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Abstract:A system of di®erential forms will establish a topology

and a topological structure on a domain of independent variables
such that is possible to determine which maps or processes acting
on the system are continuous. Perhaps the most simple topology
is that generated by the existence of a single 1-form of Action,
its Pfa® sequence of exterior di®erentials, and their intersections.
In such a topology the exterior derivative becomes a limit point
generator in the sense of Kuratowski. The utilization of such
techniques in physical systems is examined. A key feature of
the Cartan topology is determined by the Pfa® dimension (repre-
senting the minimum number of functions to describe the 1-form
generator). In particular, when the Pfa® dimension is 3 or more
the Cartan topology becomes a disconnected topology, with the
existence of topological torsion and topological parity. Most
classical physical applications are constrained to cases where the
Pfa® dimension is 2 or less, for such is the domain of unique
integrability. The more interesting domain of non-unique solu-
tions requires the existence of topological torsion, and can lead
to an understanding of irreversible processes without the use of
statistics.

1 Introduction

In the period from 1899 to 1926, Eli Cartan developed his theory of
exterior di®erential systems [1,2], which included the ideas of spinor systems
[3] and the di®erential geometry of projective spaces and spaces with torsion
[4]. The theory was appreciated by only a few contemporary researchers, and
made little impact on the main stream of physics until about the 1960's. Even
specialists in di®erential geometry (with a few notable exceptions [5] ) made
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little use of Cartan's methods until the 1950's. Even today, many physical
scientists and engineers feel that Cartan's theory of exterior di®erential forms
is just another formalism of fancy.
However, Cartan's theory of exterior di®erential systems has several ad-

vantages over the methods of tensor analysis that were developed during the
same period of time. The principle fact is that di®erential forms are well be-
haved with respect to functional substitution of C1 di®erentiable maps. Such
maps need not be invertible even locally, yet di®erential forms are always de-
terministic in a retrodictive sense [6], by means of functional substitution.
Such determinism is not to be associated with contravariant tensor ¯elds, if
the map is not a di®eomorphism.
Although the word "topology" had not become popular when Cartan

developed his ideas (topological ideas were described as part of the theory of
analysis situs), there is no doubt that Cartan's intuition was directed towards
a topological development. For example, Cartan did not de¯ne what were the
open sets of his topology, nor did he use in his early works the words "limit
points or accumulation points" explicitly, but he did describe the union of a
di®erential form and its exterior derivative as the "closure"of the form.
In a simplistic comparison it might be said that tensor methods are re-

stricted to geometric applications, while Cartan's methods can be applied
directly to topological concepts as well as geometrical concepts. Cartan's
theory of exterior di®erential systems is a topological theory not necessarily
limited by geometrical constraints and the class of di®eomorphic transforma-
tions that serve as the foundations of tensor calculus. A major objective of
this article is to show how limit points, intersections, closed sets, continuity,
connectedness and other elementary concepts of modern topology are inher-
ent in Cartan's theory of exterior di®erential systems. These ideas do not
depend upon the geometrical ideas of size and shape (hence Cartan's theory,
as are all topological theories, is renormalizeable). In fact the most useful of
Cartan's ideas do not depend explicitly upon the geometric ideas of a metric,
nor upon the choice of a connection as in ¯ber bundle theories.
In this article the Cartan topology will be constructed explicitly for an

arbitrary exterior di®erential system, §: All elements of the topology will be
evaluated, and the limit points, the boundary sets and the closure of every
subset will be computed abstractly. An earlier intuitive result [7] utilized
the notion that Cartan's concept of the exterior product may be used as an
intersection operator, and his concept of the exterior derivative may used as
a limit point operator acting on di®erential forms. These ideas will be given
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formal substance in this article. A major result of this article, with important
physical consequences in describing evolutionary processes, is the demonstra-
tion that the Cartan topology is not necessarily a connected topology, unless
the property of topological torsion vanishes.

1.1 The exterior product

Cartan's theory of exterior di®erential systems has its foundations in the
Grassmann algebra, where the two combinatorial processes used to de¯ne
the algebra are: vector space addition, and what is now called the exterior
product [8]. The exterior product acts on pairs of algebraic elements called
exterior p-forms. In this article, the exterior or wedge product operator
is symbolized by the ^ symbol for ease of typing; the exterior product of
A and B is then given by the expression A^B. The p-forms may have a
di®erential basis, symbolized by the set dx, combined in the manner of a
vector space with functional coe±cients. A di®erential 1-form is then given
by the expression,

A = A¹dx
¹: (1)

For 1-forms the multiplication rules are:

A^A = 0; A^B = ¡B^A: (2)

At some regular point, fxg, the 1-form will admit N-1 vector ¯elds, V,
to be constructed such that

i(V)A = A¹V
¹ = 0: (3)

Such vector ¯elds are de¯ned to be "associated" vectors of the 1-form, A. If
these vector ¯elds have a vanishing Lie bracket, then they span a neighbor-
hood of the point in terms of a simple (hyper) surface. The adjoint vector
to this N-1 system acts as the "normal" ¯eld to the surface spanned by the
N-1 vectors. The coe±cients A¹ form this "normal" ¯eld.
Now consider two such surface systems represented by the 1-forms A and

B. Do the two (curved) surfaces intersect? The points in common to the
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two surfaces are given by the non-null set formed by the exterior product of
A with B. If A^B vanishes, then the two surfaces have no points in com-
mon. Consider the simple case where the 1-forms A and B have coe±cients
which form the components of a gradient ¯eld ( a Gauss Weingarten surface
normal),

A = A¹dx
¹ = rÁ ¢ dr B = B¹dx

¹ = rÃ ¢ dr (4)

Then ( in 3 dimensions ) A^B = (A£B)zdx^dy + cyclic permutations),
a result that demonstrates that the Gibbs cross product, A£B = rÁ£rÃ
in euclidean three dimensions is related to the "line" of points which are in
common to both surfaces. This result pictorially cements the notion that
the exterior product (acting on 1-forms) is an operator related to the concept
of intersection. If the two surfaces do not intersect, and the exterior product
vanishes, then the functions Á and Â are not functionally independent. These
concept extends to p-forms of higher rank.

In three dimensions, the Gibbs cross product is considered to be a "vec-
tor" for it has the same number of components as the gradient. Yet it has
di®erent behavior under transformations of the basis, and is sometimes called
a "pseudovector" or an axial vector. In the exterior calculus, the exterior
product of the two 1-forms, with components proportional to covariant ten-
sor of rank 1, creates a 2-form with covariant components of rank 2. Only in
constrained geometries, such as euclidean three space, do 2-forms have any
resemblence to the Gibbs cross product (a rule which fails in dimension n
>3). The pseudo-vector is an object that behaves like a contravariant ten-
sor density of rank 1. Such objects are usually de¯ned as "currents". In
general, there are two species of di®erential forms (that are often dual to one
another and are well behaved with respect to functional substitution and the
pullback operation: p-forms and N-p form densities or currents. One species
pulls back (meaning that the form is well de¯ned with respect to functional
substitution) with respect to the Jacobian transpose, while the other pulls
back with respect to the Jacobian adjoint. Of course for orthogonal sys-
tems, these concepts are degenerate, for the inverse and the adjoint and the
transpose of the Jacobian matrix are the same. Recall that at a point it
is always possible to de¯ne a vector basis in terms of an orthogonal system
(use the Gram-Schmidt process), but it may not be possible to extend the
orthogonality concept smoothly (without singularities) from one neighbor-
hood to another neighborhood. If the neighborhoods can be connected by
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a singly parameterized vector ¯eld, then these concepts are at the basis of
the Frenet-Serret moving frame analysis. Cartan extended these ideas to
domains that are not so simply connected, and developed the notion of the
moving basis Frame, which he called the Repere Mobile.

