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Abstract

Modern electromagnetic theory recognizes that the classic Maxwell-
Faraday and Maxwell-Ampere field equations belong to two thermodynam-
ically distinct topological categories. The classic Maxwell PDE’s can be
deduced from a Cartan exterior differential system, based on two topolog-
ical postulates, F-dA=0, and J-dG=0, independent from any geometrical
constraints imposed by a metric, or connection, or gauge, and for any geo-
metric dimension greater than 3. Both the potentials, A, and the field
excitations, G, are not uniquely defined by the field equations, a fact which
leads to topological defects and coherent structures, in both equilibrium
conservative and turbulent dissipative systems. The non-equilibrium topo-
logical coherent structures discovered from a topological perspective of elec-
tromagnetism are represented by the 3-forms of Topological Torsion, A™F,
and Topological Spin, A~G.

1. Introduction

1.1. Modern Electrodynamics as a topological theory

In this abbreviated summary article [1] it is recognized that the modern theory of
electromagnetism can be understood as a topological theory expressed in terms
of an exterior differential system of two postulates [2]:

1. The postulate of conserved flux : F—dA=0, (1.1)
2. The postulate of conserved currents : J—dG = 0. (1.2)



The exact 2-form of thermodynamic field "intensities" F'(E, B) is defined in terms
of inexact 1-form of potentials, A, in units of ii/e. The exact 3-form of charge
current density, J, is defined in terms of the inexact 2-form density of thermody-
namic field quantities, or "excitations", G(D, H) in units of A. The two form,
F, historically is associated with forces, and the 2-form density, GG, historically is
associated with sources.

From these two topological postulates, it is possible (without the geometric
constraints, or choice, of metric, connection, or gauge) to deduce, abstractly, two
sets of classical PDE’s . The first set is known as the Maxwell-Faraday equations,
and the second set is known as the Maxwell-Ampere equations. In Engineering
format:

Maxwell Faraday PDE’s  {curl E+0B/ot = 0, divB = 0}, (1.3)
Maxwell Ampere PDE’s  {curlH —0D/ot = J, divD = p}. (1.4)

It is also true that the abstract form of these eight PDE’s is universally the same,

without additional features, or terms, in all geometric dimensions of 4 or greater.
In short, the "modern" and the "classical" electromagnetic theory have the same
base of partial differential field equations.

The differences between the "modern" theory and the "classical" theory can
be ascribed to the fact that the Maxwell-Faraday equations of "intensities" and
the Maxwell-Ampere equations of "quantities" are recognized to belong to two
thermodynamic categories which are topologically distinct. In the first category,
the 1-form of potentials can have non-unique but topologically closed components,
A., which do not contribute to the 2-form of intensities, F, as dA. = 0. Similarly,
in the second category, the 2-form density of excitations can have non-unique but
closed components, G,., which do not contribute to 3-form density of charge-
currents, J, as dG. = 0. In the historic literature of the last 50 years, the
non-uniqueness of the potentials has led to a large industry called gauge theories.
The non-uniqueness of the excitations has not been so well developed.

These concepts of non-uniqueness can effect the topological properties of the
solutions to the Maxwell electrodynamic system. The non-uniqueness can ap-
pear as discontinuities in solution amplitude and derivatives (electromagnetic sig-
nals), as a solution multi-valuedness (polarization), as envelope (Huygen wavelet
or Cherenkov) solutions, and in many other physically recognizable topological
properties related to the continuity, integrability, differentiability, compactness,
and reality of the solutions. In short, the non-uniqueness of both the potentials,
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A, and the field excitations, G, lead to the concept of topological defects as re-
gions where topological refinements of uniqueness, integrability, differentiability,
compactness, or reality fail. Of particular note is the fact that the solutions to
the PDE’s which involve topological defects need not be defined in a locally linear,
and therefor unique, manner. The defects are sets upon which the solutions do
not behave as tensors, for tensors require that different neighborhoods are related
by diffeomorphisms and therefor impose uniqueness by linearity. The use of ex-
terior differential forms circumvents these limitations of uniqueness demanded by
the theory of tensor analysis, for differential forms are functionally well behaved
in a retrodictive pullback sense [3] relative to differential maps which are not one
to one diffeomorphisms. Exterior differential forms are well behaved with respect
to evolutionary processes that include topological change, and the production of
topological defects.

Topological defects find representation in terms of closed, but not exact, ho-
mogeneous differential forms of topological dimension M immersed in spaces of
geometric dimension N > M. The integrals over closed integration chains (closed
cycles which may not be boundaries) of such closed, but not exact, exterior differ-
ential forms are the basis of deRham cohomology theory [4]. The values of such
closed integrals have rational ratios and provide a topological basis for "quantiza-
tion". Integrals of exact k-forms over closed cycles or boundaries are always zero.
Integrals of closed but not exact k-forms over cycles which are not boundaries are
not zero. Integrals of closed but not exact k-forms over boundaries have zero
values. In a topological theory of electromagnetism, the closed, but not exact,
components of the 1-form of potentials, A, lead to 1-dimensional period integrals
and the concept of the flux quantum as a 1-dimensional topological defect. Sim-
ilarly, closed but not exact components of the 2-form of excitation densities, G,
lead to 2-dimensional period integrals and the concept of the charge quantum as
a 2-dimensional topological defect. These period integral concepts have been
discussed elsewhere [5].

