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Abstract

Cartan’s magic formula is used as the fundamental link between me-
chanics and thermodynamics, expressing continuous topological evolution
of physical systems, encoded by exterior differential forms, with respect to
processes, defined by contravariant vector direction fields. Cartan’s formula
of continuous topological evolution is the dynamical equivalent of the first
law, and permits the analysis of physical systems and processes based upon
equivalence classes generated by the Pfaff topological dimensions of the 1-
forms of Action, A, Work,W and Heat, Q. When the Pfaff dimension of
the virtual work 1-form is 4 or more, the process is always irreversible,
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1. INTRODUCTION

A major objective of this article is to establish a topological, non-statistical, link
between mechanics and thermodynamics, with the particular goal of describing
the differences between reversible and irreversible evolutionary processes. The



methods are based upon Cartan’s techniques[1], which have been found capable of
describing continuous topological evolution of exterior differential systems. The
fundamental axioms are:

Axiom 1. Physical systems can be described by exterior differential forms con-
structed from covariant tensor fields, A.

Axiom 2. Physical processes can be defined in terms of contravariant vector
fields, V ,which may or may not be generators of 1-parameter groups.

Axiom 3. Equations of evolution describing processes acting on physical systems
can be deduced from Cartan’s magic formula :

LA = i(V)dA + d(i(V)A). (1.1)

Cartan’s "magic formula” [2] representing the ”evolution” of the 1-form of
Action, A, with respect to the "flow” generated by the vector field, V, is the
cornerstone of the development. The Cartan formula does not depend upon the
constraints of connection or metric imposed upon the base space of independent
variables, and has been called the homotopy formula by Arnold [3]. The formula
can be used to describe both those evolutionary processes which are homeomorphic
and preserve topology, and those processes that represent continuous topological
evolution. Hamiltonian processes are representatives of the homeomorphic cat-
egory, and thsy are always thermodynamically reversible. Irreversible processes
involve changing topology.

Herein, the following definitions are made:

1. The term W = i(V)dA is defined as the inexact 1-form of ”virtual work”.

2. The function U = (V')A is defined as the ”internal energy”.

3. The sum of the two terms, W + dU, define the inexact 1-form of "heat”, Q).

From these definitions, it is apparent that Cartan’s magic formula not only
represents an evolutionary process, where the process V' acts on the physical
system A to produce the 1-form of heat, @), but also is formally equivalent to the
cohomological description of the First Law of Thermodynamics.

LanA = i(V)dA+d(i(V)A) = Q (1.2)
— W+dU =Q.



In this article this formal correspondence is taken seriously. The fundamental
theme is to study processes that describe continuous topological evolution. Such
evolutionary processes are not necessarily invertible and do not admit unique
deterministic prediction of tensor fields from initial data. However, they do permit
the deterministic retrodiction of tensor fields by means of functional substitution
and pullback [4]. The magic in Cartan’s formula is that it can be used to describe
such evolutionary processes where the topology of the initial state is not the same
as the topology of the final state, as well as for adiabatic processes for which the
topology does not change.

Both the heat and the work 1-forms as defined above are not necessarily exact,
and therefore can lead to non-zero cyclic integrals. The symbol L) stands for
the ”Lie derivative” with respect to V,a term evidently coined by Slebodzinsky
[5]. The symbol dA stands for the ”exterior derivative” of A, and the symbol
i(V)A is used to designate the ”interior product” of the contravariant V with the
covariant A in a tensorial sense, producing a diffeomorphic invariant. However, no
constraints of metric or connection are applied a priori to the domain of definition.
For more detail see [6].

For physical systems of measurement it is presumed that the ultimate or fun-
damental domain (or base) of independent variables will be designated by the
ordered quadruplet {z,y, z,t}. Most useful applications will be constructed from
both covariant and contravariant vector fields and functions ultimately defined
over this base. However, an initial domain of definition may be conveniently of
higher dimension; that is, the initial variety may consist of 2n+1 or 2n+2 inde-
pendent variables. Note that the initial variety may consist of both ”coordinates”
and "parameters”, and the notation is suitable for application of Fiber bundle
theory.

1.1. The Pfaff Sequence and the Pfaff Dimension

Consider a physical system encoded by a single 1-form of Action, A. Construct the
Pfaff sequence of ordered differential p-forms built from one exterior differential
process combined with numerous exterior multiplications:

Pfaff Sequence of A: {A dA, A"dA,dA"dA.....}. (1.3)

For any given functional format of 1-form coefficients and differentials, the Pfaff
sequence will consist of m terms. The p-form of highest degree in the sequence,
p = m, is defined as the "top Pfaffian”. The integer m defines the concept of the



Pfaff topological dimension, or class. The idea, due to Cartan, is associated with
the fact that a given differential form, A, defined arbitrarily on a variety of, say,
dimension 2n+2 independent variables, may require only m < 2n+ 2 independent
functions for its description. This lesser number of (differentiable) functions ( a
projection) may be used to describe the topological features of the system. By
using functional substitution and the ”pullback” of the projection, the results of
investigations on the lower dimensional space can be retrodicted back to the initial
higher dimensional manifold. Note that the projection will not have an inverse
map, yet the 1-form on the target space, m, is functionally well defined on the
2n + 2 dimensional space used in the original formulation, if the projection is C1
differentiable. This fact is a remarkable result that demonstrates that Cartan’s
exterior differential forms are not necessarily tensors, which by definition are well
behaved with respect to diffeomorphisms. Cartan’s exterior differential forms are
well behaved with respect to differentiable maps without inverse, and therefore
are appropriate for the study of irreversible thermodynamic processes. Problems
of non-differentiable functions are not considered in this current article.