1.2 The exterior derivative

The second new operator found in Cartan's theory of exterior di®erential
systems is the exterior derivative. The exterior derivative, like the exterior
product, also has topological connotations when applied to di®erential forms,
but the results are sometimes surprising and unfamiliar. For example con-
sider the exterior derivative of the N-1 form density, D, in three dimensions,
given by the expression,

dD = d(Dxdy^dz ¡Dydz^dx+Dzdx^dy) (5)

= div3(D)dx^dy^dz ) ½(x; y; z)dx^dy^dz

where ½ has been de¯ned as the resultant of the action of the exterior deriva-
tive, div3(D). The usual interpretation of Gauss' law is that the ¯eld lines
of the vector D terminate (or have a limit or accumulation point) on the
charges, Q. Gauss' law generates both the intuitive idea that sources are
related to limit points, and the novel concept that the exterior derivative
is a limit point operator creating these limits points when the operation is
applied to a di®erential form. However, as demonstrated below, the concept
that the exterior derivative is a limit point operator relative to the Cartan
topology is a general idea, and is not restricted to Gauss' law.
For example, extending this idea to four dimensions for the N-2 form

density, G, of Maxwell excitations (D;H),

G = ¡Dxdy^dz +Dydz^dx¡Dzdx^dy +Hxdx^dt+Hydy^dt+Hzdz^dt;
(6)

the exterior derivative dG of G yields a three form, J , de¯ned as the electro-
magnetic current 3-form,

J = Jxdy^dz^dt¡ Jydx^dz^dt+ Jzdx^dy^dt¡ ½dx^dy^dt (7)

5



where in 3-vector language,

curl H¡ @D=@t = 0 divD = ½: (8)

The charge current density act as the "limit points" of the Maxwell ¯eld
excitations. Note that dJ = 0 for C2 functions by Poincare's lemma.
However, consider the N-1 current, C (not necessarily equal to J as de-

¯ned above) in four dimensions

C = ½fV xdy^dz^dt¡ V ydx^dz^dt+ V zdx^dy^dt¡ 1dx^dy^dtg (9)

and its exterior derivative as given by the expression,

dC = fdiv3(½V) + @½=@tgdx^dy^dz^dt: = Rdx^dy^dz^dt = R4 vol (10)

When thre 4-form R vanishes, the resultant expression is physically in-
terpreted as the "equation of continuity" or as a "conservation law". Over a
closed boundary, that which goes in is equal to that which goes out (when
dC = 0). Note that the concept of the conservation law is a topological con-
straint: the "limit points" of the "current 3-form" in four dimensions must
vanish if the conservation law is to be true. If the RHS of the above expres-
sion is not zero, then the current 3-form is said to have an "anomaly", or a
source (or sink) . The anomaly acts as the source of the otherwise conserved
quantity. The limit points, R, of the 3-form, C, are generated by its exterior
derivative, dC = fdiv3(½V)+ @½=@tg4: When the RHS is zero, the current
"lines" do not stop or start within the domain. (It is possible for them to
be closed on themselves in certain topologies).
As another example, consider the 1-form of vector and scalar potentials

given by the expression,

A = Axdx+Aydy +Azdz ¡ Ádt = A ¢ dr¡ Ádt: (11)

The exterior derivative of the 1-form A generates the 2-form F = dA of
electromagnetic intensities, (E;B):

F = dA = Bzdx^dy +Bxdy^dz +Bydz^dx+ Exdx^dt+ Eydy^dt+ Ezdz^dt;
(12)
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where

B = curlA; and E = ¡rÁ¡ @A=@t: (13)

The exterior derivative of F vanishes if the potential functions are C2 di®er-

entiable:

ddA = dF = 0 ¾ curlE+ @B=@t = 0 and div3B = 0: (14)

Note that these derivations of Maxwell's equations are based on topological
statements about limit points, and do not depend upon geometrical consid-
erations of metric or connections.
This now almost classic generation of the Maxwell ¯eld equations [9]

has another less familiar interpretation: The E and B ¯eld intensities are
the topological limit "points" of the 1-form of potentials, fA; Ág, relative
to the Cartan topology! The limit points of the 2-form of ¯eld intensities,
F , are the null set. For C2 vector ¯elds, the Cartan topology admits °ux
quanta, charge quanta, and spin quanta, but excludes magnetic monopoles
[10]. When the di®erential system of interest is built upon the forms A, F
and G, it is possible to show that superconductivity is to be associated with
the constraints on the limit point sets of A; A^F; and A^G [11]. That is,
superconductivity has its origins in topological, not geometrical, concepts.
This remarkable idea that the exterior derivative is a limit point operator is
given formal substance in the section 4.

2 The Cartan Point Set Topology.

Cartan built his theory around an exterior di®erential system, §, which
consists of a collection of 0- forms, 1-forms, 2-forms, etc. [12]. He de¯ned
the closure of this collection as the union of the original collection with those
forms which are obtained by forming the exterior derivatives of every p-form
in the initial collection. In general, the collection of exterior derivatives will
be denoted by d§, and the closure of § by the symbol, §c, where

§c = § [ d§ (15)
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For notational simplicity in this article the systems of p-forms will be
assumed to consist of the single 1-form, A. Then the exterior derivative of A is
the 2-form F = dA, and the closure of A is the union of A and F : Ac = A[F .
The other logical operation is the concept of intersection, so that from the
exterior derivative it is possible to construct the set A^F de¯ned collectively
as H : H = A^F: The exterior derivative of H produces the set de¯ned as
K = dH, and the closure of H is the union of H and K : Hc = H [K.

This ladder process of constructing exterior derivatives, and exterior
products, may be continued until a null set is produced, or the largest p-form
so constructed is equal to the dimension of the space under consideration.
The set so generated is de¯ned as a Pfa® sequence. The largest rank of
the sequence determines the Pfa® dimension of the domain (or class of the
form, [13]), which is a topological invariant. The idea is that the 1-form A
(in general the exterior di®erential system, §) generates on space-time four
equivalence classes of points that act as domains of support for the elements
of the Pfa® sequence, A;F;H;K . The union of all such points will be
denoted by X = A [ F [H [K. The fundamental equivalence classes are
given speci¯c names:

Topo log ical ACTION : A = A¹dx
¹ (16)

Topo log ical V ORTICITY : F = dA = F¹ºdx
¹ ^dxº (17)

Topo log ical TORSION : H = A^dA = H¹º¾dx
¹ ^dxº^dx¾ (18)

Topo log ical PARITY : K = dA^dA = K¹º¾¿dx
¹ ^dxº^dx¾^dx¿ : (19)

The Cartan topology is constructed from a basis of open sets, which are
de¯ned as follows: ¯rst consider the domain of support of A. De¯ne this
"point" by the symbol A. A is the ¯rst open set of the Cartan topology.
Next construct the exterior derivative, F = dA, and determine its domain of
support. Next, form the closure of A by constructing the union of these two
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domains of support, Ac = A [ F . A [ F forms the second open set of the
Cartan topology. .
Next construct the intersection H = A^F , and determine its domain

of support. De¯ne this "point" by the symbol H, which forms the third
open set of the Cartan topology. Now follow the procedure established in
the preceding paragraph. Construct the closure of H as the union of the
domains of support of H and K = dH. The construction forms the fourth
open set of the Cartan topology. In four dimensions, the process stops, but
for N >4, the process may be continued.
Now consider the basis collection of open sets that consists of the subsets,

B = fA; Ac; H; Hcg = fA; A [ F; H; H [Kg (20)

The collection of all possible unions of these base elements, and the null set,
;; generate the Cartan topology of open sets:

T (open) = fX; ;; A; H;A [ F; H [K; A [H; A [H [K; A [ F [Hg:
(21)

These nine subsets form the open sets of the Cartan topology constructed
from the domains of support of the Pfa® sequence constructed from a single
1-form, A. The compliments of the open sets are the closed sets of the
Cartan topology.

