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Abstract

A Maxwell system of differential forms induces a course topology on
a space time variety. This topology can be refined by certain extremal
constraints of domain closure that lead to topologically distinct, reactive
impedances, Z1, Z2, Zs. These non-dissipative impedances are rational frac-
tion ratios of topological invariants. The closure conditions induce physical
constraints that permit Z; to be identified with the ordinary type I and I1
superconductive domains, and Zs with the fractional quantum Hall effect.
Only Zs admits the time-reversal and parity symmetry breaking associated
with Anyon theories.

1. Introduction

The idea that superconductivity may have its origins in a topological theory was
given further credence by VonKlitzing’s [1] remarks regarding the quantum Hall
effect. The fact that the quantization is independent of sample size and shape,
and to a certain extent independent of impurity content, makes it appear that
the QHE is a topological phenomena. Earlier recognition of the Bohm-Aharanov
phenomena and flux quantization in type II superconductors demonstrated that



superconductivity was to be associated with cohomology theory [2]. E. J. Post
even predicted the rational fraction quantum Hall effect from cohomological ar-
guments [3] some two years before its experimental verification. Thouless [4]
developed a two dimensional QM theory which ultimately led to the idea that
half band filling fractions correspond to a topological invariant. More recently,
application of superstring ideas has led to the Anyon theory [5] of superconductiv-
ity, where topological concepts are offered to explain high TC effects. Bellissard
[6] and Xia [7] have offered theories that state the Hall impedance is proportional
to the Chern-Simons invariant.

In this article, the point of departure is based on Cartan’s theory of differen-
tial systems. The topological structure induced on the variety, {x,y, z,t}, by the
complete Maxwell system of exterior differential forms, can be refined by certain
closure constraints. Each of the four possible closure constraints leads to a dis-
tinct cohomology structure on the variety. Remarkably, three of these ratios of the
cohomology structures have the physical dimensions of an impedance (ohms). As
these ratios of topological invariants are rational fractions, they ultimately have a
periodic presentation, and therefore it is subsumed that they are representative of
dissipation free phenomena. The closure refinements necessary to insure the dissi-
pation free, rational fraction impedances indicate or predict certain qualities of the
Maxwell fields on the topological domains. In one case, the closure conditions im-
ply that the electric and magnetic fields, E and B, are excluded from the domain,
but the potentials, A and ¢ are not. This result is remindful of Meisner expulsion
of the bulk magnetic field from type I and type II superconductors. In two cases
the Euler characteristic of the domain must vanish, implying that time-reversal
and parity symmetry are conserved. One of these cases admits the presence of
large B fields, and appears to be related to the rational fraction quantum Hall
effect. The third case admits a non-zero Euler characteristic (EoB # 0), and
therefore permits the parity and time-reversal symmetry breaking alluded to be
one of the features of Anyon superconductivity.

2. Exterior Differential Systems

The idea that an exterior differential system, > can induce a topology on a variety,
{z,y, z,t}, has its roots in Cartan’s theory of exterior differential forms. In its
most elementary physical realization, the differential system, X, is generated by
the single 1-form of Lagrange-Cartan action,



A= A.dr — dt. (2.1)

From this system, X, it is possible to construct the closure of the system by
adding to A its exterior derivative, dA = F. The closure is represented by the sets
Y and dX, or A, dA = F. The original system may be further augmented by
adding to it all of the possible intersections that can be formed from ¥ and dX.
The closure plus the intersections form the complete Pfaff sequence, or topological
structure, which for 4-dimensions is given by the system:

{A, dA=F, H=A'F, K = F"F} (2.2)

The 4-dimensional form, F"F' is equivalent to the ”Top Pfaffian” of Chern
[8], who proved that its integral yields the Euler characteristic, X', (perhaps the
most important topological invariant) of the domain. This demonstration of how
topological properties can be assessed from a differential system on the cotangent
space has been accomplished WITHOU'T the geometric constraint of a metric, or
the geometric specialization to a particular group structure or fiber bundle.

