the coe±cients a and b. In other words the
'handedness' of the di®erent 1-forms determines the orientation of the normal ¯eld
with respect to the implicit surface. This set of circumstances corresponds to the
Case 3 situation described above where the charge current interaction density
is zero, but the charge current density is not zero. The spatial scalar product
of A and J is balance by ½Á: It is known that a process described by a vector
proportional to the topological torsion vector in a domain where the topological
parity (4ba) is non-zero is thermodynamically irreversible [10].
This example demonstrates that in special cases the charge-current density is

not proportional to the adjoint curvature of the implicit minimal surface. How-
ever, the case corresponds to the special situation where the interaction energy,
alias the internal energy relative to the given process, is zero, and yet the process
is non-zero, but thermodynamically irreversible.
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4. Summary and applications to p-brane theories

Every Pfa±an 1-form whose coe±cients are functionally homogeneous of degree
zero can be used to describe the normal ¯eld to an implicit surface. The curvature
similarity invariants can be computed from the Jacobian matrix of the homoge-
neous 1 form. For those p-branes which are 3 dimensional implicit surfaces in
4 dimensions, it is possible to deduce an electromagnetic interpretation with an
intrinsic charge current density. The interaction energy density of this charge
current density and the potentials that de¯ne the implicit surface is exactly the
cubic curvature similarity invariant of the implicit hypersurface. As the curva-
ture radii get smaller and smaller, the electromagnetic interaction energy being
proportional to the cube of the curvatures could conceivably prevent if not impede
gravitational collapse. Certainly such terms should be included in the dynamics
of collapsing mass systems. This e®ect, like the Bohm-Aharanov e®ect, does not
depend explicitly upon the ¯eld strengths, E and B. Such a possibility appears
to have been neglected in metric based curvature theories.
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