T (closed) = f;; X; F [H [K; A [ F [K;A [ F; H [K;F [K;F; Kg:
(22)

From the set of 4 "points" fA;F;H;Kg that make up the Pfa® sequence
it is possible to construct 16 subset collections by the process of union. It is
possible to compute the limit points for every subset relative to the Cartan
topology. The classical de¯nition of a limit point is that a point p is a limit
point of the subset Y relative to the topology T if and only if for every open
set which contains p there exists another point of Y other than p [14]. The
results of this de¯nition are presented in Table I
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The Cartan Topology
A = Akdx

k

F = dA; H = A^F; K = F ^F
Basis fA, Ac, H, Hcg = fA;A [ F;H;H [Kg

T (open) = fX; ;; A; H;A [ F; H [K; A [H; A [H [K; A [ F [Hg
T (closed) = f ;; X; F [H [K;A [ F [K; H [K; A [ F; F [K; F;Kg

Subset
¾

Limit Pts
d¾

Interior
:

Boundary
@¾

Closure
¾ [ d¾

; ; ; ; ;
A F A F A [ F
F ; ; F F
H K H K H [K
K ; ; K K

A [ F
A [H
A [K
F [H
F [K
H [K

F
F;K
F
K
;
K

A [ F
A [H
A
H
;

H [K

;
F [K
F [K
F [K
F [K

;

A [ F
X

A [ F [K
F [H [K
F [K
H [K

A [ F [H F;K A [ F [K K X
F [H [K K H [K F F [H [K
A [H [K F;K A [H [K F X
A [ F [K F A [ F K A [ F [K

X F;K X ; X

By examining the set of limit points so constructed for every subset of the
Cartan system, and presuming that the functions that make up the forms are
C2 di®erentiable (such that the Poincare lemma is true, dd! = 0; any !), it
is easy to show that for all subsets of the Cartan topology every limit set is
composed of the exterior derivative of the subset, thereby proving the claim
that the exterior derivative is a limit point operator relative to the Cartan
topology. For example, the open subset, A [ H, has the limit points that
consist of F and K: The limit set consists of F [K which can be derived
directly by taking the exterior derivatives of the elements that make upA[H;
that is, (F [A = d(A[H) = (dA[dH). Note that this open set, A[H, does
not contain its limit points. Similarly for the closed set, A[F , the limit points
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are given by F which may be deduced by direct application of the exterior
derivative to (A [ F ) : (F ) = d(A [ F ) = (dA [ dF ) = (F [ ;) = (F ).

3 Topological Torsion and Connected vs Non-

connected Cartan topologies.

The Cartan topology as given in Table 1 is composed of the union of
two sub-sets which are both open and closed (X = Ac [ Hc), a result that
implies that the Cartan topology is not necessarily connected. An excep-
tion exists if the topological torsion, H, and hence its closure, vanishes, for
then the Cartan topology is connected. This extraordinary result has broad
physical consequences. The connected Cartan topology based on a vanishing
topological torsion is at the basis of most physical theories of equilibrium. In
mathematics, the connected Cartan topology corresponds to the Frobenius
integrability condition for Pfa±an forms. In thermodynamics, the connected
Cartan topology is associated with the Caratheodory concept of inaccessible
thermodynamic states [15], and the existence of an equilibrium thermody-
namic surface. If the 1-form, Q, of heat generates a Cartan topology of null
topological torsion, H = Q^dQ = ;; then the Cartan topology built on Q is
connected. Such systems are "isolated" in a topological sense, and the heat
1-form has a representation in terms of two and only two functions, con-
ventionally written as: Q = TdS. Note again that a fundamental physical
concept, in this case the idea of equilibrium, is a topological concept indepen-
dent from geometrical properties of size and shape. Processes that generate
the 1-form Q such that Q^dQ = ; are thermodynamically reversible. If
Q^dQ 6= ;; the process that generates Q is thermodynamically irreversible.
When the Cartan topology is connected, it might be said that all forces

are extendible over the whole of the set, and that these forces are of "long
range". Conversely when the Cartan topology is disconnected, the "forces"
cannot be extended inde¯nitely over the whole domain of independent
variables, but perhaps only over a single component. In this sense, such
forces are said to be of short range, as they are con¯ned. Note that this
notion of short or long range forces does not depend upon geometrical size
or scale. The physical idea of short or long range forces is a topological idea
of connectivity, and not a geometrical concept of how far.

In an earlier article, these ideas were formulated intuitively in order
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to give an explanation of the "four forces" of physics. The earlier work
was based upon di®erential geometry, before the construction of the Car-
tan topology based upon di®erential topology as presented herein. [16] The
features of the Pfa® sequence were used to establish equivalence classes for
known example metric ¯eld solutions, g¹À; to the Einstein ¯eld equations.
The ideas originally presented upon experience with systems in di®erential
geometry can now be given credence based upon the construction di®erential
topology of the disconnected Cartan topology, which will divide the classes
into the long range connected category and the short range disconnected
category. The 1-form used to build the Cartan topology was constructed
from the space-time interactions, A = g¹4dx¹ : Long range parity preserv-
ing forces due to gravity (Pfa® dimension 1) and electromagnetism (Pfa®
dimension 2) are to be associated with a Cartan Topology that is connected
(H = A^F = A^dA = 0): Both the strong force (Pfa® dimension 3) and
the weak force (Pfa® dimension 4) are "short" range (H 6= 0) and are to be
associated with a disconnected Cartan topology. The strong force is parity
preserving (K = 0) and the weak force is not (K 6= 0): The fact that the
Cartan topology is not necessarily connect is the topological (not metrical)
basis that may be used to distinguish between short and long range forces.
In much of our physical experience with nature it appears that the dis-

connected domains of Pfa® dimension 3 or more are often isolated as nuclei,
while the surrounding connected domains of Pfa® dimension 2 or less ap-
pears as ¯elds of charged or non-charged molecules and atoms. However,
part of the thrust of this article is to demonstrate that such disconnected
topological phenomena are not con¯ned to microscopic systems, but also ap-
pear in a such mundane phenomena as the °ow of a turbulent °uid. Physical
examples of the existence of topological torsion (and hence a non-connected
Cartan topology) are given by the experimental appearance of what appear
to be coherent structures in a turbulent °uid °ow.
To prove that a turbulent °ow must be a consequence of a Cartan topology

that is not connected, consider the following argument: First consider a
°uid at rest and from a global set of unique, synchronous, initial conditions
generate a vector ¯eld of °ow. Such °ows must satisfy the Frobenius complete
integrability theorem, which requires that A^dA = 0. The Cartan topology
for such systems is connected, and the Pfa® dimension of the domain is 2 or
less. Such domains do not support topological torsion (the Helicity vanishes).
Such globally laminar °ows are to be distinguished from °ows that reside on
surfaces, but do not admit a unique set of connected sychronizeable initial
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conditions. Next consider turbulent °ows which, as the anti-thesis of laminar
°ows, can not be integrable in the sense of Frobenius; such turbulent domains
support topological torsion (A^dA 6= 0), and therefore a disconnected Cartan
topology. The connected components of the disconnected Cartan topology
can be de¯ned as the (topologically) coherent structures of the turbulent
°ow.
Note that a domain can support a homogeneous topology of one compo-

