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Abstract

The method of exterior di®erential systems is applied to the problem of
¯nding propagating singular solutions to Maxwell s equations Fresnel ray
and wave surfaces are computed for systems that are not restricted to the
topology imposed by the symmetries of the Lorentz transformations. The
methods distinguish the measurable polarization phase di®erences between
global behavior in optically active and Faraday media. In addition, an
example is presented for which time-reversal and parity symmetries are
broken: the inbound polarization states propagate with speeds di®erent
from the outbound polarization states.

1. INTRODUCTION

This article focuses attention on the mathematical problem of obtaining singu-
lar solutions to Maxwell's equations of electromagnetism for systems that do not
necessarily have the symmetries of the Lorentz equivalence class similar to the
vacuum. The methods employed are those suggested by Cartan [1] in his stud-
ies of exterior di®erential systems. Maxwell's equations are considered to be a
system of global di®erential forms specifying certain topological properties about
a di®erentiable variety. An intrinsic, physical distinction is made between the
qualities of intensity ( E and B ) and the quantities of excitation (D and H), and



no assumption is made about the existence of a global metric on the variety. The
singular solutions obtained are viewed from the perspective of Luneburg and Fock
[2] as being those point set domains upon which discontinuities in ¯eld amplitudes
may exist. Propagating discontinuities are interpreted as signals. A dynamical
perspective and/or the presence of matter is presumed through the existence of
a constitutive tensor density Â¹º®¯ [3] which acts as a geometrical constraint on
the topology induced by the Maxwell system of forms. The symmetries and anti-
symmetries of the constitutive map lead to an explicit extension of the concepts
of the Fresnel wave normal surface and the Fresnel ray surface, historically devel-
oped for anisotropic birefringent media. [4] Explicit formulas for these surfaces
are created that permit the analysis of combinations of e®ects, such as optical
activity, and Faraday phenomena, for which time reversal and parity symmetries
are not maintained.[5] The results are applicable to problems in which the four-
fold degeneracy of the Maxwell-Lorentz system is broken, an example of which is
given by systems employing four-mode ring laser devices.[6] In such systems, the
inbound wave speeds are di®erent from the outbound wave speeds.

2. EXTERIOR DIFFERENTIAL SYSTEMS

Consider the terminology and engineering format of Sommerfeld [7] for the Maxwell
electromagnetic system:

curlE+ @B=@t = 0; divB = 0 (1)

curlH¡ @D=@t = J; divD = ½ (2)

Note that this system of partial di®erential equations is a speci¯c realization of
a closed ideal of di®erential forms [8] ; § = fF;H; Jg on a four-dimensional variety.
That is, Maxwell's equations are equivalent to closure statements of di®erential
forms:

dF = 0 (3)

dH = J; dJ = 0 (4)

A distinction in the sense of deRham [9] is to be made between the "pair"
2-form F of intensities and the "impair" N-2 form H of excitations. For di-
mensionality greater than 4, the exterior representation (2) is preferred over

2



the classical representation (1), but in all dimensions (1) remains a nested sub-
set of (2). In the language of forms, the representation of Maxwell's equations
given by (2) are not only naturally covariant with respect to all di®eomorphisms
(Lorentz, Galilean, or any other transformation with a di®erentiable inverse),
but are also well behaved in a retrodictive (pull-back) sense with respect to
continuous (but not necessarily homeomorphic), topology changing irreversible
transformations.[10] The recognition of this fact raises questions as to the predilec-
tion of present day physics to emphasize the Lorentz transformations. As will be
demonstrated below, the importance of the Lorentz transformations resides not
with the question of natural covariance of the Maxwell equations (for which Van
Dantzig has stated correctly that the covariance is trivial, [11] but instead re-
lates to the concept that singular solution set to Maxwell's equations are only
covariant with respect to the linear Lorentz transformation (and the nonlinear
Mobius transformation). [12] For the work presented herein, the smaller source
free system of forms §0 = fF;Hg; fJ = 0gwill be treated as a closed ideal. The
Cartan technique will be used to search for two systems of dual vector ¯elds that
de¯ne point sets which are complimentary in a union and intersection sense. This
problem is equivalent to ¯nding those point sets upon which the ¯eld amplitudes
admit discontinuities, but still satisfy Maxwell's equations. In other words, the
solutions to Maxwell's equations are not unique upon the singular point set.