Most of the emphasis in this article however is placed upon the non-classical,
closed but not exact, exterior differential forms, which can be constructed from
A and G and their exterior derivatives and exterior products. The two most
important of these constructions, in a domain of 4 geometric dimensions, is de-
fined in terms of the Topological Torsion 3-form, A" F', and the Topological Spin
3-form density, A"G. The 3-dimensional topological defects associated with the
closed but not exact components of these 3-forms are defined as the topological
torsion-helicity quantum and the topological spin-chirality quantum, respectively.



It can be demonstrated that flux quantum period integrals are elements of topo-
logical defects in equilibrium thermodynamic systems, but the torsion-helicity
quanta and the spin-chirality quanta are elements of topological defects in non-
equiltbrium, dissipative, thermodynamic systems, and can be created as artifacts
of irreversible processes. It is the discovery of these non-equilibrium properties
that demonstrates the utility of the topological perspective of electromagnetism.

1.2. Non-uniqueness, discontinuities, topological defects

The topological postulates, hence the PDE’s they generate, are valid in any frame
of reference. So why is the Lorentz system of transformations so dominant in
classical electromagnetic theory? In a remarkable piece of work [6] published in
1932, V. Fock demonstrated that the point set upon which the solutions to the
Maxwell PDE’s are not uniquely defined defines a propagating discontinuity, and
this point set is defined in terms of solutions to the Eikonal equation. The Eikonal
equation is a non-linear partial differential equation that consists of a (canonical)
quadratic form with signature (+,4,+,-) or (--,-,+):

Eikonal (+0p/0x)% 4 (00/0y)* £ (00/02)* F1/c*(dp/0t)* = 0. (1.5)

The only linear set of transformations that preserves the Eikonal null quadratic
form is the Lorentz system of transformations. Hence a propagating disconti-
nuity (the Fock definition of an electromagnetic signal) appears as a propagating
discontinuity (a signal with finite universal propagation speed, c) to all Lorentz
equivalent observers. It is not the PDE’s of Maxwell that give importance to the
Lorentz transformations, it is the singular "characteristic” solutions of propagat-
ing discontinuities (a topological defect) that insure the importance of the Lorentz
transformations. Fock also demonstrated that the non-linear fractional Moebius
transformation also preserves the eikonal equation. The projective mapping per-
mits the propagation speed of the discontinuity to be less than or greater than
c.

It is perhaps of more interest to realize that the components of the Eikonal
quadratic form can be interpreted as an isotropic null vector, for which E. Cartan
gave the name Spinor [7]. This topological result of modern electromagnetism
emphasizes the fact that spinors play a role in wave phenomena at all scales, from
the micro world of quantum mechanics to the macro world of cosmology. The
Fikonal equation is a quadratic form with the same signature as the Minkowski
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metric line element. Einstein’s specification that light travels along a null geodesic
follows from the constraint of a metric geometry. However, the characteristic
solutions representing propagating discontinuities follow from the system of PDE’s
with out regard to a metric. ~Spinor solutions for the characteristics are not
tensors, for spinors have an ambiguity under reflections with respect to a sign.
Superposition of (conjugate) spinors can be arranged to produce vectors, which
are tensors. These facts are realized in spinor states of circular polarization which
can be combined into vector states of linear polarization.

Applications of constitutive equations and their topological features to the
generation of the singular solution sets of the PDE’s (describing domains of propa-
gating non-uniqueness) and the interpretation in terms of electromagnetic signals
are given in [8]. A notable result is the demonstration of exact (quaternion -
spinor) solutions for which the 4-fold degeneracy of propagating signals is broken,
not only for polarization, but also for propagation direction. The propagation
speed of an electromagnetic signal outbound is not necessarily the same as the
propagation speed inbound! The signal speed need not be the same in both di-
rections, in direct confrontation with an axiom of special relativity. The results
were verified in dual polarized ring laser experiments [9].

2. Topological Spin and Topological Torsion

The exterior differential forms that make up the electromagnetic system on a geo-
metric domain of 4 dimensions consist of the primitive 1-form, A, and the primitive
N-2 form density, G, their exterior derivatives, and their algebraic intersections
defined by all possible exterior products. The complete Maxwell system of exte-
rior differential forms (the Pfaff sequence for the Maxwell system on 4 geometric
dimensions) is given by the set:

{A;F =dA,G;J=dG,A°F,A°"G, A" J;F"F,G"G)}. (2.1)

These differential forms and their unions may be used to form a topological base
on the domain of independent variables. The Cartan topology constructed
on this system of forms has the useful feature that the exterior derivative may
be interpreted as a limit point, or closure, operator in the sense of Kuratowski
[10]. The exterior differential systems that define the Maxwell-Ampere and the
Maxwell-Faraday equations above are essentially topological constraints of closure.

The complete Maxwell system of differential forms (which assumes the ex-
istence of A and G and C2 differentiability) also generates two other exterior
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differential systems.

(FFG—A"J)—dAG) = 0,
F'"F—d(AF) = 0.