nent and then undergo continuous topological evolution to a domain with
some interior holes. The domain is simply connected in the initial state, and
multiply connected in the ¯nal state, but still connected. However, consider
the dual point of view where the originally connected domain consists of a
homogeneous space that becomes separated into multiple components. The
evolution to a topological space of multiple components is not continuous.
It follows that the case of a transition from an initial laminar state (H = 0)
to the turbulent state (H 6= 0) is a transition from a connected topology
to a disconnected topology. Therefore the transition to turbulence is NOT
continuous. However, note that the decay of turbulence can be described
by a continuous transformation from a disconnected topology to a connected
topology. Condensation is continuous, gasi¯cation is not. It is demonstrated
below that relative to the Cartan topology all C2 di®erentiable, V, acting on
C2 p-forms by means of the Lie derivative are continuous. The conclusion is
reached that the transition to turbulence must involve transformations that
are not C2, hence can occur only in the presence of shocks or tangential
discontinuities.

4 The Cartan Topological Structure

A topological structure is de¯ned to be enough information to decide whether
a transformation is continuous or not [18]. The classical de¯nition of conti-
nuity depends upon the idea that every open set in the range must have an
inverse image in the domain. This means that topologies must be de¯ned on
both the initial and ¯nal state, and that somehow an inverse image must be
de¯ned. Note that the open sets of the ¯nal state may be di®erent from the
open sets of the initial state, because the topologies of the two states can be
di®erent.
There is another de¯nition of continuity that is more useful for it depends

only on the transformation and not its inverse explicitly. A transformation is
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continuous if and only if the image of the closure of every subset is included
in the closure of the image. This means that the concept of closure and the
concept of transformation must commute for continuous processes. Suppose
the forward image of a 1-form A is Q; and the forward image of the set F =
dA is Z. Then if the closure, Ac = A [ F is included in the closure of Qc =
Q[ dQ, for all sub-sets, the transformation is de¯ned to be continuous. The
idea of continuity becomes equivalent to the concept that the forward image
Z of the limit points, dA, is an element of the closure of Q [18]:

A function f that produces an image f [A] = Q is continuous i®
for every subset A of the Cartan topology, Z = f [dA] ½ Qc =
(Q [ dQ).

The Cartan theory of exterior di®erential systems can now be interpreted
as a topological structure, for every subset of the topology can be tested to
see if the process of closure commutes with the process of transformation. For
the Cartan topology, this emphasis on limit points rather than on open sets is
a more convenient method for determining continuity. A simple evolutionary
process, X ) Y , is de¯ned by a map ©. The map, ©, may be viewed as
a propagator that takes the initial state, X, into the ¯nal state, Y . For
more general physical situations the evolutionary processes are generated by
vector ¯elds of °ow, V. The trajectories de¯ned by the vector ¯elds may
be viewed as propagators that carry domains into ranges in the manner of a
convective °uid °ow. The evolutionary propagator of interest to this article
is the Lie derivative with respect to a vector ¯eld, V, acting on di®erential
forms, § [19].

The Lie derivative has a number of interesting and useful properties.
1. The Lie derivative does not depend upon a metric or a con-

nection.
2. The Lie derivative has a simple action on di®erential forms

producing a resultant form that is decomposed into a transversal and an
exact part:

L(V)! = i(V )d! + di(V )!: (23)

This formula is known as "Cartan's magic formula". For those vector ¯elds
V which are "associated" with the form !; such that i(V )! = 0; the Lie
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derivative becomes equivalent to the covariant derivative of tensor analysis.
Otherwise the two derivative concepts are distinct.

3. The Lie derivative may be used to describe deformations and
topological evolution. Note that the action of the Lie derivative on a 0-form
(scalar function) is the same as the directional or convective derivative of
ordinary calculus,

L(V)© = i(V )d©+ di(V )© = i(V )d© + 0 = V ¢ grad©: (24)

It may be demonstrated that the action of the Lie derivative on a 1-form will
generate equations of motion of the hydrodynamic type.

4. With respect to vector ¯elds and forms constructed over C2
functions, the Lie derivative commutes with the closure operator. Hence,
the Lie derivative (restricted to C2 functions) generates transformations on
di®erential forms which are continuous with respect to the Cartan topology.
To prove this claim:
First construct the closure, f§ [ d§g . Next propagate § and d§ by

means of the Lie derivative to produce the decremental forms, say Q and Z,

L(V)§ = Q and L(V)d§ = Z: (25)

Now compute the contributions to the closure of the ¯nal state as given by
fQ[ dQg. If Z = dQ, then the closure of the initial state is propagated into
the closure of the ¯nal state, and the evolutionary process de¯ned by V is
continuous. However,

dQ = dL(V)§ = di(V )d§+ dd(i(V )§) = di(V )d§ (26)

as dd(i(V )§) = 0 for C2 functions. But,

Z = L(V)d§ = d(i(V )d§) + i(V )dd§ = di(V )d§ (27)

as i(V )dd§ = 0 for C2 p-forms. It follows that Z = dQ, and therefore V
generates a continuous evolutionary process relative to the Cartan topology.
QED
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Certain special cases arise for those subsets of vector ¯elds that satisfy
the equations, d(i(V)§) = 0. In these cases, only the functions that make up
the p-form, §, need be C2 di®erentiable, and the vector ¯eld need only be
C1. Such processes will be of interest to symplectic processes, with Bernoulli-
Casimir invariants.
By suitable choice of the 1-form of action it is possible to show that the

action of the Lie derivative on the 1-form of action can generate the Navier
Stokes partial di®erential equations [20]. The analysis above indicates that
C2 di®erentiable solutions to the Navier-Stokes equations can not be used
to describe the transition to turbulence. The C2 solutions can, however,
describe the irreversible decay of turbulence to the globally laminar state.

5 APPLICATIONS

5.1 Frozen - in Fields, the Master Equation

A starting point for many discussions of the magnetic dynamo and allied
problems in hydrodynamics starts with what has been called the "master
equation" [21],

Curl(V£B) = @B=@t: (28)

Using the Cartan methods it may be shown that this equation is equiva-
lent to the constraint of "uniform" continuity relative to the Cartan topology.
Moreover, it is easy to show these constraints generate symplectic processes
which include Hamiltonian evolutionary systems, such as Euler °ows, as well
as a number of other evolutionary processes which are continuous, but not
homeomorphic. In addition a criteria can be formulated to develop an ex-
tension of the "helicity" conservation law to a more general setting.
The proof of these results produces a nice exercise in use of the Cartan

theory. Consider a 1-form A that satis¯es the exterior di®erential system

F ¡ dA = 0; (29)

where A is a 1-form of Action, with twice di®erentiable coe±cients (poten-
tials proportional to momenta) which induce a 2-form, F; of electromagnetic
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intensities (E and B ; related to forces). The exterior di®erential system
is a topological constraint that in e®ect de¯nes ¯eld intensities in terms of
the potentials. On a four dimensional space-time of independent variables,
(x; y; z; t) the 1-form of Action (representing the postulate of potentials) can
be written in the form