If the differential system is composed from more than one differential form, the
same basic procedure is to be followed. First construct the closure by adding to the
original system the exterior derivatives of the original set, then form all possible set
intersections to build the complete Pfaff sequence, which acts as a topological base.
The additional features of the added forms refine the induced topology, which can
be further specialized by placing constraints on the domain. The constraints often
take the form of extremal conditions where some of the elements of the complete
Pfaff sequence, usually the limit sets (the exterior derivatives) of the system, are
set equal to zero. This is the procedure to be used for the complete Maxwell
system.

3. The Maxwell System

To the fundamental 1-form of action, A, is adjoined an N-2 form density, G, with
an exterior derivative, dG = J (which in a sense is the limit set of G and generates
coefficients which are the sources). The statement F' = dA defines the field
intensities (E, B) in terms of the derivatives of the potentials, and the statement
, dG = J defines the charge current densities in terms of the field excitations,
(D, H). The exterior differential system, { A, G} along with its closure, {dA = F,
dG = J} forms a Maxwell system of equations, for by the Poincare lemma ddA =



dF =0 and ddG = dJ = 0, become the first Maxwell Faraday pair of equations,
and the conservation of charge current, respectively. Again it is important to
remark that these results are independent from a metric, a connection, or any
constitutive constraint on the space time variety. These metric free ideas were
first championed by Von Dantzig [9].

Explicitly, the 1-form of Action on the four dimensional space-time of inde-
pendent variables, (x,y, z,t) is given by the expression,

A=Y} Ay(, y, 2, t)da® — @(a,y, 2, )dt. (3.1)

with physical dimensions (for the Maxwell field) of angular momentum per unit
source, or charge, [h/e]. The induced 2-form of electromagnetic field intensities,
E and B , as coefficients, has the same physical dimensions,

F = B.dz"dy+B,dy dz+ B,dz"dx + (3.2)
E,dz"dt + E,dy dt + E.dz"dt

(where B =curl A and E = —0A /0t — grade)
The N-2 form density, G, consists of components of excitation, D and H , and
is of the form

G = —D.dz'dy+ D,dy dz+D,dz"dz + (3.3)
H,dz"dt + H,dy dt + H.dz"dt

with physical dimensions of charge, [e]. The induced 3-form density, J becomes

J=I%dy " dz"dt — JVdz"dx"dt + J*dx"dy dt — pdx"dy dz (3.4)
with the same physical dimensions of [e] (where J = curlH+ 0D /0t, and divD =
p)-

Additional forms, {A"F,F"F,A"G,F "G, A" J,G"G} , constructed from non-
null set intersections (based on the exterior product) may be added to the Maxwell
closure,{A, dA = F, G,dG = J}, to form the complete Pfaff sequence. The
complete set of forms determines a topological base on the space time variety,
with the Maxwell closure acting as a subbase. The induced topology has been
constructed without a metric or a constitutive tensor. Further constraints of
a geometrical nature can be imposed on the system by specifying a metric (for
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example, a Lorentz metric), or a constitutive linkage (G* = x***F, 5 ) between G
and F', or constraint of isochronism (dt = 0). These constraints are not examined
in this article.

4. Period Integrals of the Maxwell System as Topological
Invariants

The complete system admits of four natural extremal constraints of closure in the
sense that the following combination of elements of the topological base are exact
p-forms:

dA=F p=2 preimage = A

dG =J p=N-1 preimage = G

d(A"F)=F"F p=N preimage = A" F

d(AG)=F"G-A"J p=N preimage = A"G
(4.1)

The integrals of exact forms over compact oriented manifolds ordinarily are
considered to be zero, but such an assumption assumes that the pre-image of the
form does not go to zero on the domain of interest. The singular (null) points of a
global 1-form are known to determine the Euler index of the variety on which the
1-form is defined. For example there must be two such singular points for a vector
field on a sphere. Similarly, the null points of all elements of the Pfaff sequence
determine topological information. The integral of F'"F' (an exact 4-form - which
in local coordinates has the expression 2E o B(dx"dy"dz"dt) over a domain will
lead to the Euler characteristic or Chern index of the topology induced on space
time by the complete system of forms on that domain. The integral of F"G—A"J (
an exact N-form - which in local coordinates becomes {{ BoH—D o E)—(A o J—
p9)}(dz"dydz"dt) will be defined as the Lagrange index [10] . These integrals
are known to be topological invariants. If the RHS of each of the exact forms
vanishes, then the pre-images are closed in an exterior derivative sense. Hence,
integrals of these closed forms over closed (but not bounding) integration chains
are period integrals, and their values (by deRham’s theorems) are integers times
some smallest value of scaling. The number of independent such integrals (the
number of non-condensable closed chains) determines the p-1 dimensional cyclic
cohomology of space time variety. The result is essentially the number of p-1
dimensional "holes” or obstructions on the space time variety. These numbers are
topological invariants of homeomorphisms. The reason that they are integers is



