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Abstract: With respect to irreversible non-homeomorphic maps, contravariant and covariant tensor
fields have distinctly different natural covariance and transformational behavior. For thermodynamic
processes which are non-adiabatic, the fact that the process cannot be represented by a homeomorphic
map emphasizes the logical arrow of time, an idea which encompasses a principle of retrodictive
determinism for covariant tensor fields.

INTRODUCTION
The idea that a dissipative process is associated with a change in topology [1] implies

that non-adiabatic, radiative transitions cannot be described by a homeomorphism.
Accordingly, the transformational behavior of physical fields with respect to continuous, but
not necessarily homeomorphic, maps is of some interest to researchers who study
non-adiabatic transitions. For tensor fields and configurations, the classical transformation
rules can, and must, be modified slightly to produce a useful concept of natural, or intrinsic,
covariance with respect to maps which may not even have invertible Jacobians. Surprisingly
enough, the techniques presented below indicate that for covariant tensor fields there exists a
natural sense of retrodictive determinism which does not exist for contravariant tensor fields.
Moreover, the logical structure is not symmetric, nor even dualistic, with the ideas of
prediction of tensor fields. It appears that a system described by a tensor field may be
predictively statistical, but retrodictively deterministic.

A major purpose of this article is to sharpen the perception of researchers to the
transformational asymmetries associated with tensor fields, such that these ideas may be
fruitfully exploited and incorporated into physical theories. A table summarizing the
transformation properties of tensor rules w.r.t. maps of varying degrees of invertibility and
differentiability is presented, along with a few abstract applications directed towards subtle
points in the theory of thermodynamics and hydrodynamics.

INTRINSIC COVARIANCE AND THE CLASSIFICATION OF
MAPS

The basic ideas to be utilized are straightforward, but appear only sporadically, if at all,
in the engineering literature. (For a partial, mathematical treatment, see Lang[2].) The
definition of a contravariant tensor is taken to be the classic one which uses the
transformation rule,

XA → Yµ = JA
µXA     

to define contravariant quantities. The Jacobian matrix, JA
µ(X), is constructed in terms of the

partial derivatives, ∂φµ/∂xA of the map φ : xA → yµ, all of which are assumed to exist, but
which need not be continuous.

However, a covariant tensor is defined herein to be an object which obeys the
transformation rule,

YµJK
µ = XK ← Yµ     

which, contrary to the usual tensor analysis definition, does not make use of a Jacobian



inverse (the base spaces need not be of the same dimension). These two rules may be used to
develop the ideas of natural, or intrinsic, covariance w.r.t. maps for which the Jacobian
inverse does not (globally) exist, with the ideas agreeing with classic results when the
transformations are restricted to orthogonal transformations or diffeomorphisms.

Scattered through the literature of differential topology are discussions of various maps
which may or may not have inverses and whose Jacobians may or may not be invertible. A
summary of such maps is given in Table 1, where more importantly, the intrinsic covariant
behavior of tensor fields with respect to each class of maps is also presented. A tensor field
is considered as a set of functional rules over a domain, with values in some range. The
intrinsic covariance problem considered herein (and with results presented in Table 1) relates
to the global solubility, and uniqueness of solubility, of the rules (not just their values) w.r.t.
various transformations of the base spaces, as domains. For example: given two domains, x
and y, with a map φ between them from x to y, is it possible to uniquely determine a tensor
rule over the final state in terms of a tensor rule given over the initial state? The answer is
no, if the map φ does not have an inverse. Surprisingly enough, a retrodictive version of this
question obtains a favorable response for co-variant tensor fields: Is it possible to
retrodictively determine a co-tensor rule over an initial state, given a co-tensor rule over a
final state? An affirmative answer requires only that the Jacobian coefficients of map
φ : xA → yµ exist.

Map Assumed to exist Covariant field rule Contravariant field rule

Continuous φ,dφ R -

Submersion φ,dφonto Runique -

Immersion φ,dφ1−1 R Runique

Local Inverse φ,dφonto,dφ1−1 Runique Runique

Cont, disc. Inverse φ,φ−1,dφ R P

Disc., Cont Inverse φ,φ−1,dφ−1 P R

Submanifold φ,φ−1,dφ1−1 R (R & P)unique

Quotient manifold φ,φ−1,dφonto (R & P)unique P

Homemorphisms φ,φ−1,dφ,dφ−1 R & P R & P

Embedding φ,φ−1,dφ1−1,dφonto
−1 R & P (R & P)unique

Projection φ,φ−1,dφonto,dφ1−1
−1 (R & P)unique R & P

Diffeomorphism dφ& dφ−1 1-1 & onto (R & P)unique (R & P)unique

Table 1. Retrodictive and predictive behavior of tensor fields w.r.t. continuous maps with different
invertibility and differential structure. R = Retrodictive, P =Predictive

A summary of the transformational solubility (and uniqueness of solutions) of tensor
fields with respect to various maps is presented in Table 1. Certain details are enumerated in
Appendix A.