A = §3k=1Ak(x; y; z; t)dx
k ¡ Á(x; y; z; t)dt = A±dr¡Ádt: (30)

Subject to the constraint of the exterior di®erential system, the 2-form of
¯eld intensities, F; becomes:

F = dA = f@Ak=@xj ¡ @Aj=@xkgdxj^dxk = Fjkdxj^dxk (31)

= Bzdx^dy +Bxdy^dz +Bydz^dx+Exdx^dt+Eydy^dt+Ezdz^dt:

where in usual engineering notation,

E = ¡@A=@t¡ gradÁ; B =curl A ´ @Ak=@x
j ¡ @Aj=@xk: (32)

The closure of the exterior di®erential system, dF = 0; vanishes for C2
di®erentiable p-forms, to yield

dF = ddA = fcurl E+ @B=@tgxdy^dz^dt¡ ::+ ::¡ divBdx^dy^dzg ) 0:
(33)

Equating to zero all four coe±cients leads to the Maxwell-Faraday equations,

fcurl E+ @B=@t = 0; divB = 0g: (34)

The component functions (E and B) of the 2-form, F; transform as co-
variant tensor of rank 2. The topological constraint that F is exact, implies
that the domain of support for the ¯eld intensities cannot be compact without
boundary, unless the Euler characteristic vanishes. These facts distinguish
classical electromagnetism from Yang-Mills ¯eld theories. Moreover, the fact
that F is subsumed to be exact and C1 di®erentiable excludes the concept
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of magnetic monopoles from classical electromagnetic theory on topological
grounds.
Now search for all vector ¯elds that leave the 2-form F an absolute in-

variant of the °ow; that is, search for all vectors that satisfy Cartan's magic
formula

L(V)F = i(V )dF + di(V )F = 0 + di(V )F = 0: (35)

For C2 functions, the term involving dF vanishes, leaving the expression,

L(V)F = di(V )F (36)

= df(E+V £B) ¢ dr¡ (E ¢V)dtg (37)

= fcurl(E+V£B)gzdy^dz::: (38)

+ f@(E+V£B)=@t+ grad(E ¢V) ¢ dr^dt (39)

= 0: (40)

Setting the ¯rst three factors to zero yields

curl(E+V£B) = 0 (41)

But for C2 functions, curlE = ¡@B=@t, and when this expression is
substituted into the above equation, the "master equation given by the ¯rst
equation results. Now recall that dF generates the limit points of A, and if
F = dA is a °ow invariant, then all limit points are °ow invariants relative
to the Cartan topology. This result implies that the vector ¯elds, V, that
satisfy the constraints of the "master equation" are uniformly continuous
evolutionary processes, the limit points, F = dA; of the 1-form A are °ow
invariants, and the lines of vorticity are "frozen-in" the °ow. Non-uniform
continuity would imply that the limit points are not invariants of the process,
but that the closure of the limit points of the target range include the vanishes
limit points of the initial domain. Such processes would correspond to a
folding of the "lines" of vorticity, which preserve the limit points, but not
their sequential order.
A second criteria for limit point invariance is given by the equation,

f@(E+V £B)=@t+ grad(E ¢V)g = 0: (42)
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The formula indicates that limit point invariance can occur in the presence
of dissipation, E ¢V 6= 0:
The criteria for frozen-in ¯elds is established as a constraint on the ad-

missable vector ¯elds, di(V )dA = di(V )F = 0: The solution vector ¯elds,
V; subject to this constraint can be put into three global categories:

1. Extremal (Hamiltonian) i(V )F = 0:
2. Bernoulli-Casimir (Hamiltonian) i(V )F = d£:
3. Symplectic i(V )F = d©+°harmonic

The ¯rst category can exist only on domains of support of F which are of
odd Pfa® dimension, but then the solution vector is unique to within a factor.
In the other categories, the solution vector need not be unique. Vector ¯elds
that satisfy the equation for uniform continuity are said to be symplectic
relative to the 1-form, A: Vector ¯elds that belong to categories 1 and 2
have a Hamiltonian representation. Vector ¯elds that belong to category 1,
are said to be "extremal" relative to the 1-form, A:

5.2 Euler °ows and Hamiltonian systems.

In 1922 Cartan established the idea that the necessary and su±cient
conditions for a system to admit a unique Hamiltonian representation for its
evolution, V, is given by the category 1 constraint,

W = i(V )dA = i(V )F = 0: (43)

It is apparent that this extremal condition is more stringent than that given
above for uniform continuity, di(V )F = 0. Such extremal vector ¯elds are
independent of parameterization. That is, for extremal processes, i(½V )dA =
0 if i(V )dA = 0; for any function, ½: Extremal vector ¯elds do not exist on
domains where the Pfa® dimension of the Cartan 1-form is even. In classical
mechanics, the 1-form W is de¯ned as the 1-form of Virtual Work, and the
Cartan constraint is typical of problems in the variational calculus where it
is presumed that the Virtual Work vanishes.
As an example,consider a 1-form of Action de¯ned as

A = v dr¡ (v ¢ v=2 + ª)dt; (44)
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where dª = dP=½. Application of the extremal constraint yields the result-
ing necessary system of partial di®erential equations is given by known as
the Euler equations of hydrodynamics.

@v=@t+ grad(v ¢ v=2)¡ v £w = ¡gradP=½; (45)

It also follows that the Master equation is valid, with the only di®erence
being that curlv is de¯ned as !, the vorticity of the hydrodynamic °ow. The
master equation becomes,

curl(v£ !) = @!=@t; (46)

and is to be recognized as Helmoltz' equation for the conservation of vor-
ticity. In the hydrodynamic sense, conservation of vorticity implies uniform
continuity. In other words, the Eulerian °ow is not only Hamiltonian, it
is also uniformly continuous, and satis¯es the master equation and the con-
servation of vorticity constraints. In addition, it may be demonstrated that
such systems are at most of Pfa® dimension 3, and admit a relative integral
invariant which generalizes the hydrodynamic concept of invariant helicity.
In the electromagnetic topology, the Hamiltonian constraint is equivalent to
the statement that the Lorentz force vanishes, a condition that has been used
to de¯ne the "ideal" plasma or "force-free" plasma state.

5.3 Conservation of Topological Torsion

A slightly more general class of evolutionary processes (°ows) is given by the
constraints which are gauge equivalent to the Hamiltonian extremal case; a
search is made for those °ows that satisfy the (non-exrtremal, but Hamilto-
nian) constraint:

i(½V )dA = i(½V )F = dW: (47)

Such °ows admit two topological invariants of the relative integral invariant
form. The ¯rst integral invariant is 1-dimensional:
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L(½V)

I

1d closed

A =

I

1d closed

i(½V )dA+ di(½V )A = (48)
I

1d closed

dW + di(½V )A =

I

1d closed

dfW ¡ i(½V )Ag ) 0; (49)

expressing the relative integral invariance of circulation (Kelvin's theorem).
The second integral invariant is 3-dimensional:

L(½V)

I

3d closed

A^dA =

I

3d closed

dfW ¡ i(½V )Ag^dA ) 0; (50)

a result expressing the generalization of the law which in hydrodynamics is
called the conservation of Helicity. The integrations are over closed 1 and
3 dimensional domains. These closed integration domains can be either
cycles or boundaries. For exampled the 1-dimensional closed curve in the
punctured disc that encircles the central hole is a cycle but not a boundary.
As the integrands are exact di®erentials, the closed integrals vanish.
Note that on the domain fx; y; z; tg, the 3-form of topological torsion,