The two 4-forms (F"G—A"J) and (F" F') are exact and have closed integrals which
are evolutionary invariants of continuous deformations. The closed integrals
therefor describe topological properties.

The first 3-form density, A”G, with physical units of &, is called the topological
spin (or chirality) [5] and the second 3-form, A" F, with physical units of (1i/e)?,
is called the topological torsion (or helicity) [11]. These two exterior 3-forms,
A"G and A” F are not usually found in discussions of classical electromagnetism.
The 3-forms are abstractly defined (on a space of 4 geometric dimensions with a
volume element, 2y = dx"dy dz"dt) in terms of exterior multiplication, but can
be given realization in terms of 4 component engineering variables, S, and T}.

Topological Spin density : A G =1i(S4)Q (2.4)
Ss = [AxH+Dg¢,AoD], (2.5)

Topological Torsion vector :  A"F = i(Ty)y (2.6)
T, = —[ExA+B¢ AoB] (2.7)

These constructions should be compared with the exact charge current 4-vector
density, J, with a 4 component engineering representation, J, = [J,p]. The
concepts of the topological Spin density (current) and the topological Torsion
vector have had almost no utilization in applications of classical electromagnetic
theory. Fach construction depends explicitly on the existence of the 1-form of
Action-potentials.

2.1. Topologically Transverse waves

The vanishing of the topological Spin 3-form is a topological constraint on the
domain that defines topologically transverse electric (TTE) waves: the vector
potential, A, is orthogonal to D, in the sense that A o D = 0. The vanishing of
the topological Torsion 3-form is a different topological constraint on the domain
that defines topologically transverse magnetic (TTM) waves: the vector potential,



A is orthogonal to B, in the sense that A o B = 0. (In fluid dynamics, Ao B =0
is called the helicity). When both 3-forms vanish, the topological constraint
on the domain defines topologically transverse (TTEM) waves. The geometric
definitions of transverse waves may or may not be equivalent to the topological
definitions. For classic real fields this double constraint would require that vector
potential, A, is collinear with the field momentum, D x B, and in the direction of
the wave vector, k. Theoretical examples (and dielectric waveguide experiments)
indicate that a TTEM solution does not radiate. The result gives a possible
explanation for the paradox that an electron in the Bohr model is accelerated, yet
does not seem to radiate. This conjecture will be discussed elsewhere.

Note that if the 2-form F' was not exact, such topological concepts of transver-
sality would be without meaning, for the 3-forms of Topological Spin and Topo-
logical Torsion depend upon the existence of the 1-form of Action-Potentials, A.
The torsion vector T4 and the Spin vector S, are "associated" vectors to the
1-form of Action in the sense that

a result will prove to be of importance in the description of a topological basis for
superconductivity.

2.2. The Poincare Topological Invariants

The exterior derivatives of the 3-forms of topological Spin and topological Torsion
produce two exact 4-forms, F"G — A”J and F"F ,whose closed integrals are
topological objects which generalize the conformal invariants of a Lorentz system,
as discovered by Poincare and Bateman. Note that these topological properties of
invariance with respect to continuous deformations are valid even in the domain
of dissipative charge-currents and radiation.

In the format of independent variables {x,y, z,t}, with a volume element )y,
the exterior derivative, acting on the 3-forms as a topological limit point generator,
can be related to the classic 4-divergence of the 4-component Spin and Torsion
vectors, S, and T4.

Poincare 1 = d(A°G)=F"G—-A"J

= {divs(A x H+ D¢) + (A o D)/0t} Q4
= {(BoH-DoE)— (AoJ - pg)} Q. (2.9)



Poincare 2 = d(A"F)=F"F
= {div;(Ex A+B¢)+0(AoB)/0t} Qy
— [2EoB} Q.. (2.10)

The Poincare invariants are, in effect, the evolutionary source terms for the 3-forms
of topological spin, A"G, and topological torsion, A"F. When the Poincare
invariants are zero, the closed integrals of the electromagnetic 3-forms of A"G
and A" F become additional topologically coherent configurations invariant with
respect to all evolutionary processes of continuous deformation.

The first term in the first Poincare invariant has a coefficient function which
represents twice the difference between the magnetic energy density and the elec-
tric energy density of the electromagnetic field in a Lagrangian sense:

Topological Field Lagrangian: F"G = (BoH — Do E) 4. (2.11)

The second term in the first Poincare invariant has a coeflicient function which is
defined as the interaction energy density:

Topological Interaction: A"J = (A oJ — pg) Q. (2.12)

In Lagrangian variational methods, the 4-form F'~ F which defines the second
Poincare invariant, has been related to the concept of topological Parity:

Topological Parity: F"F = +{2E o B} Q4. (2.13)

The pre-image 3-form of topological Torsion has been associated with Chern-
Simons terms in fiber bundle theory.

2.3. Topological Torsion and Spin quanta

When either Poincare deformation invariant vanishes, the corresponding closed
3-dimensional integrals of A"G and A" F become deRham period integrals. The
closed, but not exact, components of each 3-form can be put into correspondence
with "quantized" topological defects.