3. RAYS

The ¯rst problem of vector ¯elds involves the search for a set of contravariant
¯elds S which annihilate the system of forms of the closed ideal in a union sense.
These point sets are given by the vectors

S = fs; 1g (5)

which are associated vectors to the forms of the di®erential ideal f§0g and satisfy
the equations

i(S)f§0g = 0; (6)

or

i(S)F = 0; i(S)H = 0: (7)
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As dF = 0 and dH = 0 for the source free ideal §0, these associated vectors [13]
are also extremal vectors for the closed ideal, and are therefore equivalent to the
characteristic set.
In three-vector symbolism, the characteristic system satis¯es the equations,

s£B+E = 0; s ¢ E = 0; (8)

s£D¡H = 0; s ¢H = 0; (9)

from which it is apparent that s has the direction of the Poynting vector (energy
°ux),

s = ¡ E£H: (10)

The three-vector s will be de¯ned as the ray ¯eld. Note that these ideas are
metric free and do not depend upon a constitutive constraint.

4. WAVES

The second problem of vector ¯elds involves the search for a set of covariant ¯elds
k which annihilate the system of forms of the closed ideal in an intersection sense.
These point set are given by the vectors

k = fk; !g (11)

such that the l-form k = k ¢ dr¡ ! dt will have null intersections with the closed
ideal of forms f§0g; i.e.,

k^f§0g = 0; (12)

or
k^F = 0; k^H = 0: (13)

These equations are dual to the preceding equations for s, and can be rewritten
as set

k£ E¡!B = 0; k ¢B = 0; (14)

k£H+!D = 0; k ¢D = 0; (15)
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from which it is apparent that k has the direction of the momentum °ux D£B.
It is to be noted that these six independent equations for the covariant wave ¯eld
k and the dual six independent equations for the contravariant ray ¯eld s are the
usual sets of equations which de¯ne the point sets upon which ¯eld discontinuities
may exist.[12] The contravariant and the covariant sets may be reparameterized
by arbitrary factors. Two common schemes for k are the de Broglie scheme

p = (h=2¼)k = (h=2¼)(k ¢ dr¡ ! dt) = p ¢ dr¡ E dt (16)

and the index of refraction scheme

n = k=! = (k ¢ dr¡ ! dt)=! = (n ¢ dr¡ dt): (17)

It is to be noted that in a space time of four dimensions, the characteristic vectors
S are associated vectors to the dual l-forms k:

i(S)k = 0: (18)

This result yields a reciprocal relationship between the index of refraction vector
n and the ray vector s,

n ¢ s = 1: (19)

Geometrically speaking, the ray vectors S¹ in four dimensions have orthog-
onal wave compliments k¹: Dimensionally, the three-vector s is a velocity (the
energy °ow or group velocity) and the three-vector n is a reciprocal velocity (the
reciprocal phase velocity).
It should be noted that the four-vectors S¹ can be reparameterized (multi-

plied by any function of x,y,z,t) and, as generators of one parameter groups of
transformations, leave the di®erential ideal of forms f§0g invariant with respect
to the transformations. The di®erential ideal forms a set of absolute invariants
with respect to the characteristic vectors.

5. CHARACTERISTICS AND THEIR INVARIANTS

If it is assumed that the 2-form F is exact, then the 1-form A of potentials

A = A ¢ dr¡ Ádt (20)

may be adjoined to the di®erential ideal, and the characteristic vectors of f§0g
are extremal vectors of the larger set fF;H;Ag:
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It follows that combinations of the intersections of the sets, created via the ex-
terior product, are relative integral invariants with respect to the transformations
generated by the characteristic vectors. The characteristic vectors leave invariant
certain topological properties of the system that are characterized by the period
integrals of

topological f lux = A; (21)

topological charge = H; (22)

topological spin = A^H; (23)

topological torsion = A^F: (24)

The question arises as to how many characteristic vectors exist. Consider the
2-form F as an antisymmetric matrix in four dimensions. Its rank must be 0,
2, or 4. If the rank is 4, then no characteristic vectors (eigenvectors with null
eigenvectors) exist. Note that if F is of rank 4, then F^F 6= 0, from which it
follows that E ¢B 6= 0. The criterion of rank zero implies the trivial solution only.
Hence, if characteristics of F exist, F is of rank 2, and there are two and only
two characteristic vectors in four dimensions. It follows that the second Poincare
invariant E ¢B = 0 on the characteristic set. Similar arguments may be made for
the ( N-2)-form H.