related to the physical impossibility of having ”half a hole”.

If the closed integration chains (which are composed of cycles) are boundaries
then the values of period integrals are zero. If singularities occur, they must
occur in canceling pairs. There is a dominant cycle which would be the boundary
if all interior cycles collapsed. This cycle defines the edge of a domain with a
heterogeneous interior. The value of this period integral is the sum of all the
other period integrals. The dominant cycle is the usual integration chain over a
physical object. It is the integration chain assumed in most of that which follows.

Forcing the RHS of each of the exact forms to zero acts as a set of extremal
constraints or refinements on the variety. The constraints may be interpreted
physically to be the limit of zero fluctuations in the pre-images, and in this sense
would correspond to the limit of absolute zero in temperature. It follows that
there are four cases of such period integrals to consider:

1.F=0 $ A=1intxcl
o of physical dimension h/e
2. J=0 Jetosea G = int * 2
U of physical dimension e
3. FFF =0 fffclosedA F =1int *c3

of physical dimension (h/e)?
fffclosed AAG =nt * c4

LEG=AT=0 of physical dimension h

(4.2)
Each of these period integrals, subject to the appropriate constraint, is a
topological invariant of the domain.

5. Transverse Reactive Impedances as Ratios of Period In-
tegrals

Note that ratios of the topological invariant period integrals may be used to
construct 3 distinct transverse impedances of physical dimensions, [h/e?], and
each of these ratios is a rational fraction of some smallest scaling:

Zl - §A/ ffclosedG = m/n (61/62)
ZQ = ffclosed AAG/(ffclosed G)2 = T/S (04/(02 ’ 02)) (51)
Z3 = fffclosed AAF/ ffclosed AG = p/q (63/04)
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The coefficients c1,c2,c3 and c4 are the unknown smallest scaling values (which
are legislated quantities and are to be ignored in a topological analysis) , and
m,n,r,s,p,q which are integers. When the appropriate physical conditions of null
fluctuations are true such that any of these topological impedances are ratio-
nal fractions, they then are expected to represent reversible reactive phenomena,
and are dissipation free. In that which follows, the features induced by the null
fluctuation topological constraints are put into correspondence with the physical
features of superconducting domains.

5.1. THE TOPOLOGICAL FRACTIONAL HALL IMPEDANCE Z;

The experimental observations of the Quantum Hall Effect indicate that the
”quantization” conditions are independent from the size and shape of the sample,
and are more or less independent from sample impurities. [1] Such results imply
that the phenomena is of topological rather than geometrical origin. Indeed it
appears that the features of constraint that generate the rational fraction topo-
logical impedance, Z3 , indicate that it represents the Fractional Quantum Hall
impedance. Of the three possible topological impedances, the least constrained
situation is for Zs. The constraints of closure correspond to a domain where the
finite variables can be written as,

finite: {A,¢,E;B,D . H J p} with

null sets {EocB=0 and [(BH — DE) — (AJ - pp)]=0.}

The 3 dimensional integral in the numerator of Z3 may be written in engineer-
ing format as

///A“F - ///{E % A+ Bolody dz"dt — ..+ .. — AoBdedy dz (5.2)

closed closed

and the three dimensional integral in the denominator may be written as

///AAG - ///{A x H+ Do)ody dz"dt — ..+ .. — A o Ddz"dy"dz (5.3)

closed closed

Topological domains that satisfy the conditions to produce the rational frac-
tion transverse impedance, Zs , can sustain large B fields and fluctuation currents
of the normal variety. Such conditions lead to the statement that Zs represents
the fractional quantum Hall impedance, which occurs experimentally in the pres-
ence of large B fields. Subject to the stated constraints, both the Euler and the
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Lagrange indices are zero. Setting the denominator to 1 leads to the earlier cited
results that the Hall impedance is related to the integral of A"F. [3,4,5]

The admissibility of charge currents implies that such systems can be used
to emulate traveling wave amplifiers, whereby RF energy can be created at the
expense of DC currents, or charge density waves.