Of key importance for any particular physical system is the choice of the ”cor-
rect” 1-form of Action, A. Experience (guesswork) and the degree of agreement
with measurement will satisfy the working scientist. By measurement, it is meant
that certain geometrical and topological features will be ”observable” evolution-
ary invariants of a process, or of an equivalence class of processes. In physics, the
equivalence class of processes is often specified as solutions to a system of partial
differential equations; herein, the alternative view is taken that the equivalence
class is generated by an exterior differential system of constraints.

Note that the Cartan Magic formula defines two other 1-forms, W and @, and
each will have its own Pfaff dimension, which will refine the topological equivalence
classes established by the 1-form, A. The top Pfaffian is a global concept on the
space of independent variables, defining a domain of support. Subspace regions
can exist as singularities, where the Top Pfaffian vanishes, and the Pfaff sequence
of a given 1-form, A, terminates at a smaller integer. Continuous processes exist
such that irreversible dissipation can cause the physical system to be attracted to
the singular regions. Such evolutionary processes are not homeomorphisms, for
the process causes a change in the topology: the Pfaff dimension changes as the
topology ”decays”.

It was demonstrated by Caratheodory [7] that the "singular” states of Pfaff
dimension 2 or less correspond to ”equilibrium” systems, as they satisfy the Frobe-
nius theorem of unique integrability. There can exist singular states of odd Pfaff



dimension greater than 2 which support unique physical (extremal) processes that
are "conservative” and do not topologically decay. These long lived states give a
formal definition to the meaning of ”stationary states far from equilibrium”.

1.2. Cartan’s development of Hamiltonian processes.

Recall that Cartan proved that if the 1-form of Action is taken to be of the classic
format, A = prdq® + H(py, ", t)dt, on a 2n+1 dimensional domain of variables
{pr,q",t}, then a subset of all vector fields, V, that satisfy his magical equation
would generate ”"Hamiltonian flows” of classical mechanics [8]. The necessary
and sufficient constraint established by Cartan for the vector field to be of the
Hamiltonian format was that the closed integrals of the Action [,; A must be
evolutionary invariants of the process, V.

Cartan’s Constraint: L(v)/ A=0. (1.4)
zl

The symbol, [, is used to designate that the integration chain is a closed cycle,
zl; [, would be used to designate a two dimensional closed cycle; etc.. The
cycle may or may not be a boundary. When the cycle is not a boundary, the
invariant constraint becomes a topological period integral in the sense of deRham.
In otherwords, the Cartan constraint implies that Hamiltonian extremal processes
preserve topology.

The Cartan criteria does not constrain the Hamiltonian function H(py, ¢*,t) to
be independent from time, but as will be described below, it does insure that the
Cartan topology of the initial state is the same as the Cartan topology of the final
state. The same criteria to generate ”Hamiltonian flows” can be used on 2n+2
dimensional domains, (pg,¢*,t,s). The key difference is that on the odd dimen-
sional domain ( a contact manifold) the Hamiltonian flow is a unique ”extremal”
field. The generator of the flow is the Hamiltonian function, H(pg,¢*,t). On the
2n+2 dimensional domain (a symplectic manifold), a unique extremal field does
not exist. There do exist (many) ”Hamiltonian flows”, but they are generated,
not from H(py,q",t,s), but from other functions, known as Bernoulli-Casimir
functions, ©.

There does, however, exist a unique vector direction field of evolution on the
symplectic 2n+2 domain, but it is not equivalent to a Hamiltonian flow. In
fact, it will be demonstrated below that this unique vector field (defined as the
Topological Torsion current) represents thermodynamically irreversible processes.



1.3. Thermodynamic Irreversibility ()"dQ =0

The Cartan constraint (Lvy [,; A = 0) thereby partitions all possible vector fields
of evolution into two equivalence classes, those representing processes that are
”Hamiltonian”, and those that are not Hamiltonian. Herein the idea is to exploit
Cartan’s magic formula to obtain a better understanding of the non-Hamiltonian
processes (L(vy [,; A # 0), and how they may represent dissipative and irre-
versible physical phenomena. Hamiltonian processes may be time-dependent,
hence decaying energy alone is not a sufficient criteria to insure thermodynamic
irreversibility.

Following the lead of thermodynamic experience, a thermodynamic process
which is reversible it to be associated with a heat 1-form, (), which admits an
integrating factor. The integrating factor (in thermodynamics) defines the concept
of temperature. Therefore, if the heat 1-form does not admit an integrating factor,
the thermodynamic process is irreversible [9]. From a topological point of view,
the heat 1-form admits an integrating factor if and only if ) satisfies the conditions
of the Frobenius integrability theorem, Q"d() = 0. The Pfaff dimension of the
Heat 1-form is 2 or less for reversible processes. This definition of thermodynamic
irreversibility, when combined with Cartan’s magic formula, permits the link to
be made between thermodynamics and mechanical systems.

To repeat: It is subsumed that the physical system can be represented by a
1-form of Action, A, and a physical process can be represented by the vector field
V. As the system (A) is propagated via the action of the Lie derivative with
respect to the process, V, the outcome is to produce the heat 1-form, ). Hence
a simple test for thermodynamic irreversibility of a process acting on a system is
given by the equations:

Q" dQ = (Lv)A)" (LvydA) = 0 D theprocess is reversible. (1.5)
Q" dQ = (Lv)A)" (LvydA) # 0 D theprocess isirreversible. (1.6)

The technique is as follows: First start with a reasonable description of a physical
system in terms of a 1-form of Action, A, and then for a given vector field,
V, representing a process, construct ) from Cartan’s formula. Finally, use the
Frobenius test to see if the given process is reversible or not.