6. CONSTITUTIVE RELATIONS - A GEOMETRICAL
CONSTRAINT

The system of equations satis¯ed by the characteristic vectors may be viewed
as six independent equations in 12 unknowns, D;E;B;H, for a given ray vector
s. As such, the system is insoluble. However, consider a geometrical constraint
between the (N-2)-form H and the 2-form F , given by the constitutive tensor
density Â¹º®¯ . Assume that

H¹º = Â¹º®¯F®¯ (25)

Due to the antisymmetries of the forms, the 256 components of Â¹º®¯ in four
dimensions may be reduced to 36 distinct values, [14] a reduction which leads to
the 6 vector formalism of Sommerfeld; namely, in matrix format
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D = [²] ±E+ [°] ±B (26)

H = [°y] ±E+ [¹¡1] ±B:
The 6X6 constitutive matrix is assumed to be Hermitian for the nondissipative
case considered herein.
The six constitutive equations given above may be used to eliminate half of

the unknowns in the six equations for the characteristic system. For example,
the elimination of E and H in the characteristic equations leaves a homogeneous
system of six equations in six variables. The Cramers determinantal condition
must be satis¯ed if a solution exists.

7. FRESNEL RAY SURFACES

To simplify the algebra, de¯ne a 3£3 completely antisymmetric matrix [s£ ] in
terms of the three components of the ray vector fsx; sy; szg :

[s£ ] =
0 sz ¡sy

¡sz 0 sx

sy ¡sx 0
(27)

Then the determinantal function L(sx; sy; sz) on the characteristic system may
be expressed in matrix format as

L(sx; sy; sz) = det([¹¡1] + [s£ ][°]¡ [°y][s£ ] + [s£ ][²][s£ ]) (28)

The Cramers compatibility argument is the statement that L = 0, which in
geometrical terms de¯nes an implicit hypersurface on the three-dimensional space
of variables (sx; sy; sz) for ¯xed values of x, y, z, and t. This hypersurface, L = 0,
is the extension of the Fresnel ray surface to include not only birefringence in
anisotropic media, but also optical activity, Faraday rotation, and Fresnel-Fizeau
phenomena in combination. Although the coe±cients of the constitutive matrix
are complex, the constraint of hermiticity guarantees the reality of the function
L. The Fresnel ray surface is of fourth degree, but is necessarily symmetric about
the origin of the variables sx; sy; and sz, only for birefringent media.
It is to be remembered that the characteristic vectors S¹ are four-dimensional

vectors and come in pairs. These vectors are compatible in a Lie bracket sense,
and as they can be reparametrized arbitrarily, the pair may be used to create a
two-dimensional subspace of space-time.
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8. FRESNEL WAVE SURFACES

Arguments similar to those applied to the solubility of the ray system may be
applied to the wave system. That is, for given values of nx;ny; and nz, the system
of wave constraints may viewed as six equations in 12 unknowns. Use the six
constitutive equations to eliminate D and B and thereby obtain a homogeneous
system of six equations in 6 unknowns. The Cramers rule yields a determinantal
function, H(nx;ny; nz), that must vanish if solubility is to exist:

H(nx;ny; nz) = det([²] + [°][n£]¡ [n£][°y] + [n£][¹¡1 ][n£]) (29)