The topological Spin quantum is defined as the closed integral of those closed
but not exact components of the 3-form A"G (which represent the kernel of the
first Poincare 4-form),



Spin quantum = [[[ A"G with units n &. (2.14)
73

The period integrals [[[,, A°G are deformation invariants (hence define a topo-
logical property) with rational ratios. Z3 is a closed integration chain defined in
regions where d(A"G) = 0.

Similarly, when the second Poincare invariant vanishes, the closed integral of
the 3-form of Torsion-Helicity becomes a deformation invariant with quantized
values:

Torsion quantum = [[[ A" F with units m (h/e)?. (2.15)
Z3

The period integrals [[[,, A"F are deformation invariants (hence define a topo-
logical property) with rational ratios. In this case, Z3 is a closed integration
chain defined in regions where d(A"F') = 0.

It is important to realize that the topological conservation laws (deformation
invariants with respect to homeomorphisms) are valid in a plasma as well as in the
vacuum, subject to the conditions of zero values for the Poincare invariants. On
the other hand, topological evolution and transitions between ”quantized” states
of Spin-chirality or Torsion-helicity require that the respective Poincare invariants
are not zero.

2.4. Thermodynamics and the Pfaff Topological dimension

The realization that electromagnetism can be expressed in terms of an exterior
differential system permits Cartan’s magic formula to be applied to the problems
of continuous topological evolution [12], with the destruction or creation of elec-
tromagnetic topological defects. For any physical system that admits description
in terms of a 1-form of Action, A, and for evolutionary processes that can be de-
scribed in terms of singly parametrized vector fields, V', Cartan’s magic formula
of continuous topological evolution becomes the abstract equivalent to the first
law of thermodynamics.

LonyA = {i(V)dA + d(i(V)A)} = {W +dU} = Q. (2.16)

Note that the virtual work 1-form, W, for an electromagnetic system is in effect
the work induced by the Lorentz force law:

W =i(V)dA = {E+V x B} odr—{E o V}dt. (2.17)
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Different evolutionary dynamics belong to equivalence classes in different topo-
logical categories. These categories are defined in terms of the Pfaff topological
dimension of the 1-forms of Action, A, and the induced 1-forms of Work, W, and
Heat, ). The Pfaff topological dimension, or class, of a 1-form is determined
from the number of successive non zero elements of its Pfaff sequence. For the
1-form of Action, A, the Pfaff sequence on a geometric space of 4 dimensions is
given by the set {A,dA, A"dA,dA"dA}. The Pfaff topological dimension is the
irreducible number of functions M (that define submersive maps from the geo-
metric dimension N to the topological space of dimension, M) that encode the
topological properties of the specific exterior differential 1-form. The Pfaff topo-
logical dimension is less than or equal to the geometric dimension of the domain
of interest.

2.4.1. Equilibrium systems and Reversible processes

The thermodynamic interpretation of Cartan’s magic formula depends upon both
the elements of a physical system, encoded as an exterior differential system, and
the evolutionary process, encoded as a vector field, V. Equilibrium systems will
be defined as domains where the topological dimension of the 1-form of Action is
2, or less. Caratheodory’s concept of reversible processes requires that the heat
1-form is integrable, such that the Frobenius integrability theorem is satisfied:
@"dQ) = 0. Hence, for reversible processes, the Pfaff topological dimension of
@ is 2, or less [14].  Adiabatic processes are such that i(V)Q = 0, but can be
reversible or irreversible.

Extremal Hamiltonian processes are such that the Pfaff dimension of the
work 1-form, W, is zero (W = i(V)dA = 0). The Pfaff dimension of the
work 1-form, W, is unity for both Bernoulli-Casimir processes, (where the vir-
tual work 1-form is exact: W = i(V)dA = dO), and for the Helmhotz-Stokes-
Symplectic processes (where the virtual work 1-form is closed but not exact:
dW = di(V)dA = 0). All such processes are reversible processes, as the Pfaff
dimension of the heat 1-form, @, (for such processes) is at most 1.

As the Pfaff dimension of the 1-form, A, of an equilibrium system is at most 2,
the equilibrium 1-form satisfies the Frobenius conditions of unique integrability,
A”dA = 0. Such equilibrium systems do not support a non-zero topological torsion
vector, A"F = 0, but the Pfaffian equation, A = 0, admits a local integrating
factor. A closed, but not exact, 1-form of Action, A., in a domain of Pfaff
dimension 2 will admit description in terms of two independent functions of the
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independent geometrical variables, 2, at most. A classic example is given by the
expression:

Ao = (y de —x dy)/(2* + y°) (2.18)

In a space of 3 geometric dimensions, {x,y, z}, this 1-form is closed in an exterior
differential sense (dA = 0 D zero curl) everywhere except along the z axis. The
1-form is of Pfaff dimension one almost everywhere, except along the z-axis. The
1-form becomes singular along the z axis, and it is this singularity that defines
the topological defect.

The vector field of components [y/(z* + y?), —x/(2* + y?), 0] describes a circu-
lation about the z axis, without vorticity, and yet generates a non-zero value for a
"circulation" line integral § A. when the path of integration encircles the z axis.
Note that the singularity is an open 1-dimensional line. It is now common place
in many disciplines to call this topological line singularity a "vortex" - even though
the vorticity in a hydrodynamic sense is zero exterior to the singularity. Such
1-dimensional defects are ubiquitous in type II superconductors. Those regions
where A, is closed, but not exact, expel the magnetic fields (Meissner repulsion).