Rather than applying the method to many examples, it is possible to consider
equivalence classes determined by the Pfaff dimension, or class, Pfaff(W), of
the 1-form of virtual work, W. The Pfaff dimension of the virtual work 1-form,
W = i(V)dA, depends on both the process (V) and the system (A). Conservative



Hamiltonian processes belong to the class, Pfaff(W) =0 or Pfaff(W) = 1.
Processes that belong to the Pfaff(W) = 4 are always irreversible.

2. The Pfaff Dimension of the 1-form of Virtual Work

In a manner similar to that used to construct the Pfaff sequence for a given 1-
form of Action, A, it is possible to construct the Pfaff sequence for the 1-form
of Work, W = i(V)dA. The sequence, W,dW, W"dW,dW"dW, ..} defines the
Pfaff dimension, or class, Pfaff(W) of the form, W. The 1-form of Work is
composed of both those functions which encode the physical system, A,and those
functions which encode the process, V. As the 1-form of Work is constructed
from the 1-form of Action, A, the number of contravariant components of a vector
field, V, required to define the 1-form of virtual work, W, need not exceed the
Pfaff dimension of the Action 1-form. However, the components of an arbitrary
contravariant vector field on the original domain of definition may not be fully
expressible in terms of projected functions of the 1-form of Action. In other
language, the Pfaff dimension of the 1-form of Action determines the base, but
the contravariant vector field has additional components along the fibers of the
vector bundle.

Cartan’s magic formula takes note of this difference, for the 1-form of virtual
work, W, is transversal to the process, V, while the 1-form of heat, @, is not.

i)W =i(V)i(V)dA =0, but i(V)Q=i(V)d(i(V)A) £ 0. (2.1)

This result gives a precise definition to the differences between the concepts of
work and heat. Heat can have components along the fibers, work does not.

In that which follows, the features of the various equivalence classes defined by
the Pfaff dimension of the 1-form of virtual work are explored. In all classes con-
sidered, the trivial case dA = 0, is ignored, for then every vector field representing
a process on such physical systems is such that the virtual work vanishes. All such
cyclic processes are adiabatic, and if the process is such the internal energy is con-
stant, dU = d(i(V)A) = 0, then such processes are locally and globally adiabatic.
If the process is an associated vector, (such the U = i(V)A = 0) then the process
resides on the ”equipotential” surface defined by the Pfaffian equation, dA = 0.



2.1. Reversible Case 1: Pfaff(W) = 0. Cyclically adiabatic extremal
processes.

When dA # 0, the constraint, Pfaff(W) = 0, implies that the virtual work
1-form vanishes, W = i(V)dA = 0, and the 2-form dW = 0. Recall that the 2-
form of ”vorticity”, or field intensities, dA, consists of an anti-symmetric matrix of
coefficients. Hence, only when the Pfaff dimension of the Action is an odd-integer,
2n+1, is it possible for work 1-form to vanish. In such cases the processes, V, are
defined as extremals (a word borrowed from the calculus of variations) and are
uniquely determined (to within a projective factor) as the null eigen vector of the
anti-symmetric matrix of functions that are used to represent the coefficients of
the 2-form dA. As this extremal constraint determines the ”equations of motion”,
it should be noted that there is a large equivalence class of physical systems that
will have similar orbital motion. In the extremal case the 1-form of Action is
not unique, for any closed 1-form, =, with dy = 0, may be added to the initial
1-form, A, without changing the structure of the 2-form, dA. It is the form dA
that determines the virtual work, W.

The ”equations of motion” are said to be ”"gauge” invariant in the sense that the
virtual work 1-form is the same for all physical systems which are elements of the
large equivalence class of Actions which differ from one another by a closed 1-form
(the ”"gauge”). Note that the gauge differences between the elements of different
actions are not necessarily exact differentials; the class of actions that produce
gauge invariant fields, or equations of motion, can belong to different cohomology
classes. In short, the same W can have many precursors A

However, from a thermodynamic point of view, the heat 1-form, (), and how
the system interacts with its surroundings, is sensitive to the closed 1-form addi-
tions to the Action 1-form. The heat 1-form, (), and the internal energy, U, are
not necessarily gauge invariant, but the work 1-form is always gauge invariant.
For a closed 1-form, dA = 0, modified by gauge additions, A = Ay + 7 :

LanA = i(V)dA+d(i(V)A) (2.3)

= 0+dU =d{i(V)A + (i(V)y} = Q.

However, what is remarkable, is that any closed integral of the Action, [,; A, is a
(relative) integral invariant of the extremal evolutionary processes generated by

8



V of this equivalence class.

L(V)/ZlA:/ZlQ:O (W =0). (2.4)

Hence, any cyclic integral of the heat 1-form is ”gauge” invariant. During portions
of the cycle, () may be positive and negative, such that over the cycle, the net
@ is zero. (Such systems are sometimes called ”breathers” and can be related to
limit cycles that occur in dissipative systems.)

If () vanishes identically, the process is said to be locally adiabatic. For a given
system, the constraint that the process be locally adiabatic, can be satisfied by
an extremal vector field, which is also ”associated”. The two constraints,

i(V)A = 0 (associated) (2.5)
i(V)dA = 0 (extremal)

form a subclass of processes defined as ”characteristic” processes. It follows that
such characteristic processes are locally adiabatic!.