In the three-dimensional space of variables (nx;ny; nz) the implicit hypersur-
face H = 0 is of fourth degree and creates an extension of the usual Fresnel
wave surface to include not only anisotropic birefringence, but also electric and
magnetic Faraday rotation, optical activity, and Fresnel-Fizeau phenomena in
combination. In the case of birefringence, the quartic function H = 0 splits into
two quadratic factors which are the usual representations of the Fresnel ellipsoids.
The equivalent geometrical Fresnel analysis for optically active, Faraday media,
or media exhibiting magneto-electric e®ects does not appear in the literature to
our knowledge. The general Fresnel wave surfaces are distorted ellipsoids which
do not have a center of symmetry. Hence an arbitrary line through the origin
in reciprocal phase velocity space will intercept the Fresnel wave surface(s) in
four distinct points representing four distinct phase velocities: two magnitudes in
the outbound direction for each state of polarization, and two di®erent velocities
in the inbound direction, one for each state of polarization. As an example, an
nz = 0 slice has been displayed in Fig. 1 for a Fresnel wave surface that combines
both optical activity and Faraday rotation. The entire wave surface is displayed
in Fig. 6.
The little appreciated result is that the light signal does not propagate with

the same phase velocity inbound as outbound in systems that do not have the
symmetries of the Lorentz system. These e®ects were experimentally veri¯ed in
dual polarized ring laser experiments conducted by Sanders.[6]
Another example showing the di®erent behavior of singular solutions is given

by the simple experiment of measuring the polarization rotation of a beam of
light as it passes through two tubes of either optically active material (a water
solution of sugar) or Faraday material (He-Ne gas with an axial magnetic ¯eld).
For similarly adjusted parameters, the degree of polarization rotation is the same
for the ¯rst pass through each medium, each electric vector will be rotated by
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© degrees. [See Fig. 2(a).] However, re°ect the light beams with a mirror and
let them make a round trip through the optically active sample and through the
Faraday sample. The polarization will return to its initial state in the optically
active sample, but the Faraday sample will accumulate another increment of phase
rotation such that the round-trip rotation is 2© for the Faraday media and 0 for the
optically active solution [see Fig. 2(b)]. The discrete symmetry of time inversion
(t goes to -t on re°ection) yields di®erent results. This problem was ¯rst solved
theoretically in the monograph by Post.[3]

9. EXAMPLES

Plots of numerical solutions for the Fresnel wave surfaces H = 0 are given in Figs.
3-6. The example in Fig. 3 displays the completely isotropic case, and represents
the Lorentz equivalence class for which the speed of discontinuity propagation is
the same in all directions for all states of polarization. The isotropic sphere has
the quartic equation

X = 1¡ 2(x2 + y2 + z2) + (x2 + y2 + z2)2 = 0: (30)

The isotropic "spherical" surface r2 = 1 is not the usual sphere. Indeed, the
isotropic sphere is a strange surface for every point of the "surface" is a critical
point. Not only does the density function H vanish on the set of isotropic points,
but also the gradient of H vanishes on this set. Classical surfaces obey the Gauss-
Weingarten as-sumptions, which imply that the surface gradient is nowhere zero.
In the neighborhood of the surface outside the isotropic set r2 = 1, the gradient

of H points away from the origin. In the neighborhood of the surface inside
the isotropic set, the gradient points in towards the origin. For the standard
spherical surface, the gradient points in the same direction everywhere and does
not go to zero on the surface. The isotropic set consists of a double spherical
surface with distinct orientations. The e®ect of the constitutive tensor will be
to split the isotropic degeneracy. The splitting can take place in two distinct
ways, each of which, permits a complex number representation and retains a
center of symmetry for the deformed double spheres. However, when both distinct
splitting mechanisms are present, the degeneracy can be removed in such a way
that there is no center of symmetry, and an irreducible quaternionic representation
is necessary. These ideas are consistent [15] with group-theoretic expectations
based on Klein's "Vierer" group fE;P; T; PTg. The example of Fig. 4 modi¯es
the isotropic case to include optical activity. The Fresnel wave surface exhibits
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a center of symmetry, but the degeneracy of the double sphere in the isotropic
case is removed. Analytically, the degenerate real surface is split into a complex
number pair.
The example of Fig. 5 modi¯es the isotropic case to include Faraday phe-

nomena. The Fresnel wave surface again exhibits a center of symmetry, but the
degeneracy of the double sphere in the isotropic case is removed. Again a complex
representation is indicated, but of a type di®erent from that of Fig. 4. (See Ref.
16 for the di®erences between complex numbers and quaternions.)
The example of Fig. 6 modi¯es the isotropic case with a combination of Fara-