The logical asymmetry exhibited by the table is remarkable, as is the fact that for
non-homeomorphic maps (which are necessary to represent dissipative transitions) there
exists the possibility of a retrodictive determinism – but not a predictive determinism. There
appears to be an arrow of time built into the transformational behavior of tensor fields with
respect to non-homeomorphic maps. A recognition of this built in logical asymmetry should
be taken into account by those theories which treat irreversible processes.



PHYSICAL APPLICATIONS
There seems to exist a predilection in physics to obtain a description of nature which is

predictive. The classic problem in point mechanics is a problem in prediction: given initial
data, what is the future trajectory? Watanabe states that ”Every closed system of physical
laws must include a time-dependent law from which it is possible to deduce a predictive
statement [3]... ”. . . physical theory is preeminently a predictive instrument” [4] . . . Now it
is not apparent to this author that predictive descriptions are the only way to understand
nature, and a study of the transformation properties of tensor fields given in Table I gives
support to the position that although a deterministic, predictive, analysis for dissipative
systems is impossible, surprisingly often the opposite point of view, based on a deterministic
retrodictive analysis, is possible for dissipative systems. There is a definite asymmetry in
dissipative processes and according to Table I this asymmetry persists in the analytical
description of such systems.

The map classification table is striking in that it points out and emphasizes the natural
retrodictive logical structure for tensor fields, especially covariant fields, with respect to
maps that are not homeomorphisms. Recently it has been emphasized that non-adiabatic
systems imply changing topology [l]. For such systems, Table 1 indicates that a retrodictive
analysis is appropriate, and moreover, it is the only analysis that is deterministic, if the
system process is irreversible (φ−1 does not exist). Perhaps the fundamental reason that
Cartan’s theory of differential forms, built on alternating covariant tensor fields, is so
powerful is due to the retrodictive solubility of differential forms with respect to C1 maps. It
can be shown that the specification of a system of differential forms is equivalent to
specifying a topology and the utilization of Pfaffian expressions (which are differential forms
of degree one) in the science of thermodynamics was an early recognition of the need for
injection of topological concepts into thermodynamic theories. Caratheodory’s use of
neighborhoods [5], Landsberg’s use of restricted continuity and the frontier of a set [6] and
the modern work of Boyling [7] are examples of the utility of a topological approach in
thermodynamics. However, it has been emphasized only recently that dissipation and
nonequilibrium thermodynamics are related to changing topology [1]. It is here that Cartan’s
mathematics of differential forms demonstrates its power, for according to the previous
discussion, differential forms are well behaved (at least retrodictably) with respect to
non-homeomorphic, topology-changing maps. Cartan’s theory of exterior differential forms
appears to be the appropriate mathematical theory for studying dissipative systems. This
conclusion is a first result of the theory.

For physical applications the two most important principle maps are the immersion and
the submersion. Ordinarily, these maps are to be used in the field sense. That is, the physical
object is considered to be the base space which is immersed or submersed into a Euclidean
tensor space. The submersion induces on the physical object, as a manifold, a set of
covariant vector lines which form an orthogonal field (on the object manifold) w.r.t. the
fibers of the submersion. The ”gradient” vector to the spherical surface
φ : R3 → R = {x2 + y2 + z2 = 1.0} is an example; the fiber is the spherical surface itself.
The orthogonal field spans the compliment to the fiber space created by the submersion.

On the other hand, the immersion of the object manifold into a Euclidean space, induces
a global covariant metric field, gµν, on the base space, which permits a norm to be created
for contravariant vectors on the manifold. The idea of distance along a line is well defined by
the immersion. The notion of distance between ”surfaces” may not be well defined by an
immersion (consider the bi-refringent crystal); this concept requires a reciprocal metric field
that the object manifold may not support, globally.