The extremal evolutionary processes form the basis for classical mechanics on
state-space. It is apparent that the net heat around any closed path is cyclically
zero. If in addition the internal energy is a constant, dU = 0,then such processes
are locally adiabatic, as Q = W +dU = 0+ 0 = 0. As the extremal vector field is
determined only up to a factor, p, it is possible to choose this function such that
the internal energy is a constant,

U = p(i(V)A) = Const. (2.7)

For such choices of p the extremal process is locally adiabatic.

As an example, suppose the initial domain of independent variables { E, t, px, ¢* }
is of dimension 2n+2, with a Darboux representation for the 1-form of Action
given by the expression

A = ppdq® — Edt. (2.8)
The top Pfaffian, dA"dA... is a 2n+2 form

dAdA... = dE"dt dp...."dp, dq"..."dg". (2.9)

Tt is remarkable that characteristic processes can propagate discontinuities.



If the Pfaff dimension of the Action 1-form is to be 2n+1, then this 2n+2 form
must vanish. Hence the variable, E/, cannot be functionally independent from the
remaining (presumed to be independent) variables; it follows that £ = H{p, q,t}
on the 2n+1 dimensional domain. The Action 1-form is then written in the
Cartan-Hilbert-Hamiltonian format

A = prdg® — H{p, g, t}dt. (2.10)

Relative to the 2n+1 ”coordinates” [p, ¢*, t], consider the vector field V = [fg, V¥, 1]
and find the solution to the equation, W = i(V)dA = 0. The result is

V = [fy = —0H/0q,V* = 0H/dp, 1]. (2.11)

and the extremal field is said to be Hamiltonian.
By computing the exterior derivative of Cartan’s magic formula, it follows
that,

LandA = di(V)dA + dd(i(V)A) (2.12)
dW + 0 = dQ.

As dW = 0 for Pfaff(W) = 0, it follows that d@ = 0. Hence, all even dimen-
sional elements of the Pfaff sequence generated by the Action, {dA,dA"dA, ...},
and their integrals, are absolute invariants of the equivalence class of Hamiltonian
extremal fields, a result known to Poincare.

Note that all processes for which the work 1-form is of Pfaff class zero are

reversible, for then Q" d@ = 0.

2.2. Reversible Case 2: Pfaff(W) = 1. Symplectic processes.

When the virtual work 1-form is closed but not zero, W # 0,dW = 0, then the
Pfaff dimension of W is equal to 1. The closure constraint forces the virtual work
1-form to be composed of a perfect differential and/or a harmonic part. When
the virtual work 1-form is exact, such that

W =i(V)dA = dO(z,y, z,t), (2.13)

then the function © is defined as a Bernoulli-Casimir function. The function
O(z,y, z,t) satisfies the equation,
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Livy© = i(V)dO = i(V)(i(V)dA) = 0, (2.14)

from which it is determined that the Bernoulli-Casimir function is an evolutionary
invariant, and its gradient is transversal to the evolutionary process, when the
Work 1-form is of Pfaff dimension 1, and exact. In hydrodynamics, the Bernoulli
function is a constant along any streamline, but neighboring streamlines will have
different values for the Bernoulli function. When the virtual work 1-form is
exact, the processes are not only reversible (d@ = 0), but they are also cyclically
adiabatic.
If the Action, A, is written in the Cartan format,

A = ppdg® — H(py, q".t, o)dt), (2.15)

then the Hamiltonian energy, H(p,q,t,o), is not necessarily an invariant of the
flow generated by the Bernoulli-Casimir function, ©. However, the evolutionary
vector field is again said to be ”Hamiltonian”, for dp — (—0©/0q)dt = 0 and
dq — (0©/0p)dt = 0.

When the Work 1-form is non-zero but exact, an adiabatic solution for the
process can be determined from the exterior differential system,

adiabatic constraint: W = —dU = i(V)dA = —d(i(V)A), (2.16)
for then

L(V)A =W +dU = —dU + dU = Q =0. (217)

The adiabatic exterior differential system is equivalent to a system of partial differ-
ential equations recognizable in both hydrodynamic and electromagnetic language.
As an example consider the domain {x,y, z,t} and the Action, A = Ae dr — ¢dt.
The adiabatic condition becomes the partial differential system,

—0A /Ot — gradp +V X curlA = —grad(V - A — ¢), (2.18)
V. (=0A/0t — gradp) = O(V-A —¢)/0t. (2.19)
The first equation, in EM language, is a statement defining the Lorentz force

in terms of the gradient of the interaction energy. In hydrodynamics, the first
equation is a statement that describes an Eulerian fluid.
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When the Work 1-form is not exact, but closed, the domain may support
harmonic components, 7, representing topological obstructions. In these cases,
the process is not adiabatic in a cyclic sense, for

/Zle/le+d(U)Z/Zl{d(@JrU)ﬂ}:oJr/leéo

There will exist non-zero cyclic contributions to the work and heat. The ratio of
these cyclic integrals is rational [10].

Note that all processes for which the Work 1-form is of Pfaff dimension 1, or
less, are reversible, for Q"d@Q = 0.