As another example in 3D geometrical space, consider the closed but not exact
1-form

A, = (B dz—zdB)/(z* + %), with B = (/22492 —a). (2.19)

The 1-form, A, is closed, but not exact, almost everywhere, except on the circle
12 + y? = a? in the z = 0 plane. The singularity (topological defect) is a closed
1 dimensional circle, which could be compared to a "smoke ring vortex". There
exists a finite circulation integral ¢_, A. for any cycle that links the ring of radius
a in the z = 0 plane.

The two one forms can be combined to yield a "torus" configuration with two
cycles, one enclosing the z axis and the other enclosing the ring. More compli-
cated "vortices" admit spiral torsion projections in 3D geometrical domains. In
summary, closed but not exact 1-forms are topological defects (holes and handles)
in equilibrium systems of Pfaff topological dimension 2.

2.4.2. Turbulent dissipative systems and irreversible processes

If dA"dA = 42 E o B Q4 # 0, the electromagnetic 1-form, A, is of Pfaff topologi-
cal dimension 4, which is maximal in regions of geometric dimension 4. Such non-
equilibrium domains support the topological torsion vector of 4 geometric compo-
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nents, T4, but do not require that the magnetic field be topologically transverse,
(as A"F # 0). By direct application of Cartan’s magic formula of continuous
topological evolution, relative to a direction field given by the topological torsion
vector, Ty, it follows that Lt )A = 0A = (E o B)A, and

Liry A" LerydA = Q" dQ = (EoB)*?A"dA. (2.20)

Recall that the classic thermodynamic criteria for irreversible processes is given
by the constraint, Q" d@ # 0 [15]. Hence processes containing a component
proportional to T4 are thermodynamically irreversible when the 1-form of Action
is of Pfaff dimension 4, for then Eo B # 0, A"dA # 0 and therefor QQ"dQ # 0.
When dA"dA =2(E o B)Qy = 0, but A"dA # 0, the Pfaff topological dimension
of A becomes equal to 3, and the process defined by the direction field T}y is
reversible. As the Pfaff dimension of the Action is not 2, such processes are not
"equilibrium" processes, but represent reversible non-equilibrium (or "far from
equilibrium") processes, which may be chaotic.

On a geometric domain of 4 dimensions, assume that the evolutionary process
generated by T4 starts from an initial condition (or state) where the Pfaff topo-
logical dimension of A is also 4. Depending on the sign of the divergence of T4,
the process follows an irreversible path for which the divergence represents an
expansion or a contraction. If the irreversible evolutionary path is attracted to
a region (or state) where the Pfaff topological dimension of the 1-form of Action
is 3, then E o B becomes (or has decayed to) zero. The zero set of the function
E o B defines a hypersurface in the 4 dimensional space. If the process remains
trapped on this hypersurface of Pfaff dimension 3, E o B remains zero, and the T4
process becomes an extremal field. Such extremal fields are such that the virtual
work 1-form vanishes, W = i(T,)dA = 0, and the now reversible T, process has a
Hamiltonian representation. The system is conservative in a Hamiltonian sense,
but it is in a "excited" state on the hypersurface that is far from equilibrium, as
the Pfaff dimension of the 1-form of Action is 3, and not 2. (If the path is at-
tracted to a region where the function E o B is oscillatory, the system evolutionary
path defines a limit cycle.)

In effect, the topological defects represented by closed but not exact compo-
nents of the 3-form A" F' can be generated by dissipative and irreversible processes
leaving the topological defects as remnants in states far from equilibrium. A clas-
sic mechanical example is given by the skidding bowling ball (Pfaff dimension
2n+-2) where the initial angular momentum and kinetic energy decay irreversibly
until the state is reached where the rolling takes place without slipping (Pfaff
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dimension 2n+1). The subsequent evolution is reversible in a thermodynamic
sense, but the state is far from the state of rest, the equilibrium state.

In summary, from a topological perspective, closed but not exact electrody-
namic 3-forms can form topological defects or long-lived remnants and coherent
structures, such as wakes and self organized condensates, in dissipative turbulent
domains of Pfaff dimension 4.

3. The Topological Plasma

For electromagnetic systems, a particular interesting choice of specialized processes
are those that leave the closed integrals (around cycles 22) of the 2 form of field
excitations, G, a deformation (relative) integral invariant. Such processes 5V
which preserve the net number of charges, globally, are defined as elements of the
category of plasma processes:

Lov([] G) = [[(8V)AG + [ di(5V)G) = [[i(3V)] = 0. (31

The criteria for relative integral invariance with an arbitrary deformation parame-
ter, 3, implies that i(3V)J = B{(VAI — pV)"dy dz — ... + (I x V)%dz"dt..} = 0.