A^dA, has the general representation with coe±cients, Z¹º¾, that transform
as a covariant tensor ¯eld of third rank. On a 4 dimensional space, the
components of A^dA are proportional to a contravariant tensor density of
rank 1, whose four components have a vector part de¯ned as, T, the torsion
(pseudo) current, and a (pseudo) density part, h. The 3-form A^dA is not an
impair form (density). In electromagnetic engineering language, the general
formula for the torsion 3-form has a component expression given by:

T = [T; h] = [E£A + ÁB;A ¢B]: (51)

For the constraints of an Eulerian °ow, the 4 components of the Torsion three
form reduce to

T = [T; h] = [(v ¢ !)v¡ (v ¢ v=2 + ª)!;v ¢ !]: (52)

Recall that the closed integration domain used to evaluate the relative
integral invariant is not necessarily restricted to a spatial volume integral
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with a boundary upon which the normal component of v vanishes. Also
note that the helicity density of hydrodynamic fame is the fourth compo-
nent, h = v ¢ !; of a contravariant vector density, equivalent to a covariant
tensor of third rank. Care must be used in its transformation with respect
to di®eomorphisms, such as the Galilean transformation. Furthermore, for
the constraints of an Eulerian °ow (an extremal ¯eld) described above, the
topological parity 4-form vanishes globally, such that there exists a pointwise
conservation law of the 3-form, equivalent to the expression,

div3T+ @h=@t = 0: (53)

5.4 Topological Invariants and Period Integrals

Besides the invariant structures considered above, the Cartan methods may
be used to generate other sets of topological invariants. Realize that over a
domain of Pfa® dimension n less than or equal to N , the Cartan criteria
admits a submersive map to be made from N to a space of minimal dimension
n. The map may be viewed as a vector ¯eld of functional components,

[V x(x; y; z::); V y(x; y; z::); V z(x; y; z::); :::];

of dimension n, and will have a representation in the projective geometry of
n+1 homogeneous coordinates. The n+1 component will be generated by a
function ¸; related to the Holder norm,

½ = 1=¸ = 1=fa(V x)p + b(V y)p + c(V z)p + :::::gn=p: (54)

For any vector ¯eld, construct the n dimensional volume element,

V ol = ½(V ) dV x^dV y^dV z::: (55)

and the n-1 form density (current) J as:

J = i(V x; V y; V z; :::)V ol =

½fV x dV y^dV z::: ¡ V y dV x^dV z:::+ V z dV x^dV y:::¡ :::g : (56)
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It is remarkable that the current J so de¯ned has a vanishing exterior deriva-
tive, independent of the value of p for a given n, and for all values of the
constants, plus or minus a,b,c...). All such currents de¯ne a "conservation
law". As the map de¯ning the components of the vector ¯eld in terms of the
base fx,y,z..g is presumed to be di®erentiable, then the n-1 form, J; has a
well de¯ned pull back on the base space (almost every where), and its exte-
rior derivative on the base space also vanishes everywhere mod the defects.
That is, the form J is locally exact.
In the expression for ¸; the factors fa; b; c; d:::g are arbitrary constants

of either sign. The most familiar format is when p = 2; and then the
function ¸ has a null set which is a conic. For positive isotropic signature,
the only defect is the origin in the space de¯ned by the functions, V: The
construction produces the algebraic dual or adjoint vector ¯eld from the
functional components of the original vector ¯eld with integrating factors
½ = 1=¸ that create conservation laws for physical systems. The integrals
of these closed currents when integrated over closed N-1 dimensional chains
form deformation invariants, with respect to any evolutionary process that
can be described by a vector ¯eld, for

L(½V)

I

n¡1
J =

H
n¡1
i(½V)dJ +

H
n¡1
d(i(½V))J) = 0 + 0 = 0 (57)

These integral objects appear as "topological coherent" structures, which
may have defects or anomalous sources, when the integrating factor 1=¸ is
not de¯ned.
The compliment to the zero sets of the function ¸ determine the domain

of support associated with the speci¯ed vector ¯eld. The closed n-1 form, J,
that satis¯es the conservation law, dJ = 0, has integrals over closed domains
that have rational fraction ratios. As this n-1 current is closed globally, it
may be deduced on a connected local domain from a n-2 form, G. In every
case J has a well de¯ned pull-back to the base variety, x,y,z,t. Note that the n
functions [V x (x; y; z::); V y(x; y; z::); V z(x; y; z::); :::] represent the minimum
number of Clebsch variables that are equivalent to the original action, A, over
the domain of support. As each of these integrals is intrinsically closed, the
Lie derivative with respect to any C2 vector ¯eld, V, is a perfect di®erential,
such that (when integrated over closed domains that are p-1 boundaries) the
evolutionary variation of these closed integrals vanishes. These n-1 integrals
are relative integral invariants for any C2 evolutionary processes, or °ows.
The values of the integrals are zero if the closed integration domains are
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boundaries, or completely enclose a simply connected region. If the closed
integration domains encircle the zeros of the function ¸, then the values of the
integrals are proportional to the integers; i.e., their ratios are rational. Note
that each signature must be investigated. For the elliptic (positive de¯nite)
signature, the singular points are the stagnation points, and the domain
of support excludes those singularities. For the hyperbolic signatures, the
domain of support excludes the hyperbolic singularities of lower dimension,
such as the light cone. Further note that a given vector ¯eld may not generate
real domains of support for all possible signatures of the quadratic form, ¸.

5.5 The Flux or Circulation Integral 1-form

For the Cartan topology constructed from a fundamental 1-form of Ac-
tion and a fundamental N-1 form of Current, several period integrals of closed
forms integrated over closed chains appear in a natural manner. In particu-
lar on an N=4 dimensional domain, the four period integrals of most interest
are the period integrals of °ux (circulation), charge, spin and torsion [9].
The fundamental period integral over a closed 1-form will be de¯ned as the
"Circulation" or "°ux" integral. When the Pfa® dimension is 2, there exists
a submersive map to two dimensions, and the vector ¯elds on this domain
will have two irreducible components, say [©(x; y; z; t);ª(x; y; z; t)]: Fol-
lowing the procedure of the preceding section, construct the 2-dimensional
volume element de¯ned as  = ½d©^dª; and the n ¡ 1 = 2 ¡ 1 = 1 form
A = (©dª¡ªd©)=f§a©p§bªpg2=p: The exterior derivative of such a 1-form
is exactly zero for all point sets that exclude the null set of the denominator.
The classic choice is for p = 2;and a = 1; b = 1; (+,+) signature. The closed
integrals of these closed 1-forms then can be expressed as

Ci rculation ¡ =
H
1

A =
H
1

(©dª¡ªd©)=f©2 +ª2g (58)

By substituting the functional forms in terms of (x,y,z,t) the circulation in-
tegral can be written in terms of functions on (x,y,z,t) and their di®erentials,
fdx; dy; dz; dt:::g
As an example, suppose that the domain is three dimensional, N=3.

Then the zero sets of ©(x; y; z) = 0 and ª(x; y; z) = 0; represent two 2
dimensional surfaces which may or may not have one or more lines of inter-
section. If the surfaces intersect, then

24



Intersection = d©^dª 6= 0: (59)

If the closed integration paths cannot be contracted to a point, because they
encircle these lines of intersection, the values of the integrals have rational
ratios depending on how many lines are encircled and how many times the
integration path encircles a line. The lines of intersection must have zero
divergence (and therefore must stop or start on boundary points, or are
closed on themselves). Otherwise the integration chains can be deformed
and then contracted to a point. The classic example is given by the 1-form,
A = (ydx¡ xdy)=(+x2 + y2) in three dimensions. For integration contours
that encircle the z axis, the value of ¡ =

H
1
A = 2¼: In hydrodynamics,

this vector ¯eld is called a potential "vortex", even though the vorticity
! =curlv = 0: Stokes theorem does not apply as the closed integration
chain is a cycle that is not a boundary.