2.3. Reversible Case 3: Pfaff(W) = 2 or 3

In the exercise that follows, topological arguments will be used to deduce the ideal
gas law. For when Q"dQ = 0, but dQ) = dW # 0, the first law implies that

W dW + dU"dW = 0. (2.20)

Then either W"dW = 0 (and the Pfaff dimension of W is 2) or W"dW # 0, but
dW"dW = 0 (and the Pfaff dimension of W is 3). Consider the case of an ideal
gas, where the work 1-form is defined as W = PdV and is of Pfaff dimension 2.
It follows that

AU dW = dU"dP"dV = 0. (2.21)

The result implies that the internal energy U is a function of the pressure and
volume: U =U(P,V).

Next consider the case where both the Pfaff dimension of W and () are equal
to 2. Then as Q°dQ = 0 the heat 1-form can be expressed in terms of two
functions as, Q = T'dS. It follows from the first law that

(P/T)dV + (1/T)dU = dS. (2.22)
By taking the exterior derivative of both sides,

d(P/T)"dV + d(1/T)"dU = 0. (2.23)

A simple class of solutions would impose the ”quadrature” conditions that each of
the two forms vanish separately. It follows for this simple class that V' must be a
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function of (T'/P) ,alone, and U must be a function of T', alone. Such conditions
establish the equivalence class of the "ideal gas” with a linear representation

V =nRT/P and U =nC,T. (2.24)

The moral to the story is that the ubiquitous ideal gas law (like the laws of Maxwell
electrodynamics) has foundations in a set of topological constraints which are
independent from size and shape.

These representations are not the only possibilities for the reversible processes
where the Pfaff dimension of the work 1-form is 2. Another realization implies that
dU"dT"dS = 0, such that the internal energy, U, is not a function of temperature
alone, but unlike the ideal gas, the internal energy, in this reversible situation,
also depends upon the entropy function, S.

2.4. Case 4 : The Pfaff dimension of the Work 1-form is 4.

When the Pfaff dimension of the work 1-form is 4, then dW " dW = dQ"dQ # 0
and the process is never reversible. The Frobenius integrability conditions for
() are not satisfied. It such cases it is necessary to examine the case where
dA"dA # 0, on an even dimensional domain of 4 dimensions. Then there exists
a unique direction field T such that

A"dA = i(T)dx dy dz"dt = i(T)Q. (2.25)

The components of T are completely determined from the functional components
of the physical system encoded as a 1-form of Action, A. This vector field T is
defined as the Topological Torsion vector. As A"A"dA = 0 the Topological
Torsion vector is ”associated with” or ”orthogonal to” the 1-form of Action:

i(T)A = 0. (2.26)
By direct calculation of the Work 1-form it is possible to show that

W =i(T)dA =T A, (2.27)
such that
LA = TA, (2.28)
and L) = di(T)Q = (divT)dx"dy dz"dt (2.29)
= 2-T(z,y,2,t)Q =dA"dA. (2.30)
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In otherwords, depending upon the sign of the 4-divergence of the Topological
Torsion vector, the 4D volume element is either expanding or contracting, unless
the divergence vanishes. The 1-form of virtual work is proportional to the 1-form
of Action. As the 2-form, dA, is of maximal rank, I'(x,y, z,t) # 0, and the
4D manifold is symplectic. Cartan’s magic formula has become the extension of
Euler’s formula for homogeneous functions to p-forms.

It follows that evolution in the direction of the Torsion Vector yields

Q" dQ = LityA" Li1ydA =T* A"dA # 0, (2.31)

which implies that the process is thermodynamically irreversible, independent
upon whether or not the volume element is expanding (I' > 0) or contracting
(I' < 0). The process becomes reversible only when Q"d@ = 0, which implies
that A"dA = 0, or I'> = 0. Then the Pfaff dimension of W cannot be 4, contrary
to hypothesis for the class under study.

This is a remarkable development for several reasons.

1. The development demonstrates the topological foundations of thermody-
namically irreversible processes, and the relationship to expanding or con-
tracting space time volume elements.

2. The development demonstrates that there exists an irreversible direction
field that can be inferred from the functional properties used to define the
physical system.

3. The development demonstrates that the irreversible direction field acts on
the physical system in a homogeneous manner [11]. The homogeneous
degree need not be an integer, which indicates the association of thermody-
namic irreversibility and fractal evolution [4].

Dissipative evolution in the direction of the torsion current on the 2n+2 (sym-
plectic) domain can topologically decay to a 2n+1 (contact) domain. On the con-
tact Action manifold of the attractor, the evolution can be described by a Hamil-
tonian system, where with minimal fluctuations and perturbations, the physical
system can enjoy a relatively long lifetime, in a state that may be far from equi-
librium.

14



3. Anholonomic Constraints and Fluctuations.

The methods described above can be extended to systems with higher degrees
of freedom. Consider a physical system that can be defined in terms of the
Cartan-Hilbert 1-form

A = L(t; ¢, v)dt + pr(dg" — v*dt), (3.1)

defined on the 3n+1 variety of functions, {t;¢*,v* py}. At first, do not assume
that the py are constrained to be jets; e.g., pr, # OL/Ov". Instead, consider the py,
to be a Lagrange multipliers to be determined later. Construct the Pfaff sequence
for the 1-form of Action, A. It follows that the exact two form dA satisfies the
equations

(dA)™ #£0, but A" (dA)™! =0, (3.2)

hence the Pfaff dimension of the Action 1-form is 2n+42 which is considerably
less than the 3n+1 functions used to construct the Cartan- Hilbert 1-form. The
2n+2 dimensional space will be defined as the thermodynamic space. The actual
formula for the top Pfaffian (p = 2n+2) is:

(dA)™ ™ = (n + 1){SP_, (OL/Ov" — pi) @ dv*} dp,"...dp, " dq""..dg""dt. (3.3)

It is to be noted that the unconstrained top Pfaffian of the Cartan-Hilbert Action
is always associated with a symplectic (even dimensional) manifold, but not of
the maximum dimension of the space of the 3n+1 variables. For n = 3 degrees of
freedom, the top Pfaffian indicates that the topological of Pfaff dimension of the
2-form, dA is 2n + 2 = 8.