The topological argument that Zs is the transverse Quantum Hall impedance
implies that the fundamental idea is independent from some set of Schroedinger
wave functions (and a probability normalization condition which acts a yet another
topological constraint) which may be used to model the topological concept. The
arguments presented above reverse the usual theoretical attack, which starts from
the postulate that all physics has a quantum mechanical foundation. Here the
notion is that a topological foundation can lead to the quantum theory. In fact,
it can be shown that the Heisenberg uncertainty principle can be associated with
the curvature 2-forms, F', of a space that admits fluctuations in its dynamics and
kinematics (dz' — V'dt # 0).

It is to be noted that only for space-time topologies of Euler characteristic
zero is it possible to construct an evolutionary vector field without singularities
(the world lines never intersect). Furthermore, note that the transverse Hall
effect as represented by Zs , is, topologically, an irreducibly 3-dimensional concept
(although the three dimensions may be composed of two space variables and time).

5.2. ORDINARY SUPERCONDUCTORS Z,

The most constrained configuration for the Maxwell system under consideration
corresponds to a domain where the finite variables are,

finite: {A,¢,D,H}  with

null sets {E=0,B=0, J=0, p=0.}

which of course implies that both the Euler and the Lagrange indices are zero.
The one dimensional integral in the numerator of Z1 represents quantized flux in
the sense of Bohm-Aharanov,

7{,4 - f(A o dr — ¢dt) (5.4)

and the 2 dimensional integral in the denominator represents quantized charge,

// G= //(—Dzdx“dy.. e Hodzdt) (5.5)

closed closed



time independent case. This constraint configuration, in which the B field is
expelled from the domain, is in correspondence with the fundamental ideas of or-
dinary superconductivity, and predicts that there exists a rational fraction trans-
verse impedance associated with such phenomena that has yet to be measured.
(Note that the additional constraint, dt = 0, makes the choice of ¢ and E am-
biguous.)

5.3. ARE HIGH TC SUPERCONDUCTORS RELATED TO Z, ?

The next least constrained system corresponds to the domain where the finite
variables are:

finite: {A,¢0,E; B, D HEoB} with

null sets {J =0,p=0,(BH — D.E)=0, .}

This topological configuration corresponds to a zero value for the Lagrange
index, but the Euler index may take on non-zero values ( E o B # 0). If the Euler
index is identically zero, the constraint mimics the usual conditions for the prop-
agation of plain waves in ”free space”, where the domain is charge current free,
and the magnetic and the electric energy densities are balanced. However, when
the Euler index is not zero, this constraint produces the only reactive impedance
built from rational fractions that will admit the longitudinal E and B fields nec-
essary to generate helical modes. The lack of free charge and currents forbids
the interactions to used to produce traveling wave amplifiers, as is possible for
the impedances of type Z3z . When E o B is not zero, parity and time reversal
symmetries can be broken at a macroscopic level, and waves may propagate with
different phase velocities in different directions [11]. (Such concepts have led to
the conjecture that this impedance may be associated with High Tc supercon-
ductivity.) Anyon theories that lead to broken symmetries of parity and time
reversal must be associated with domains for which the Euler characteristic is not
necessarily zero.