For physical objects which are manifolds there exist theorems that imply that they
always may be immersed into a Euclidean space of sufficiently large dimension [8]. The
implication is that manifolds always support a global metric field, whose covariant columns
form a global, linearly independent set of differential forms. The determinant of the induced
metric field is never zero, functionally, but can take on both positive and negative values,
discontinuously. However, if the induced map, dφ, of the immersion is continuous, as well as
being 1-1, then the determinant of the metric field is never zero and must be definite.

In a topological sense, those manifolds which are immersed in a continuously
differentiable manner must be orientable. A non-orientable manifold cannot support a
covariant metric field with definite determinant. This subtle point is at the basis of
Caratheodory’s proof of the second part of the second law of thermodynamics [9]. Entropy is
positive definite only on orientable manifolds. A set of points, or states, whose topology
excludes, or makes inaccessible, another set of points, or states, supports a monotonic
function only if the topology is orientable. A Mobius strip is a model of a topology (infinitely
extendable) which produces inaccessible states, but one for which the entropy function is not
globally definite (S > 0). Therefore, an immediate application of the point of view discussed
above is to demonstrate a subtle and usually not expressed assumption in the theory of
thermodynamics: The phase space of Gibbs must be an orientable sub-manifold of state
space, if entropy is definite.

For contravariant considerations of a physical object as a manifold, the next most
important maps are the Submanifold map and the Quotient manifold map. These mappings
in physical situations are usually from a Euclidean space to the body manifold are made in
such a way as to permit contravariant fields to be induced on the body manifold. (The
submersion and immersion described above were from the body manifold to the Euclidean
space, and induced covariant, not contravariant, fields on M) The classic example is the
submanifold map, φ, which carries the unit interval into a curve in M. The induced
differential map, dφ, defines a tangent (contravariant) vector on M, in the sense of Lagrange,
which spans the submanifold of M. This notion is distinct from the submersive
(Hamiltonian) case which defines a covariant wave vector field on M.

If the map to M is a quotient manifold map, then a reciprocal metric field is induced on
M which permits a distance between ”surfaces” concept to be defined globally. Dual to the
immersive case, a distance between ”points” may not be admissable. The idea is that in the
immersive case a contravariant measure is induced; in the quotient manifold case, a
covariant measure is induced. The measure coefficients are covariant and contravariant,
respectively, for the above mentioned measures. The two measure fields have different
transformation properties for non homeomorphic dynamical transformations. Physically, the
notion of strain is related to the covariant measure coefficients, while the notion of stress is
related to the contravariant measure coefficients.

These results emphasize the differences between Lagrangian (contravariant-particle) and
Hamiltonian (covariant-wave) mechanics [l0] — differences which become evident only for
dissipative systems that do not admit global metrics and reciprocal metrics. For the
dissipative case, there must exist two sets of physical laws: one for the covariant ideas, one
for the contravariant ideas. The differential form statements for Maxwell’s equations are the
foremost example of such dual behavior. The first Maxwell pair of equations involving
Faraday’s law and covariant E and B intensities is one statement. The distinctly different
second Maxwell pair of equations involves contravariant quantities, D and H and is the
second statement. There is a fundamental difference between physical intensities, such as the
(covariant) E and B fields of electromagnetism, when compared to physical quantities such
as the (contravariant densities) D and H fields [11] . The differences are degenerate unless



the system is irreversible, a fact that implies that all physical phenomena which can be
deduced from the behavior of E and B fields can be metrically deduced from the behavior of
D and H fields, in non-dissipative systems. For a space that does not support both a global
metric field and a reciprocal metric field, one set of equations does not uniquely imply the
other. (The dual to the Einstein equation for the covariant metric field is unknown.)

A study of these results should guide the development of physical theories for dissipative
systems. Such theories, without a dynamical inverse, are not amenable to predictive
determinism. These systems involve changing topology, but nevertheless, such dynamical
systems (if describable by continuous maps) will yield a retrodictive determinism but only
for a covariant (wave) formalism. Contravariant (particle-trajectory) formalisms are never
predictive if φ−1 does not exist. The physicist, for dissipative field problems, should adopt the
view: Given the final data, what was the initial state from which it came? (This statement is
dual, but not reciprocal to the usual Cauchy statement: given initial data, what is the final
state? Curiously enough, this point of view seems to have been taken by Hadamard [12]).
Such questions and their answers, although not predictive in style, also yield an
understanding of nature. Moreover the methods are deterministic, not statistical and are
employed in a retrodictive sense.