If the domain of definition is constrained such that the momenta are defined
canonically, L /9v* —p;, = 0, then the 2-form dA is not symplectic on its maximal
dimension 2n+2, but defines a contact structure on 2n+1 with the formula

A (dA)™ = n{vFp, — L(t,¢",v*}Ydp,"...dp, " dq" " ..dg™"dt. (3.4)

The coefficient in brackets is the Legendre transform of the Lagrangian producing
the format of the classic Hamiltonian energy. The resulting 2n+1 dimensional
(state) space always has a contact structure if the ”total energy” is never zero,
and the momenta are canonically defined. The state space is reducible to a 2n
phase space only if the Lagrangian is homogeneous of degree 1 in the v*,
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v¥pr — L(t,q,v) = v"OL/Ov* — L(t,q,v) = 0; (3.5)

otherwise the top Pfaffian defines a contact structure of dimension 2n+1. The
sequence of Pfaff reductions, representing topological decay, brings to mind a pos-
sible evolutionary process that starts on a symplectic manifold (thermodynamic
space) which irreversibly decays to a contact manifold (state space), and then
further evolves into a symplectic homogeneous space.

Consider evolutionary processes defined in terms of a vector field YW =
y[1, vF, a®, fi], relative to [t; ¢*,v*, py]. Construct the 1-form W of virtual work
by contracting the exact two form dA with the vector field. For every case, the
1-form of virtual work has the format

W = i(W)dA = {p, — OL/OW*}Av* + {fi. — OL/0x*} Aq”. (3.6)
where
AvF = do¥ — aFdt #0 (3.7)
and
Ag® = dg* —vFdt #o. (3.8)

If Av is interpreted as representing ”anholonomic differential fluctuations” in
velocity, and Agq is interpreted as representing ”anholonomic differential fluctua-
tions” in position, then it is intuitive to assume that fluctuations in velocity relate
to temperature and fluctuations in position relate to temperature in a kinematic
sense.

When the 2-form dA is symplectic, the work 1-form (which can not vanish)
has two terms for any n; the first involves Av and the second involves Aq. The
work 1-form cannot vanish if dA is symplectic for there are no null eigenvectors of
an anti-symmetric matrix of maximal rank. This fact implies that the following
4 situations are NOT allowed when dA is symplectic:

1. Av=0 and Aqg=0.

(Zero kinematic fluctuations in velocity and zero kinematic fluctuations in
position are not permitted.)

2. {pr —OL/Ov*} =0 and Ag=0.
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(Canonical momentum, combined with zero kinematic fluctuations in posi-
tion are not permitted.)

3. {fx —OL/0z*} =0 and Av = 0.

(Exact gradient forces, combined with zero kinematic fluctuations in velocity
are not permitted.)

4. {pr, — OL/Ov*} =0 and {f, —OL/9z*} = 0.

(Canonical momentum, combined with gradient forces are not permitted.
Fluctuations of both position (pressure) and velocity (temperature) permit-
ted .

Conversely, when dA generates a contact manifold, one of the four cases above
must be true.

e The first classic elementary case is based upon the assumption that there
exists a kinematic description of the process at both the first and the second
order. That is, there are no fluctuations, and the kinematics is perfect.
The velocity and acceleration fields admit expressions in terms of a single
parameter, t.

e The second case which satisfies the contact conditions is based on the as-
sumption that the momentum is canonically defined, and there are no fluc-
tuations in position (pressure). Fluctuations in velocity (temperature) are
admitted.

e The third case presumes that the forces are exact gradient fields, and there
are no fluctuations in velocity (temperature). Fluctuations in position
(pressure) are admitted.

e The fourth case assumes that Then, for the Contact extremal case to exist,
and as {pr — OL/Ov*} = 0, it is necessary that the work 1-form reduces to
vanishing expression W = {f, — 0L/02*} Aq® = 0 in the extremal case.
There can be fluctuations from kinematic perfection in both the position
(pressure) and velocity (temperature) terms.

These observations lead to the theorem
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Theorem 3.1. The extremal constraint is satisfied when the 1-form of virtual
work vanishes, which can happen only on a contact manifold of odd Pfaff dimen-
sion. In the classic case of no fluctuations, the resulting extremal fields are the
equivalent of the Lagrange-Euler equations of classical mechanics. However, the
Contact constraints are also satisfied when the force is a gradient field, or there
exist zero fluctuations in position, or the non-zero components of the force (the
otherwise dissipative components) are orthogonal to the kinematic fluctuations in
position.