5.4. A FEW CONTACTS WITH EXPERIMENT

A certain number of pertinent statements can be made from the crystallographic
experiments made on experimental high TC superconducting materials. Certain
compounds indicate that their charge distributions cannot be mapped on to a
euclidean periodic lattice in 3-dimensions. The recent thesis of Xiaobo Kan at
the University of Houston indicates that, for the Bismuth 2212 type material, a



4-dimensional euclidean structure is required to yield a periodic tiling for crys-
talline structure as seen and measured in 3-D; that is, the 2212 material does not
exhibit periodic tiling of 3-dimensional space. The x-ray data indicate satellite
diffraction peaks occur along one of the reciprocal lattice vectors, such that 4-
dimensions are required for euclidean periodicity. Such materials could support
an electromagnetic vector and scalar potential describing the charge distribution
in the material such that E o B is not zero in such a domain. A greater than 3
dimensional periodic tiling is necessary for materials that can support E o B # 0.
However, just because the tiling is 4-dimensional, it is not possible to conclude
that Eo B # 0. Four dimensions is a necessary but not sufficient condition for
E o B # 0. However, if lowest dimension for periodic euclidean tiling of the lattice
is in 5 dimensions or higher, then the only form of superconductivity is of type Zs
, for Eo B # 0 is then a necessary requirement for such systems. On the other
hand, if the crystallographic structure of a high TC material is describable by a
3-dimensional periodic tiling, then the vector and scalar potential required to de-
scribe such a material requires only 3-parameters, and the associated distribution
of charge cannot support a domain where E o B # 0. The conclusion is that peri-
odic tiling in 3-dimensions implies that time reversal symmetry is preserved, and
periodic tiling in 4 or more dimensions is required if time reversal symmetry is not
preserved. As some high TC materials are periodic in 3-dimensions time reversal
symmetry breaking is not required in high TC superconductors. The question
of parity symmetry breaking is still open. In the language of the presentation
given above, A”dA need not be 0 in a 3-dimensional tiling, but the tiling can have
dislocation and disclination defects. In order for dA"dA # 0, the space must be ir-
reducibly 4-dimensional, or more. dA"dA must be zero for domains where Z; and
Z3 are not zero. Only Z, domains can support dA"dA # 0. For domains where
A"dA # 0, a chiral symmetry can be broken, and this can happen for materials
that support Zs or Zs superconductivity. The concept of defects complicates the
issue, for the defects are representatives of the periodic tiling imperfections.
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6. APPENDIX A :

6.1. TOPOLOGICAL FEATURES OF THE FINE STRUCTURE CON-
STANT (written in conjunction, and by correspondence, with E.J.
POST)

The notion of impedance is an engineering concept, which for a long time has not
played a major role in fundamental physics. The idea of a free space impedance
goes back to the early days of radio transmission, radar and waveguides. Targets
of reduced radar cross section have recently added to its relevance. In this ap-
pendix a few remarks will be made about the relationships between the radiation
impedance, Zg , of free space, the Hall impedance, Zy,; , studied above, and the
fine structure constant. In its traditional cgs rendition the fine structure constant,

a = 2me* /he = 1/137.0360411, (6.1)

is a dimensionless number determined by the quantum of elementary charge, e,
the quantum of action, h /27, and the speed of light in matter free space. The fine
constant was introduced by Sommerfeld to account for certain relativistic effects
in the spectra of hydrogen. In (Al) the elementary charge, e, and the action,
h/2m, are known to be good space-time invariants under all diffecomorphisms. By
contrast, the speed of light is only a Lorentz invariant, but not a general space-time
invariant. The numerical value of (A1) is a recommended value, which from 1980
onwards has only changed in the last three decimal places. [12] The data include
laboratory measurements [13] using Josephson and quantum Hall effects, as well as
values deduced from the spectra of far away stellar objects [14] that are subject
to very large stellar red shifts. It would appear that « is at least a projective
invariant of the universe. Right from the beginning o became surrounded by a
lore of mysticism, which has manifested itself in finding independent calculational
recipes for the value given in (Al). From the early efforts of Eddington to the
more recent attempts by Wyler [15], these calculations have improved to the
point of reproducing some six decimal places of the generally accepted measured
values. Yet these recipes so far have not exhibited a sufficiently transparent and
acceptable rationale to convince the world of physics at large. Their relevance
remains, for the time being, in the eye of the beholder. In this appendix no
magnitude prediction of « is intended. Instead, the observation is made that
when written in terms of the MKS system of units, the fine structure constant
becomes,
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o = 2me? JAme he = 1/2(p/e)Y? /(h/e?) (6.2)