day rotation and optical activity. The Fresnel wave surface no longer exhibits a
center of symmetry, and a quaternionic (or Dirac spin) representation is necessary.
It should be noted that the length of the vector from the origin to the Fresnel wave
surface is a measure of the reciprocal wave velocity. The "outbound" wave speeds
are related to the "inbound" wave speeds by extending the vector from the origin
in the op-posite direction. The intercept with each Fresnel surface is interpreted
as a distinct state of polarization. For the example of Fig. 6, all four wave speeds
are distinct. The inbound speed of light is di®erent from the outbound speed of
light.

10. ELECTROMAGNETIC SHOCK WAVES

Another viewpoint of the systems of singular equations would be to consider the
system to be an overdetermined system of equations for the ray vector s in terms
of the given values of D;E;B;H. From this point of view certain compatibility
relations [17] must be satis¯ed for a unique solution to exist. The compatibility
relations are equivalent to the constraint that on the singular set

D ±E¡B ±H = 0: (31)

That is, the ¯rst Poincare invariant must vanish. In the language of di®erential
forms, then the di®erential ideal is constrained such that F^F = 0 and F^H = 0:
The constraints for the singular wave ¯eld may be manipulated to yield

k ± k¡!2(D ±B)=(E ±H) = (k ±E)(k ±H)=(E ±H) (32)

This equation must necessarily be satis¯ed if a solution is to exist. Now if it is
further assumed that the assumed solution is to exist uniquely in the sense of
Frobenius, the wave vector must be proportional to a gradient ¯eld k =¸rÁ .
Then the necessary condition becomes
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(rÁ)2 ¡ (D ±B)=(E ±H)(@Á=@t)2 = (k ±E)(k ±H)=(E ±H) (33)

With the further constraint of either magnetic (k ±H = 0) or electric (k ±E = 0)
isotropy, the necessary condition becomes the eikonal equation

(rÁ)2 ¡ (D ±B)=(E ±H)(@Á=@t)2 = 0: (34)

According to Kateyev, such a result de¯nes the propagation of "electromagnetic
shock waves" [18] that can be interpreted as signals. The result also implies
that the wave surface function satis¯es a ¯rst-order, quadratic, partial di®erential
equation with invariant coe±cients and signature (+ + +¡). It has been shown
by Fock [12] that the Lorentz transformation and the Mobius transforrnation are
the only transformations that leave such a quadratic form invariant. The Lorentz
transformation is the only linear transformation that preserves the signature of
the singular solution set to Maxwell's equations, independent of the fact that the
frame of reference be "inertial" or not. As pointed out by Hermann, Van Dantzig,
and indirectly by many others, the signi¯cance of the Lorentz transformations does
not reside with natural covariance of the Maxwell ¯eld equations, but instead is to
be associated with the natural covariance of the singular solution sets to Maxwell's
equations.

11. ALGEBRAIC DETAILS

A large class of interesting problems may be studied in terms of the reduced 6 X
6 constitutive matrix:

Â =

"
[¡²] [°]
[°¤] [¹¡1]

#
=

2
666666664

¡²11 i²12 ¡i²13 i°1 0 0
¡i²12 ¡²22 i²23 0 i°2 0
i²13 ¡i²23 ¡²33 0 0 i°3

¡i°1 0 0 ¹¡111 0 0
0 ¡i°2 0 0 ¹¡122 0
0 0 ¡i°3 0 0 ¹¡133

3
777777775

(35)

The Fresnel wave surface condition ,H = 0; is equivalent to the vanishing
of the determinant of a Hermitian 3 x 3 matric in the reciprocal velocity space
(nx;ny; nz): The matrix [H] has the format
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[H]=

2
64
A 0 0
0 B 0
0 0 C

3
75+

2
64
0 c b
c 0 a
b a 0

3
75+

2
64

0 iÂ ¡i¯
¡iÂ 0 i®
i¯ ¡i® 0

3
75 ; (36)

with a determinant equal to

H = (ABC)¡A(a2+®2)¡B(b2+¯2)¡C(c2+Â2)+2(cba¡c¯®¡Âb®¡Â¯a) (37)

where

A = ¡(n2y¹¡133 + n2z¹¡122 ) + ²11 (38)