Also of current interest [?] are those situations when the work one form is
closed, but not zero. Such constraints define symplectic (not extremal) evolution-
ary processes which occur on even dimensional symplectic manifolds. Locally, as
W =i(W)dA = dO, it can be shown that such evolutionary fields belong to Lie
groups, and that the non-constant functions, ©, are Casimirs. A hydrodynamicist
would use a different set of words. He would describe the Casimir as a Bernoulli
function, a function which is constant along a particular flow line, but a constant
which will vary from flow line to flow line. Symplectic processes create conser-
vation theorems of the Helmholtz type (conservation of vorticity, conservation of
angular momentum,...). In such systems, the Hamiltonian energy need not be
an evolutionary invariant, and the system can decay to singular points or regions
where the symplectic structure condition fails. Such regions, will be defined as
"equilibrium” points of a symplectic process. An example is given in reference
[12] to show how the Navier-Stokes equations generate evolutionary vector fields of
the symplectic type, but the Euler equations (without pressure) generate extremal
vector fields. Numerical studies indicating such phenomena appear in [13]

Following the train of thought that associates fluctuations in position with
pressure and fluctuations of velocity with temperature, implies that the first term
in the expression for W (see 3.6) must be related to Enthalpy (functions of the
type —T'S that involve temperature) and the second term to Helmholtz free energy
(functions of the type +PV that involve pressure). The combination defines the
Gibbs free energy (functions of the type —T'S + PV) of closed thermodynamic
systems, and reversible processes. These thermodynamic ideas, more than 150
years old, are essentially the Casimirs of the symplectic vector fields of irreducible
dimension 2n+2, and are not evident in extremal systems. When the evolutionary
vector fields are symplectic, such that dW = d@Q = 0, they define thermodynamic
reversible processes. The Cartan evolutionary equation of a symplectic process
becomes

18



L(W)A = W+dU =dO +dU (39)
= {p—0L/Ov}Av+{f —O0L/0x}Aq+ dU (3.10)
= d(-TS+ PV +U)=d(G) = Q, (3.11)

which defines the heat 1-form @) as the ”gradient” of the Gibbs free energy, G =
TS — PV + U. The Gibbs function is an evolutionary invariant by construction,
for all Bernoulli-Casimir functions have transversal gradients.

Low)(G—=U) =i(W)d(G - U) =i(W)i(W)dA = 0. (3.12)
Under the classic assumption that dU — TdS + PdV = (@, it follows that the
symplectic evolution generates a Pffafian form of the type —SdT + VdP = 0,
which if integrated yields Gibbs version of an equation of state.

When the work 1-form is not closed, then the process can become thermody-
namically irreversible. In this case, the evolution is on a symplectic manifold, but
the process is not symplectic (as dW # 0). To test for irreversibility, the usual
engineering requirement is that the heat 1-form ) does not admit an integrat-
ing factor. Hence, as described above, a given process, W, acting on a physical
system, A, is irreversible when

Q"dQ = Liw) A" Liw)dA # 0. (3.13)

It is remarkable that the symplectic systems of irreducible dimension 2n+2
seem to solve the Boltzmann - Loschmidt-Zermelo paradox of why canonical
Hamiltonian mechanics does not seem to be able to describe the decay to an equi-
librium state, and why the usual (extremal) methods of Hamiltonian mechanics
do not give any insight into the concept of Pressure, Temperature, or the Gibbs
free energy. It is extraordinary that answers to these 150 year old paradoxes of
physics seem to follow without recourse to statistics if one utilizes Gromov’s [7]
work on symplectic systems.

The practical utilization of the fact that the top Pfaffian is of dimension 2n+2
and not 3n—+1 is an open problem. The implication is that there must exist 3n+1-
2n+2 = n-1 topological invariants in these systems.

3.1. The Skidding-Slipping Bowling Ball example.

As an application of the topological theory of irreversibility and anholonomic
fluctuations, consider the experiment of a bowling ball given an initial amount of
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translational energy and given amount of rotational energy. Upon contact with
the bowling alley, the ball slips or skids irreversibly dissipating both its transla-
tional and rotational, momentum and energy (the dissipative force is obscurely
defined as friction). The dissipation process continues until a condition is reached
where by the translational velocity of the center of mass is equal to the instanta-
neous tangential velocity of the contact point relative to the center of mass (equal
to the product of the angular velocity and the radius of the ball). This condi-
tion is defined in engineering textbooks as rolling without slipping. Once the
condition of rolling without slipping is reached, the motion proceeds (essentially)
without further dissipation (neglecting air resistance, etc.). The objective of this
section is demonstrate how these observations can be put into correspondence
with the idea that the irreversible portion of the evolution begins on a symplectic
manifold of dimension 2n+2, follows an irreversible trajectory in the direction of
the Topological Torsion vector, and topologically decays into (or is attracted to)
a contact manifold of dimension 2n+1, where the subsequent evolution can be
described by a conservative Hamiltonian process.

So, consider a mechanical system with initial rotational energy fmA*w?/2 and
a translational energy mv?/2. Define a Lagrange function,

L(z,0,t,v,w) = {fmNw?/2 — mv?/2}, (3.14)

where m is a constant mass, § is a numeric factor representing the geometrical
features of the moment of inertia, and A is characteristic constant length of the
extended rotating and translating object (e.g., the radius of a ball). Initial condi-
tions {wy, woy determine the initial relative amounts of rotational and translational
energy. Now place the spinning ball on a surface that exerts a pressure on the
boundary (on a surface orthogonal to a uniform gravitational field). Empirically
it is observed that the initial amounts of kinetic energy and momentum decay ir-
reversibly until the "no-slip” condition {dz — Adf = 0} is achieved. (The no-slip
condition is an anholonomic constraint.) From this point on the ball rolls ”without
slipping” and without further reduction of translational and rotational energy. It
is also noted that depending upon the initial conditions there can be a reversal of
the direction of the translational motion, or there can be a reversal of the sense
of rotation. The problem at hand is to define a dynamical system that replicates
these observations.