This formula demonstrates that « is a ratio of two fundamental impedances,
the free-space impedance,

Zy = (n/e)Y? = 376.730313, (6.3)

and the Hall impedance,

Zian = h/e* = 25812.814910Q). (6.4)

The relation between the quantum mechanical entities and the free space impedance
as given by the equation,

o = 1/2(Z0/ZH(1”), (65)

elevates the importance of the free space impedance, Z, . Furthermore, recent
measurements of the quantized ”ballistic” impedance of electrons in mesoscopic
channels focuses attention on the relationship between the Hall impedance for
electron waves and the free space impedance for photon waves [16]. The option
expressed by (A4) has been around for some time [17], yet the question remains:
Why should (A4) be preferred over (A1)? A dimensionless number can always
be rewritten as the ratio of any two physical quantities of equal dimension and
proper numerical values. One important argument that can be brought to bear on
the situation is the general invariance of (A4) contrasts with the Lorentz invari-
ance of (Al). As shown in reference [17], the free space impedance, Z; , (unlike
the speed of light c) is a general invariant of the constitutive tensor x***¢. The
constitutive tensor is a map between the pair two form, F', of electric intensities
( E and B ), and the impair N-2 form, G, of electric excitations, ( D and H ).
The impedance 7, is an algebraic invariant of the constitutive tensor [17]. More-
over, the impedance, Zj is a conformal invariant in 4-dimensions. These results
suggest that a deeper and perhaps topological result is behind equation (A4).
From dimensional arguments, the idea that the Giorgi choice of four fundamental
dimensional units (length, time,mass, and charge) over the classical cgs system
of three fundamental units (length, time, mass) induces such a relation as (A4)
also suggests that a topological concept is involved. General invariance is neces-
sary but not sufficient to make Z; a topological constant of nature. In support
of this constancy note that a varying Z, in space-time would cause a distributed
reflection of radiation throughout space. Such a phenomenon would indeed be
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incompatible with what astronomers see [18]. The « values reported by Bahcall
and Schmidt [14] and derived from the observed spectra of quasi-stellar objects
strongly support an « value constant through the known universe. The experi-
ments of the quantum Hall effect [1] support the idea that the Hall impedance is
a topological entity. The associated recognition that h/27 and e are topological
properties, when combined with the constancy of a and equation (A4) suggest
that Zy is also a topological property of the universe, and its measured projective
invariant properties suggest that it should be determined somehow by a topolog-
ical cross ratio. The topological base defined by a Maxwell system (and used in
the main portion of this article, above, to define certain rational fraction topolog-
ical impedances) focuses attention on another integral ratio, which, although not
rational, in simple examples is exactly the square of the free space impedance,

@ = [fffreffffec oo
- [fffses fffoen

= pfe

The integrals above are open integrals and do not necessarily form a rational ratio,
as do the integrals that make up the cyclic impedances discussed above. While 7,
seems to be relevant anywhere in space-time, the other universal impedance, Zp.y
, relates to the presence of matter and properties of matter. Unlike the homo-
geneous nature of matter-free space, the Hall impedance relates to the inhomo-
geneous structures that exist in space-time. An integral representation of such
physical structural elements would have to account for the structure, yet at the
same time reflect the universality of Zp,; . Such inhomogeneity properties are
to be associated with the cyclic cohomology of the Maxwell differential system,
and was described above. The question remaining is how to relate the cyclic
impedances, Z; , Z, , Z3 and the free space impedance, Zj, which is based on a
non-cyclic ratio. By use of Stokes theorem, and assuming that the integrations
on the boundary do not vanish, eq. (A5) leads algebraically to the equations,

- o oo o
— 2321/22{////?@— A“J/////G“G}
sl wor fff o
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= 240],,,, 9 I ¢

These formulas (assuming that Zp.;, = Z; = Z3 ) suggest the possibility that
the fine structure constant is related to the charge distribution ratio of a ”point”
electron to a "distributed” electron:

a2:4{(//G)2/////G“G} (6.8)

closed

The numeric value is, of course, the ratio of the "size” of the classical electron
radius to the Bohr orbit.
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