This constraint has expression in engineering language as,

Plasma Processes: J = pV, JxV=0. (3.2)

A plasma process need not conserve energy. Again, the 3-forms, J, A”G and
A" F are of particular interested for their tangent manifolds define ”lines” in the
4-dimensional variety of space and time. Relative to plasma processes, the topo-
logical evolution associated with such lines, and their entanglements, is of utility
in understanding solar corona and plasma instability.

The invariance principle that defines a plasma process on G should be com-
pared to the Helmholtz process on F":

Lﬁv(f{ F) = féfi(ﬁv)dF = 0. (3.3)

The closed integral of electromagnetic flux is an intrinsic topological (deformation)
invariant of an electromagnetic system, for the 2-form F' is exact by construction
(the postulate of potentials). In a plasma, for which the evolutionary processes
are constrained such that J = pV, both the closed integrals of F and G are
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deformation invariants. In the sense, the plasma is a topological refinement of
the complete Maxwell system.

The "perfect" plasma is defined as a process that is both a plasma process
and a Hamiltonian extremal process. It follows that the virtual work 1-form
must vanish. The plasma process will have the form J = p[V, 1] such that the
Hamiltonian extremal criteria yields the "Work Free" equation:

W=i(J)dA=p(E+V xB)odr+p(VoE )dt =0 (3.4)

The "perfect or ideal" plasma is therefor a "Force Free" plasma when the Lorentz
force is zero. If the plasma is a "force free" plasma, then if follows that

Force Free plasma process: VoE=0, EoB=0, JoE=0. (3.5)

Other plasma dynamics [16] belong to categories that depend upon the Pfaff
dimension of the Work 1-form.

3.1. Extremal vs. Bernouilli plasmas

The development that follows is guided by Cartan’s pioneering work, in which he
examined those specialized processes for mechanical systems that leave the closed
integrals of the 1-form of Action, A, a deformation (relative integral) invariant.
Cartan proved that such processes always have a Hamiltonian representation.
There are two classes of such Hamiltonian processes, the Extremal class and the
Bernoulli class:

Hamiltonian Processes (3.6)

Lisv) / 4 - / (BVIAA+ di(3V)A 0, (3.7)
Extremal : i(BV)dA =0, (3.8)
Bernoulli = i(6fV)dA = d©. (3.9)

The closed integration chain 21 is not necessarily a boundary.
An electromagnetic system has not only the primitive 1-form, A, but also the
N-2 form, G, which can undergo evolutionary processes. For electromagnetic
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systems, a set of equations similar to those that define Hamiltonian processes can
be used to define specialized processes that leave the closed integrals of the N-2=2
form, G, of field excitations, a deformation (relative integral) invariant. These
special processes will be defined as Plasma processes. Such process do not create
free charge, but they can cause a change in the number of charge pairs of opposite
sign. The equations that must be satisfied are of the form:

Plasma Processes

Lisv) /ZQG _ /ZQi(BV)dG+di(6V)G:>O.

Extremal : i(BV)dG =0,
Bernoulli : i(fV)dG = dw.

3.11

3.12
3.13

—_~ o~ o~ o~
~— ~—  ~— ~~—

In the Extremal case,

i(BV)dG = B{(J — pV)'dy"dz — ... + (I x V)*dz"dt... = 0, (3.14)
implies that the extremal Plasma process obeys the classic expressions:

Extremal Plasma process Jg = pV. (3.15)

3.2. The Topological Hall effect

In the Bernoulli case of a Plasma process the integrand must be proportional to
an exact 2-form, dw. There is one obvious candidate, the 2-form, F':

iW(BV)AG = B{(J — pV)'dy"dz — ... + (I x V)*dz"dt... = oga F. (3.16)

The conductivity coefficient o, in the expression must be a domain constant.
Comparing the components of the equation of constraint yields the properties of
a Bernoulli Plasma process:

Bernoulli Plasma process, Jg = pV+(o, /8B, (3.17)
and, (JpxV) = (¢ /B)E. (3.18)

Hall
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(0, /B)JgoE) = 0 (3.19)
/B)(VoE) = 0 (3.20)
/B)(EeB) = 0. (3.21)

Hall

(o

Thus the Bernoulli plasma process leads to a current Jg which is orthogonal to
the E field and whose magnitude is proportional to the B field. To quote Landau
and Lifshitz [17] "As we see, it (the Hall effect) gives rise to a current perpendic-
ular to the electric field, whose magnitude is proportional to the magnetic field."
The conclusion is that the Bernoulli Plasma process generates a Hall effect, and
requires that the second Poincare coefficient must vanish. It follows that the
Topological Hall effect exists in non-equilibrium systems where the 1-form A can-
not be of Pfaff dimension 4. Bernoulli plasma processes are not dissipative in the
sense that such that (JpoE) =0.

The appearance of a magnetic conductance, o,,,,, is novel to the topological
format of electromagnetism as presented herein, and is deduced from the sole
assumption that the Plasma current defines a process direction field that preserves
the closed integrals of the 2-form, G. Plasma processes do not change the net
charge within the closed integration domain. That is, charges can be produced
only in equal and opposite pairs by a ”Plasma process”.