Sophomoric analysis explains the decay of rotational and translational energy
as being due to "frictional forces” whose magnitude and direction ”adjust” such
as to achieve the desired result. The Hamiltonian extremal technique does not
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seem to apply to the irreversible state, but does seem to apply to the steady state
of no-slip.
The 1-form of Action is presumed to be of the form

A= (L(x,0,t,v,w)dt + p,(dz — vdt) + p,(df — wdt) + s(Adf — dx).  (3.15)

The coefficients {p,, p,, s} are to be considered as prolongation variables, or La-
grange multipliers. Re-arranging the 3n+1 =9 variables {¢; x,0,v,w, p,, po, s, L},
and substituting the assumption for the functional form of the Lagrangian given
above, yields the Cartan format in terms of 8 independent variables, {x,0,t, s, v,w, Py, Do},

A= (p, — 8)dx + (po + A8)d — {pov + pow — (BmA*W?/2 — mv?/2)}dt. (3.16)

By direct computation of the Pfaff sequence on the set of 8 independent variables,
{z,0,t,s,v,w,py, p,} the form

A"dA dA dA = 0, (3.17)

which implies that the Pfaff dimension of the 1-form, A, is six. By comparison to
the Darboux theorem, it is also apparent that this 1-form is of Pfaf f((A) = 6.
Now redefine the Action 1-form in terms of new momenta

Ty = (pv - S)a (318)
T = (pw + )\S), (319)
er = {pov 4 pow — (BMAW? /2 — mv?/2)}, (3.20)

The 1-form of Action becomes

A = m dr + medf — edt (3.21)

which is of the standard Cartan form and is of Pfaff dimension 2n + 2 = 6, with
a volume element

O = dr, dry de, dx"do"dt. (3.22)

On this 2n+2 space the unique Topological Torsion vector direction field can be
computed from the definition,
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i(T)Q = A"dA"dA,

(3.23)

and will have non-zero components only in the momentum (or vertical) subspace
{dr, dmg"de;}. The Topological Torsion vector is orthogonal to the coordinate

(or horizontal) subspace, {dx"df"dt}.

For the problem at hand the algebra becomes simplified if the two Lagrange
multipliers (momentum components), p, and p,, are assumed to be canonical, but
the Lagrange multiplier, s, is presumed to be non-canonical. In this case, for m =

constant, § = constant, A = constant,

Pv = —mu, (324
P = PmNw. (3.25)
The Action 1-form becomes
A = BmNwdd — mudx — (BmAN*w? /2 — mu?/2)dt + s(Adf — dx) (3.26)
with a 6D volume element (Top Pfaffian)
Q=dA dA dA = —6m*BN*(v — Mw)dz"df"dt"dv"dw"ds
The unique Torsion vector has 6 components
T = [0,0,0,7,,7,,Ts,] 3.27)
with respect to R = [z,0,t,0,w, s]. 3.28)
The functional components are proportional to:
T, = m*A\(=208 wv + A\3v? 4+ NP 32w?) (3.29)
T, —m2A(—28 wv + v* 4+ N Bw?) (3.30)
T, = —m*AN=26Nwv + ImBv® — N*mB%w? + 2)\Bus — 2X?Fsw) (3.31)

Relative to motion along the direction field of the unique Topological Torsion

vector, the components of the work 1-form become
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i(T)dA = W =TA=m?B\(v—wlA, (3.32)
with  (T)A = U =0, (3.33)
LirydA = W =TA=m?BN(v—wl)A, (3.34)

It is apparent that the virtual work 1-form, W, is not zero except at the point
when the system satisfies the ”no-slip” condition:

No slip condition : (v —wA) = 0. (3.35)

For motion in this unique direction not only is the work 1-form not zero, it also
is non-integrable.

Hence, before the system decays to the "no-slip” condition, the process is
thermodynamically irreversible, as

QdQ = LiyA" LiydA = W dW = (m?BN\*(v — w)))?A dA # 0.

The heat 1-form does not admit an integrating factor. However, after the system
decays to the "no-slip” condition, the evolutionary process becomes adiabatic, for
then L(T)A =Q=0.

It is apparent that the Torsion vector is completely determined by the system.
That is the 1-form of Action is either of even or odd Pfaff dimension. If odd,
there exists a unique extremal field, and a Hamiltonian representation. If the
Pfaff dimension is even, there is a unique Torsion field, which is either expanding
or contracting. (The sign of I' determines the dilatation). The evolutionary
process proceeds irreversibly until (possibly) the divergence of the Torsion vector
vanishes (I' = 0). From then on the system evolution proceeds in an adiabatic
fashion. (This remark must be modified if the system momenta are not canonical,
for then there will be temperature effects, not just pressure effects).

The Torsion vector generates a dynamical system that describes the irre-
versible evolutionary process.

dv dw ds dt
— =—=—=dr = —
Tv Tw Ts ol
dr _d e
v ow 1

The torsion coefficients are the dissipative forces and torques. The singular set
6m2BA? (v — Aw) = 0 reduces the top Pfaffian to a contact manifold, which has a
unique extremal.
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4. Summary

It is apparent that a topological perspective establishes the long sought for, non-
statistical, connection between dynamic mechanical systems and thermodynamic
irreversibility. The principal point of departure from the classic methods is to
enlarge the domain of dynamics to include continuous topological evolution. Such
methods require the use of mathematical objects, such as exterior differential
forms, and non-invertible differentiable maps, that go beyond the mathematical
objects of tensor analysis, which are constrained by the homeomorphic property
of diffeomorphisms.
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