Perhaps the most obvious physical example of a continuously dissipative system is the
turbulent fluid. The deterministic theory of a turbulent fluid has yet to be formulated,
apparently because of a predilection for a predictive theory. Moreover, from the arguments
given above, as the dissipative turbulent flow does not admit an inverse, a predictive
deterministic theory in terms of velocity fields is impossible. Again, the point of view
discussed above has led to an immediate application by proving once and for all that a
predictive, non-statistical theory of turbulence is impossible. Since the time of G. I. Taylor,
turbulence theories that have made any progress have been predictively statistical and
non-deterministic. However, the alternate point of view, based upon the deterministic
retrodiction of differential forms, is just beginning to be utilized. Early results of the theory
have demonstrated that (1) if the system is dissipative, topology must change and (2) a
turbulent system cannot be described by Hamilton’s equations of motion; i.e., a Hamiltonian
analysis of a turbulent fluid is impossible. Moreover, if a flow is to be diffusively dissipative
(an intuitive requirement of turbulent flow) then the Liouville theorem must fail [l3]. The
topological criteria imply that not only are groups not admissable (φ−1 does not exist), but
also semi-groups are not admissable in a turbulent flow [l]. Also it has been demonstrated
that the Navier-Stokes equations for a viscous fluid cannot be derived from a strictly
Hamiltonian analysis, but indeed are representable by the covariant concepts embodied in
the theory of differential forms [14]. The purpose of this article is to focus attention on the
logical basis of the statement that, indeed, the physics of fields is deterministically a
retrodictive science. The permissibility of physics being deterministically predictive is not
the usual case and demands the special constraints of a non-dissipative system. A more
detailed application of the concepts discussed above to the science of thermodynamic
processes will appear elsewhere.
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APPENDIX A

Transformational covariance
To demonstrate the transformation asymmetry of tensor fields this article considers maps

between spaces of different dimensionality, φ”M → N, from points xA in the domain to
points yµ in the range. It is assumed that a physical system can be described as a tensor field,
i.e. by a map α : M → τA in the initial state and a map α : N → τµ in the final state. Both
of these maps are from the base space (M or N) to the contravariant tensor space (τA or τµ ).
An alternative field description can be made in terms of the maps β : M → τK and
β : N → τυ, which are from the base spaces to the covariant tensor spaces. The
contravariant and covariant fields behave differently with respect to predictive and
retrodictive deterministic solubility and part of the purpose of this article is to demonstrate
these differences in behavior, even though the field values may be related by a metric.

For purposes herein it will be assumed that φ exists andthe Jacobian matrix of partial
derivatives ∂φµ/∂xA = JA

µ exists; i.e., unless otherwise specified, the map φ is continuous.
The Jacobian matrix induces two linear maps, dφ : τA → τµ and dφ : τK ← τυ between the
tensor spaces. The direction of the arrows is important; they demonstrate that the Jacobian
matrix always permits the values of the contravariant fields, as numbers, to be predicted (but
not necessarily retrodicted) and similarly the covariant values may be retrodicted w.r.t. φ (but
not necessarily predicted). The usual rules are expressible in coordinate language as,



dφ : VA(x) → Vµ(x) = ∑
A

JA
µ(x)VA(x)     A1

and

dφ : AK(x) = ∑
µ

Aµ(y(x))JK
µ (x) ← Aµ(y)     A2

Note that the existence of a Jacobian inverse has not been assumed. The action of the
Jacobian is to push forward the values of contravariant fields and ”pull back” the values of
the covariant fields. A diagrammatic description is given in Figure 1. Classical developments
of tensor analysis assume that an inverse Jacobian matrix exists such that the rule for
co-variant tensor transformation instead of being given by (A2) becomes
[dφ]−1 : AK(x) → Aµ(x) = [JK

µ (x)]−1 = AK(x). This transition rule will not be assumed
herein.
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Fig. 1. Induced maps between tensor fields.
Equations (Al) and (A2) not only yield recipes for computing values of covariant and

contravariant tensors, but also explicitly demonstrate the differences between covariant and
contravariant fields. Equation (A2) permits the covariant rule, β, to be deduced retrodictively
from the covariant rule, β. On the other hand, equation (Al) for contravariant values does not
permit the contravariant rule, α, to be deduced predictively from the rule α, for the functions
Vµ(x) have arguments on the domain space, x and are not functions of variables, y, on the
range space. This fact is the fundamental observation which distinguishes between
covariant/contravariant and retrodictive/predictive analysis. Covariant fields (especially
differential forms) are always retrodictive, even for irreversible maps where φ−1 does not
exist. This principle result is easily deduced from the directionality of the arrows in Fig. 1. A
study of the arrows in the figure will lead to a quick understanding of the transformational
behavior for the tensor field rules, α and β, as more invertibility, or differentiability,
structure is assumed for the map φ.