B = ¡(n2z¹¡111 + n2x¹¡133 ) + ²22 (39)

C = ¡(n2x¹¡122 + n2y¹¡111 ) + ²33 (40)

a = nynz¹
¡1
11 (41)

b = nznx¹
¡1
22 (42)

c = nxny¹
¡1
33 (43)

® = nx(°2 + °3) + ²23 (44)

® = ny(°3 + °1) + ²31 (45)

® = nz(°1 + °2) + ²12 (46)

For momentum °ow along the x direction (n = nx; 0; 0), and for an isotropic
media (²11 = ²22 = ²33 = ²; ¹11 = ¹22 = ¹33 = ¹) to which is added a mixture of
optical activity (°1 = °2 = °3 = °) and Faraday e®ect (²23 6= 0; ²13 = ²12 = 0),
the Fresnel wave surface condition reduces to the equation

H(nx;0; 0) = (²¡ ¹¡1n2x)2 ¡ (²23 ¡ 2°nx)2 = 0: (47)

The solutions imply four distinct values of nx, and therefore four distinct phase
velocities of propagation depending on the polarization and the propagation di-
rection. This result was ¯rst obtained by Schultz et aL. [5] using a plane-wave
vector potential analysis of Maxwell's equations. The work of Schultz et al. also
gave vector wave (quaternionic) solutions as well as the phase velocities for the
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above example, but required a somewhat unclear rank reduction argument to ob-
tain the desired result. From the work presented herein it is seen that the result is
due to an application of Cramers's theorem on the existence of solutions applied
to the singular solution set. Historically, the notion that the singular solution
sets and wave fronts are related concepts is due to Fock and Luneburg, following
suggestions made by Hadamard.[19]
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Caption FIG. 1
Fresnel ellipsoids determine the wave speeds for di®erent directions and di®er-

ent states of polarizations: n(1) represents the index of refraction for polarization
state 1, outbound at 30± in the xy plane; n (2) represents the index of refraction for
the opposite polarization state, outbound; n ( 3 ) represents the ¯rst polarization
state, inbound at 210±; n(4) represents the second polarization state, inbound.

Caption Fig. 2
(a) Optical activity and Faraday rotation are not reciprocally equivalent. For

suitably adjusted parameters, the rotation of the polarization vector is the same
for one way traversal through Faraday or optically active media. (b) Upon re-
°ection, the polarization phase shift returns to the original value for an optically
active media, where the Faraday rotation accumulates an additional increment of
phase shift.
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Caption Fig. 3
The Isotropic Fresnel wave surface H = 0 [see eq's (23) and (31)] consists

entirely of critical points. All propagation speeds for all states of polarization are
the same. This surface is not equivalent to a simple sphere, for the surface gradient
vanishes everywhere . [Wave solution surface to Eq. (31) for ² = 1; ¹ = 1; ° = 0:]
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Caption Fig 4.
The Isotropic case is modi¯ed to include Optical Activity. A center of symme-

try and isotropy is preserved, but chirality is broken. Inbound waves of the same
chirality propagate with the same speed as outbound waves of the same chirality.
[Wave solution surface to Eq. (31) for ² = 1; ¹ = 1; ° = 0:3:]
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Caption Fig. 5
The Isotropic case is modi¯ed to include Faraday rotation. A center of sym-

metry is preserved, although isotropy is broken. This Fresnel wave surface is not
equivalent to the Fresnel wave surface of Figure 4. [Wave solution surface to Eq.
(31) for ² = 1; ¹ = 1; ° = 0; ²12 = 0:3:]

Caption Fig 6.
The Isotropic case is modi¯ed to include both Faraday rotation and Optical

Activity. No longer does the Fresnel wave surface exhibit a center of symmetry.
Inbound and outbound waves of di®erent polarizations travel with (four) di®erent
speeds. [Wave solution surface to Eq. (31) for ² = 1; ¹ = 1; ° = 0:3; ²12 = 0:3:]
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