An interesting application of the circulation integral is given when
there exists a map to the complex domain. Then ª) ©¤ and the circulation
integral has the form of the integral of the probability current in standard
quantum mechanics.

Period =
H
1

(©d©¤ ¡ ©¤d©)=f© ¢ ©¤g: (60)

5.6 The Gauss Linking or Charge Integral 2-form

Many di®erent options exist for construction of these invariant topolog-
ical structures from closed p-forms. The idea is to ¯nd a formulation for a
closed form on a domain, and then to specify a closed and compatible inte-
gration chain. The integration chain need not be a boundary, but only a
closed cycle. For example, from the components of the speci¯ed vector, A¹
, the Jacobian matrix, [@A¹=@x

º] can be constructed. The rows or columns
of the matrix of cofactors of the Jacobian (the adjoint matrix) forms a set of
vector ¯elds that have zero divergence [21], and therefore these vectors could
be used to construct relative integral invariants. In every case there exists
an algebraic construction which produces a vector that is divergence free and
whose line of action is uniquely related to original vector that was used to
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construct the Cartan topology. That vector may be constructed by multi-
plying the original vector A¹ by the matrix of cofactors and then dividing
by the function ¸ de¯ned above. The construction replicates the previous
procedure. As an application for n = 3, p=2, consider the vector that repre-
sents the di®erence between two space curves, z = R2¡R1. Then compute
the two form G(z) from the "volume" element  = dz1^dz2^dz3=¸; to give

Gn=3 = fz1dz2^dz3 ¡ z2dz3^dz1 + z3dz1^dz2g=¸ (61)

where

¸ = (§(z1)2 § (z2)2 § (z3)2)3=2: (62)

Next assert that the displacements of interest are constrained by two
parametric curves given by

dR1 = V1dt and dR2 = V2dt
0; (63)

where the parameters dt and dt0 are not functionally related (which would
imply that dt^dt0 = 0).

It is important to realize that kinematic constraints are topological
constraints that re¯ne the Cartan topology, a topology based solely upon
the speci¯ed 1-form of action, A. From a physical point of view, these con-
straints can be interpreted as constraints of null °uctuations and in certain
circumstances can be associated physically with the limit of zero temperature.
To demonstrate the utility of such constraints, substitute these di®erential
expressions into the expression for the 2-form G of "current" in N=3 dimen-
sions, and carry out the exterior products, using dt^dt0 6= 0; but dt^dt = 0
and dt0^dt0 = 0: The result is the vector triple product representation for
the Gauss integral,

Q =
H
2

G =
H
2

fz ±V1 £V2gdt^dt0=(R1 ±R1 ¡ 2R1 ±R21 +R2 ±R2)
3=2:

(64)

The integration domain is the closed "2-dimensional area" formed by the
displacements along the non-intersecting curves de¯ned by the two distinct
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parameters, dt, and dt0: This double integral is to be recognized as the Gauss
linking integral of Knot Theory [7]. (Without the kinematic substitutions,
it may also be interpreted as the charge integral of electromagnetic theory.)
When integrations are computed along closed curves whose tangent vectors
are V1 and V2, then the integer values of the closed integral may be inter-
preted as how many times the two curves are linked. Note that the same
integer result is obtained when the vector z is interpreted as the sum of the
two vectors, z = R2+R1, although the values of the integrals have di®erent
scales.
The constraint that dt^dt0 6= 0 implies that the "motion" along the curve

generated by R1 is independent of the "motion" along the curve generated
by R2: If the curve generated by R1 is a conic in the xy plane and the
curve generated by R2 is a conic in the xz plane, then the surface swept out
by the vector z is a Dupin cyclide. Such surfaces have application to the
propagation of waves in electromagnetic systems.
From another point of view, consider the ruled surface [22] de¯ned by the

vector ¯eld of two parameters,

z(¹; t) = R(t)§ ¹V(t): (65)

Vector ¯elds of this type are primitive types of "strings" for ¯xed values of the
parameter, t, and string parameter, ¹: Direct substitution of the physical
constraints, dR ¡ Vdt = 0, and d(V) ¡ Adt = 0 leads to the topological
Gauss integral,

Q =
H
2

G =
H
2

fR±¹V£Ag=¸=
H
2

fA ±R£¹Vgdt^d¹=(R ±R§ 2¹R ±V + ¹V ± ¹V)3=2: (66)

It is apparent that the interaction of the "angular" momentum, L =
R £ ¹V, and the acceleration, A, produces a topological invariant whose
values are "quantized" ( in the sense that the ratios of the integrals are
rational). Note that for the classical central ¯eld problem where the force
(acceleration) and the angular momentum are orthogonal, the orbits are in
a plane and the Gauss{linking number is zero. Further note that the triple
vector product of the integrand is proportional to the Frenet torsion of the
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orbit. An orbit that is planar has Frenet torsion zero everywhere. The Gauss
linking integral is a special case of the Gauss two dimensional period integral
of electromagnetic theory when the integration domains can be factored into
independent products, dt^dt0 6= 0:

5.7 Chaos and the Unknot

Much interest of late has been shown in knot theory and its application to
an understanding of the trajectories of dynamical systems. The conjecture is
that somehow an understanding of knot theory will give a better understand-
ing of chaos. Counter intuitively is the idea that chaos is to be related to the
unknot. Of particular interest will be those cases where lines of vorticity have
an oscillatory Frenet torsion with a period equal to 2/3 of the fundamental
period of closure. The topological Gauss integral will average to zero for
such systems; but these systems can be created by continuous deformations
of folding and twisting a closed loop of vorticity, producing a period 3 system
which is known to be related to chaos [23]. In the undeformed circular state,
tubular neighborhoods guided by the vortex lines can continuously evolve
into domains without stagnation points or tangential singularities, or knots,
or twists. However, when the closed vortex line is in the deformed period
3 con¯guration, tangential (hyperbolic) singularities are created by the °ow
lines of the velocity ¯eld, and the evolution becomes highly convoluted and
chaotic. See Figure 1.
These topological features may be demonstrated visually by taking a long

strip of paper and wrapping the strip three times around your ¯ngers. Close
the strip by going under one strand and over the next before pasting together.
The strip is of obvious period three. Now slide the closed strip from the
¯ngers and note that it can be deformed 9continuously into a cylindrical
strip without twists or knots (Spin 0). If the same procedure is used, except
that a double over or a double under crossing is used before pasting the strip
ends together, the resulting closed loop will have a continuously irreducible
4¼ twist (Spin 2). Both the Spin 2 and the Spin 0 strips have a zero Euler
characteristic. However, the Spin 2 strip can be continuously deformed into
a Klein bottle, or a double lapped Mobius band, and is not homeomorphic
to the spin zero strip [24].
If a model of the Spin0 and Spin 2 systems (deformed to their period 3

con¯gurations) is made from a copper tube, and if °exible bands are created
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to link any pair of neighboring tubular strands, then it is readily observed
that the paired domain twists and folds as it is propagated unidirectionally
along the vortex lines. For the spin 2 system the °exible bands will return to
their original state in 3 revolutions. However, the paired domain continues
to twist and fold, becoming ever more complicated as it follows the evolu-
tion around the Spin 0 con¯guration. The folded spin 0 system has chaotic
neighborhoods. This result indicates that the source of chaos in dynamical
systems may be due to the unknot, and not the knot! The Cartan theory
thereby predicts that the source of chaos in turbulent systems does not re-
quire a discontinuous cut and connect process, but may be induced by vortex
lines that continuously evolve by twisting and folding into a closed, spin 0,
period three con¯guration.