As an example of the analysis, consider the submersion for which dφ is onto (dφ 1-1).
For submersions, dφ admits a right inverse (J ∘


J is non-singular on the range space) and by

modifying the arrows in Fig. I it is easy to see that the co-values are both predictive and
retrodictive, the contra-values are predictive and the covariant rule β is retrodictively unique.
(The proof can be effected easily by writing in a bi-jective arrow for dφ .)

If the map φ is an immersion such that dφ is 1-1 (dφ is onto), then the map permits a left
inverse of dφ (


J ∘ J is non-singular on the domain space). Co-values and co-variant rules are

retrodictive. Contra-values are both predictive and retrodictive, but now the contravariant
rules are retrodictively unique.

If the map φ is such that dφ is both 1-1 and onto, then co- and contra-values are both
retrodictive and predictive and both the contravariant rule and covariant rule are
retrodictively unique.

None of the above maps admit an inverse function, globally; none of the rules are
predictive. The ”arrow of time” permits determinism only in a retrodictive sense.

A continuous map, with a discontinuous inverse, yields enough additional structure
beyond the primitive cases considered above such that for the first time the contravariant
rule, α, is predictive. A completely dual situation occurs for those discontinuous maps φ that
admit an inverse φ−1 and dφ−1 (but no dφ): the co-values and covariant rules become
predictive and the contra-values and contravariant rules become retrodictive.

Of somewhat greater importance to physical systems are the maximal rank Submanifold
map, for which φ, φ−1’ and dφ1−1, are valid globally, and its dual, which is the Quotient
manifold map, for which φ, φ−1and dφonto are globally valid. These maps permit contravariant
vector fields to be induced globally on a manifold.

None of the maps considered so far are homeomorphisms; they do not necessarily
preserve topology. Subsequent maps to be considered are homeomorphisms and all admit
continuous inverses. Dissipative, irreversible systems cannot be described by such maps.
Dissipative systems imply a change in topology.

For the weakest homeomorphism, φ and dφ exist and similarly φ−1 and dφ−1 exist. For
such maps, both contravariant values and rules, as well as covariant values and rules, are
soluble in both a retrodictive and predictive manner.

If the homeomorphism is an embedding, dφ is 1-1 and dφ−1 is onto; the contravariant
rules become uniquely soluble in both a predictive and a retrodictive sense.

If the homeomorphism is a projection, then dφ is onto and dφ−1 is 1-1; the covariant rules
become uniquely soluble in both a predictive and retrodictive sense.

Finally if the map is a diffeomorphism (φ exists, φ−1 exists, dφ is 1-1 and onto, dφ−1 is
1-1 and onto) then both contravariant and covariant rules are uniquely soluble in a predictive
and retrodictive sense. The diffeomorphism is the usual map considered in classical tensor
analysis as a coordinate transformation. With respect to such maps (that is, with respect to
classical tensor analysis) the different solubility features of contravariant and covariant
tensor fields becomes degenerate and indistinct.

A summary of the above map classifications is presented in Table I along with the
retrodictive or predictive solubility of the associated covariant and contravariant tensor
fields. Note the emphasis on retrodiction of covariant fields for irreversible maps.

At this point it should be mentioned that there exists a concept distinctly different from
that of a field; it is the concept of a configuration mapping. The concept of a configuration as
a map from the tensor space to the base space M is completely dual to the field concept as a
map from the base space M to the linear tensor space. This configuration concept is related
to the mathematical notion of a vector bundle and is little used in the physics literature



except in the theory of elasticity (1997 comment: How things have changed in 25 years). The
retrodictive and predictive behavior of configurations is also dual to that of fields. In fact,
Table I can be completely dualized for configurations by substituting ”configuration” for
”field”, and interchanging the retrodictive and predictive behavior (interchange R and P in
the Table). The proofs follow quickly by merely changing the direction of the arrows for the
maps α, α, β and β in Fig. 1.