The conclusion is that the Hall effect is a topological property of electromag-
netism, and can appear at all scales, from the microworld to the macroworld to
the cosmological world. In the next section, and in domains where the non-
equilibrium 3-forms of Topological Torsion and Topological Spin are closed, it
is demonstrated how the Topological Hall effect can have an impedance multi-
plied by a rational fraction. That is, the rational fraction Hall impedance is a
topological result, independent from quantum theory.

Hall

4. Topological Superconductors.

The objective is to define superconductivity in a topological manner which in-
corporates the "quantization" features of deRham cohomology theory. The idea
follows from the recognition that the Hall impedance exhibits rational fraction
behavior. This rational fraction behavior was predicted on topological grounds
by E. J. Post [18]. The implication is that superconductivity is related to topolog-
ical defect structures. There are three ways to construct an impedance Z (with
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physical dimensions h/e?) from period integrals [19].

Ordinary Superconductors : Impedance Z; = § A/ [[,G
Anyon High Tc ? Z,= [[[ A G/([[,,G) (4.1)
Fractional Hall : Zs= [[[ A F/[[[ ;A G

In order to produce rational fractions, the closed integrals must be period integrals,
where the integrands are closed in an exterior differential sense over the closed
domains (cycles of 1, 2 or 3 dimensions) of integration. The closure condition
on the first impedance Z; requires that dA = 0, which implies that the domain
excludes the field intensities (Meissner repulsion). The closure condition on the
third impedance, Z3 requires that both Poincare invariants must vanish, but E
and B fields are permitted in the domain of integration (as is observed in the Hall
effect).

The conjecture to be explored herein is that a supercurrent corresponds to the
case where the electromagnetic interaction energy density vanishes in a topological
sense. The motivation for such an assumption is founded upon the observation
that if the 3-form of charge current density, .J, was proportional to either the 3-
form of topological torsion, J = A" F, or the 3-form of topological spin, J = A"G,
then it follows that the interaction energy density of classical field theory will van-
ish, A°J = 0. Assume that a supercurrent contains components proportional
to topological torsion 3-form and the topological spin 3-form. In order for the
components of such a charge current 4-vector to be closed (and exact) the respec-
tive Poincare invariants of its components must be zero. Under such constraints,
the closed integrals of the closed 3-forms of topological torsion and topological
spin have rational (quantized) values, and become "deformable" topological in-
variants. Although the geometrical dimension of space time is 4, the constrained
system has topological Pfaff dimension 3 and is not an equilibrium system. The
evolutionary processes represented in terms of the divergence free forms of T, and
S, are not irreversible. Such formulations, therefor, are possible candidates for
non-dissipative supercurrents.

A third case would consider those situations where the 3-form charge current
density has components proportional to those components of the 1-form of poten-
tials which are elements of a spinor, J = AJginer- The 3-form can always be
multiplied by an integrating factor such that the rescaled spinor current has zero
divergence. Similarly, suppose the 1-form Ay (to within a factor) also has the
same spinor component functions. Then the interaction density vanishes, as
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Spinor London current: Jspinor = H(AAspinor )2 (4.2)
Interaction Energy density: AT = X (Aspinor © Aspinor) 24 = 0. (4.3)

Hence, a charge current 3-form composed of three parts, such that

Total Supercurrent Jsypercurrent = Jspinor + A F/A+ A G/n, (4.4)
With Interaction Energy density A”J = A" Japercurrent = 0, (4.5)

is a candidate for a superconducting current, which intuitively has no interaction
energy density.

5. Topological defects, Quarks to (GGalaxies

It was demonstrated in section 2.4.1 that period (circulation) integrals of the
1-form of electromagnetic Action potentials, A, lead to the concept of "vortex
defect lines" . The idea is extendable to "twisted vortex defect lines" in three
dimensions. The "twisted vortex defects" become the spiral vortices of a Complex
Ginsburg Landau (CGL) theory , while the "untwisted vortex lines" become the
defects of Ginzburg-Pitaevskii-Gross (GPG) theory [20].

Evidence of such topological defects (at the macroscopic level) can be demon-
strated by the creation of Falaco Solitons in a swimming pool [21]. These exper-
iments demonstrate that such topological defects are available at all scales. The
Falaco Solitons consist of spiral "vortex defect" structures (analogous to CGL
theory) on a two dimensional minimal surface, one at each end of a 1-dimensional
"vortex line" or thread (analogous to GPG theory). Remarkably the topological
defect surface structure is locally unstable, as the surface is of negative Gauss
curvature. Yet the pair of locally unstable 2-D surfaces is globally stabilized by
the 1-D line defect attached to the "vertex" points of the minimal surfaces.

The rotational minimal surfaces of negative Gauss curvature which form the
two endcaps, like quarks, apparently are confined by the string, but if the string
(whose "tension" induces global stability of the unstable endcaps) is severed, the
endcaps (like quarks in the elementary particle domain) disappear (in a non-
diffusive manner). In the microscopic electromagnetic domain, the Falaco soli-
ton structure offers an alternate, topological, pairing mechanism that can be
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compared to the Cooper pairing in superconductors. In the macroscopic do-
main, the experiments visually indicate "almost flat" spiral arm structures dur-
ing the formative stages of the Falaco solitons. In the cosmological domain,
could these universal topological defects represent the ubiquitous "almost flat"
spiral arm galaxies? Could M31 and the Milky way be connected by a topo-
logical defect thread? Take note of the recent Hubble photo entitled "Inter-
galactic "Pipeline’ Funnels Matter Between Colliding Galaxies" and posted at
http://hubblesite.org/newscenter /archive/2001/02/.