5.8 The Torsion 3-form and the Braid integral

For n = 4 the same procedures used above can be used to produce a pe-
riod integral over a closed 3-dimensional domain. In fact, the same vec-
tor ¯eld that is used to de¯ne the Cartan 1-form of Action may be used
to construct a dual N-1 form that is closed. The algorithm is to substi-
tute for the functions [V x(x; y; z::); V y(x; y; z::); V z(x; y; z::); :::] the functions
[Ax; Ay; Az:::], that make up the covariant 1-form of Action.. This construc-
tion is equivalent to constructing the Jacobian matrix of the original vector
¯eld on the N-dimensional velocity space, computing its cofactor matrix,
multiplying the original vector by the cofactor matrix, and then dividing by
the quadratic form, ¸. When these operations are completed, functional sub-
stitution will lead to an conserved axial vector current density on (x,y,z,t).
Another form of the topological integral invariant is constructed in the follow-
ing way. First, for the classic Cartan action, A = Pkdxk ¡ Edt=c, construct
the N-volume,  = ¡dPx^dPy^dPz^dE=c: Next contract  with the vector,
(Px; Py; Pz;¡E=c), and then divide by ¸ = f§P ±P §(E=c)2g2: For sake of
simplicity, assume that E=c is a constant such the dE = 0. Then the closed
3-form or current becomes equivalent to

J = (E=c)dPx^dPy^dPz=¸ with dJ = 0 (67)

Now invoke the same Cartan trick of individual parametrization as uses
above. Consider a total momentum vector composed of three individual
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vector components, P = p1+p2+p3: Assume that the Cartan topology is
constrained in such a way that for each vector component a Newtonian kine-
matic law of parametrization is maintained such that

dp1¡f1dt = 0; dp2¡f2dt0 = 0; dp3¡f 3dt00 = 0: (68)

Also note that dt^dt0^dt00 6= 0; that is, the parameters used in the Newto-
nian kinematic descriptions are not sychronizeable. If they were functionally
related the value of J must be zero. Substitute these expressions into the
equation for the closed current J and integrate over a closed 3 dimensional
chain to yield a triple Braid integral,

Braid =
H
3

J =
H
3

(E=c)dPx^dPy^dPz=¸

=
H
3

(E=c)f f1 ± (f2 £ f3)g dt^dt0^dt00= f§P ±P§ (E=c)2g2 (69)

The integrations are now over three closed curves whose tangents are the
Newtonian forces, f , on three "particles". Where in the two dimensional
Gauss integral, of the previous section, the evaluation was along the closed
curves of two particles that formed the ends of a string, in this case the
integrations are along the closed trajectories of three "particles" which form
the vertices of a triangle. In every case, the trajectories are the trajectories
of a system of limit points.
The idea that three "lines" are used to form the integral (whose values

form rational ratios) is the reason that this topological integral in the format
given above is de¯ned as the braid integral. Of course the three form of topo-
logical torsion is a variant of the braid integral, but applies to those topologies
where the system is not reducible to three factors dt; dt0 and dt" (such sys-
tems are said to have torsion cycles). An example of a period 3 braid with
Braid integral zero (chaotic) and Braid integral 2 (non-chaotic) is given in
Figure 1

The equivalent to this Figure, and the fact that there are two distinct
period 3 con¯gurations, one chaotic and one non-chaotic, was brought to the
attention of the present authors during a stimulating lecture given by J. Los
at the August, 1991, Pedagogical Workshop on Topological Fluid Mechanics
held at the Institute for Theoretical Physics, Santa Barbara UCSB.
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It is to be noted that the 3-form of topological torsion is related to the
braid integral, a three dimensional thing in four dimensions, and not the
Gauss linkage integral, which is a two dimensional thing in three dimensions.
The literature of helicity is sometimes confused on this point, and often
attempts to relate the helicity integral to the linkage integral.

5.9 Navier Stokes °ows and Pfa® Dimension 4

As a last example consider a system where the strong kinematic (topo-
logical) constraint dx¡Vdt = 0 is not imposed apriori. In other words, the
admissable evolutionary processes, V, may have anholonomic °uctuations
about kinematic perfection.

¢x = dx¡Vdt 6= 0 (70)

The physical system will be built on the Cartan topology of the 1-form,
A, given previously for the Euler °ow. However, the Cartan topology will
be constrained, not by the Hamiltonian conditions required to generate an
extremal system ( which is free of kinematic °uctuations), but by a more
relaxed set of conditions that permit ¯nite kinematic °uctuations, dx¡Vdt 6=
0. As it is known that i(V )dA must be transversal to the vector ¯eld, V , it
follows that a weaker topological constraint might exist in the form,

i(V )dA = fk(dx
k ¡ V kdt) + dµ; (71)

where the functions µ are Bernoulli-Casimir ¯rst integrals in the sense that
i(V )dµ = 0:
When fk = 0, these °uctuation constraints reduce to the more stringent

Hamiltonian conditions for an extremal °ow, or in the case where dµ 6= 0; to
the Bernoulli-Casimir symplectic conditions. If is assumed that

fk = v(curlcurlV) k; (72)

it follows that the expression given above, i(v)dA = fk(dxk ¡ V kdt); is ex-
actly equivalent to the Navier-Stokes partial di®erential system [25] for an
incompressible viscous °ow on the variety x; y; z; t.
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f@V=@t+ grad(V ±V=2)¡V £ curlVg =fºr2Vg¡grad P=½ (73)

These relaxed topological constraints, which admit evolutionary °uctu-
ations in the Cartan system, permit the Topological Parity 4-form to be
computed for the Navier Stokes °uid; the result is:

K = F^F = ¡2º (curlV ± curlcurlV)dx^dy^dz^dt: (74)

From this result it is apparent that the Pfa® dimension of the domain
is 4, unless the viscosity is zero, or the vorticity ¯eld satis¯es the condi-
tions of Frobenius integrability. The Torsion current anomaly is equal to
¡2º (curlV ± curlcurlV). The torsion lines can stop or stop within the do-
main producing defect structures that e®ect the cohomology of the Cartan
topology.

An interesting result is the proof that the closed integral of topolog-
ical Torsion-Helicity is a relative integral invariant for the viscous, compress-
ible °uid, if the Cartan sequence has a Pfa® dimension equal to 3. Recall
that the evolution of the 3-form H = A^dA is given by the Lie derivative
expression,

L(¯V )
H
3

H =
H
3

fi(¯V )dH + d(i(¯V )Hg =
H
3

fi(¯V )dHg+ 0 (75)

But if curlV±curlcurlV vanishes (for any viscosity) then dH = dA^dA =
0, and the RHS of the above expression vanishes, for any reparameterization,
¯. Therefore, the closed integral of the Topological Torsion three form is a
deformation invariant not only of Eulerian °ows, but also of viscous °ows
for which the vorticity ¯eld is of Pfa® dimension 2 (the velocity ¯eld is
Pfa® dimension 3). The folklore concept that viscosity destroys the helicity
invariant is not necessarily true.
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