6. Maxwell Topological Defects and Black Holes.

A typical problem in classical electromagnetism starts with an assumed distribu-
tion of conserved charges and currents, J, which are used to deduce a set of field
excitations, G(D, H). Then a constitutive constraint is imposed to determine the
field intensities, F'(E, B). The excitations are not uniquely determined, and the
potentials, A, are ignored !

There exists a little used "reverse" procedure that will produce a globally
closed charge current density, starting from a set of potentials, but without the
explicit use constitutive equations. The concept is similar to the London for-
mulation of superconductivity (which uses the conjecture that J ~ A), but the
general procedure does not depend upon a quantum argument. Starting from an
arbitrary set of C1 differentiable components for a 1-form of Action potentials, A,
it is possible to construct a globally closed 3-form density, J;, by algebraic proce-
dures. The method is an extension of the theory of the differential geometry for
implicit surfaces to those surfaces where a normal field is given, but for which the
normal field is not a perfect exact differential [22]. In essence, a shape matrix
can be defined as the Jacobian matrix of the components of the given 1-form of
Action, divided by a Holder norm as a scaling factor, A = {>_ 4(A;)P}™? with
homogeneous index n. The shape matrix is defined for the choice n=1, p=2, and
a euclidean signature.

Shape matrix: [J] = [0(Ax/)\)/027] . (6.1)

The resulting shape matrix has determinant zero, hence defines a hypersurface
(defect) in 4 space. The similarity invariants of the shape matrix are related to
the curvatures of the hypersurface, and are determined from the Cayley-Hamilton
characteristic polynomial for the shape matrix. This procedure is precisely the
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procedure used to describe the differential geometry of implicit surfaces, where the
normal field to the surface is a gradient of the function whose zero set defines the
implicit surface. The general procedure admits investigation of surfaces whose
normal field is not a global gradient.

The linear Mean curvature of the hypersurface is related to the sum of the
eigenvalues (curvatures) and is easily determined from the trace of the shape
matrix. The quadratic Gauss curvature is related to the sum of the permuted
product pairs of the curvatures. The cubic Adjoint curvature is related to the
permuted product triples of the curvatures. The Adjoint curvature is easily
computed as the trace of the Adjoint shape matrix. The Adjoint shape matrix,

[j } , is defined as the matrix of cofactors (of the shape matrix) transposed. The

Adjoint shape matrix is well defined even though the shape matrix so constructed
does not have an inverse.
If one constructs the contravariant tensor density

7, — m o | Ar/\) (6.2)

by multiplying the components of the rescaled 1-form of Action by the Adjoint
shape matrix, the remarkable result is that the 3-form J; = i(Z4)Qy is globally
closed: dJs; = 0. Hence, from the potentials, a candidate has been constructed
(without the use of a constitutive constraint or some other assumption) that could
play the role of an electromagnetic charge-current density.

Even more remarkably, the topological component defined as the interaction
energy density, when constructed with this current and potential becomes propor-
tional to the cubic Adjoint curvature of the shape matrix:

Interaction energy density: A" J, = {trace [j ] } Q. (6.3)

In other words the interaction electromagnetic energy so computed is cubic in the
hypersurface curvatures.

If one considers a collapsing system, then the geometric curvatures increase
with smaller scales. If Gauss quadratic curvature is to be related to gravitational
collapse of matter, then at some level of smaller scales a term cubic in curvatures
would dominate. It is conjectured that the cubic curvature produced by the
electromagnetic effect described above could prevent the collapse to a black hole.
Cosmologists and relativists apparently have ignored such cubic curvature effects.
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7. Conclusions

A topological perspective of electromagnetism demonstrates that the electromag-
netic theory of Maxwell is a universal theory that goes beyond the usual pre-
sentations which impose geometric constraints of metric, connection, constitutive
relations or constraints of equilibrium thermodynamics. In fact, the topological
perspective leads to "quantum-like" coherent structures and topological defects,
such as the "flux quantum" and the "charge quantum", without the imposition
of a Copenhagen version of quantum mechanics. Moreover, the topological per-
spective points out that these topological coherent structures are not concepts
restricted to the microphysics domain, but - as topological concepts independent
from scales - are to be found at macroscopic and cosmological scales.

The topological perspective demonstrates the classical electromagnetism can
be applied to non-equilibrium thermodynamic systems, and leads to the discovery
of two more "quantum-like" coherent structures, which are to be found only in
non-equilibrium thermodynamic systems. These new objects are the Topological
Spin, A"G, and the Topological Torsion, A" F', which - in domains where the
Poincare invariants vanish - have closed integrals that are deformation invariants
and have rational ratios (often associated with microscopic quantum phenomena).
These topological coherent structures of Pfaff topological dimension 3 can form
long lived states far from equilibrium as topological defects in non-equilibrium
turbulent domains of Pfaff topological dimension 4. The practical utility of these
new topological electromagnetic properties has just begun.
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