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Abstract: A connection between thermodynamics and dynamical systems is made
by recognizing that any three dimensional evolutionary vector field can be made
homogeneous by embedding in a projective space of one higher dimension. The Jacobian
matrix of such a projectivized vector field always satisfies a Cayley-Hamilton cubic
polynomial. By expressing this polynomial in terms of coordinates composed from the
similarity invariants of the Jacobian matrix, a correspondence can be made to a universal
Gibbs surface of van der Waals gas. It is possible to determine the critical point, the
Spinodal line representing the limit of thermodynamic stability, and the ”mixed phase”
region for any dynamical system.

Introduction
In 1977, at the Aspen conference on “New Frontiers in Thermodynamics” it was noted

by this author that there is a connection between the invariants of the shape matrix of
differential geometry, critical behavior (topological transitions) in dynamical systems, and
the thermodynamics of a Gibbs equilibrium system. In particular, it was determined that the
Spinodal line of a van der Waals gas was given by the condition that the sectional Gauss
curvature (the determinant of the shape matrix) of the Gibbs function as a surface constraint
in {ρ,T,P} space must vanish. The van der Waals Gibbs function is a cubic polynomial
which generates the shape of the now classic swallow-tail singularity. (See Figure 1)

The thermodynamic critical point was determined as that point where both the Mean
curvature and the Gauss curvature of the Gibbs surface vanished. As the intrinsic Spinodal
line in thermodynamics is the limit of single phase stability, the thought, in 1977, was to
apply such thermodynamic ideas to the stability analysis of dynamical systems (such as the
Brusselator chemical system) in order to gain insight into their behavior. In modern
language, the idea recognized that the first law of equilibrium thermodynamics,

ω = dU − TdS + PdV ⇒ 0,     1

could be viewed as an integral submanifold of an exterior differential system, with the
fundamental group as the projective subgroup of the general linear group. The associated
vectors of the 1-form, such that i(e)ω = 0, create a tangent space orthogonal to the adjoint
field defined by the covariant components of the 1-form, ω. This vector bundle can be used
to define a 3x3 basis frame, whose Cartan matrix of connection coefficients can be used to
determine the geometrical properties of the thermodynamic submanifold. The interesting
thermodynamic properties turned out to be the zero sets of the similarity invariants of the
basis frame.

Turning the idea around, if a dynamical system in 3 dimensions could be used to define a
basis frame, then the associated Cartan matrix of connection 1-forms could be used to



determine geometrical properties, and the important intrinsic properties would be related to
the similarity invariants of the basis frame. As every 3x3 matrix satisfies its
Cayley-Hamiltonian polynomial, which in the general case is a cubic polynomial, and as the
Jacobian matrix of every 3 dimensional dynamical system is a 3x3 matrix which can be used
as a basis frame, then all such systems must have a universal representation as a van der
Waals gas.

Indeed, the oscillation frequency of the Brusselator dynamical chemical system was
shown by this technique to be related to the square root of the Gauss curvature of the
equivalent thermodynamic surface. It is now known that this oscillatory result, in which the
square root of the Gauss curvature is an oscillation frequency, is not only a similarity
invariant of the dynamical system, but also a projective invariant whereby the dimensionless
ratio of the three similarity invariants, MG/K, of a certain three by three Jacobian matrix, is
equal to unity. In a 3 dimensional dynamical system, a Hopf bifurcation occurs when a
complex conjugate pair of roots has no real part. As M is defined as the sum of the
eigenvalues, G as the sum of all pairs of eigenvalues, and K is the product of eigenvalues, the
Hopf condition corresponds to the existence of a surface in the three dimensional domain
defined by the condition, MG/K = 1. Oscillatory limit cycles, if they exist, must reside on
the surface defined by the Hopf condition, MG/K − 1 = 0, subject to the condition that
G = ω2 > 0. The Hopf bifurcation is not the only set that belongs to the surface constraint,
MG/K − 1 = 0, for there is another sheet that belongs to the hyperbolic situation when
G < 0.

As Tisza points out (Tisza, 1961), it is remarkable that intrinsic subspace curvature
properties can have any thermodynamic meaning, as metrical based geometries can not be
used to distinguish between the two classes of intensive and extensive thermodynamic
variables. However, in the calculus of variations it is known that those extremal principles
that are independent of parametric scales lead to projective geometries and Finsler spaces.
Indeed, Chern (Chern, 1954) has shown that the key assumption of a Finsler geometry is that
the variational integrand be homogeneous of degree 1 in the variables of the tangent space,
thereby forming, in his words, a “projectivized” tangent bundle.

It follows that the physical science of thermodynamics, based upon functions which are homogeneous
of degree 1, is where the theory of projectivized Finsler spaces can be of practical application.

Recall that a standard feature of projective geometry in the plane is that there exist dual
relationships between “points and lines” given by a Legendre transformation, and that these
Legendre transforms have special properties for functions which are homogeneous degree 1.
In Thermodynamics, it is presumed that there exists a primitive phase function of extensive
variables, Θ(U,S,V,n), which by definition is homogeneous of degree 1 in its variables. The
condition of homogeneity can be used to define the conjugate variables (of temperature,
pressure and chemical potential) :

S( ∂Θ/∂S) + V( ∂Θ/∂V) + U(∂Θ/∂U) + n(∂Θ/∂n) − Θ(U,S,V,n) = 0     1

ST + V (−P) + U(−β) + n(µ) − Θ = 0.     2

The constraint that Θ ⇒ 0 defines an equilibrium hypersurface in the space of variables
(U,S,V,n). If Θ is single valued in U (which implies that β = 1) then solving for the energy
function defines a Monge surface in the space of variables, (S,V,n). Tisza call this solution



the primitive energy function. In the equilibrium case, Θ ⇒ 0, the homogeneity condition
leads to the Gibbs free energy defined as

G := nµ = −TS + PV + U     3

For fixed n, the result defines a Legendre transformation between G(T,P) and U(S,V). It is
important to realize that the Gibbs surface mentioned in the first paragraph for the van der
Waals gas is constructed from a Legendre transform of the primitive (Internal) energy
function, U, subject to the condition that the internal energy function be single valued.
However, the Gibbs (Free) energy function G, is not single valued.

It is also of some importance to note that most textbook treatments of thermodynamics
agree with the idea that the phase function (U,S,V,n) must be homogenous of degree 1, but
the formulas often presented for the ideal or van der Waals gas do not satisfy the Euler
criteria of homogeneity. A correct formulation is presented below. It is a fact that any
function can be made homogeneous of degree 1 by merely adding a new variable, and
dividing, or renormalizing, each of the old variables by the new variable, and then
multiplying the new function by the new variable. For example, consider f(x,y, z). Then
F(x,y, z, s) = sf(x/s,y/s, z/s) is homogeneous of degree 1 in the variables, {x,y, z, s}. This
same idea can be extended to vectors: for example, let

v = [Vx,Vy,Vz]⇒ V = [Vx,Vy,Vz,λ(Vx,Vy,Vz)] ⇒ W = [Vx/λ,Vy/λ,Vz/λ]
The key feature of the phase function of thermodynamics is that N, or n, “the number of

parts, molecules, or phases” plays the role of the renormalization variable, designated as s in
the example. It is to be noted that the Euler criteria for homogeneity is given by the
expression, L = p∂H/∂p − H(p). When L = 0, the function H is homogeneous of degree 1 in
p. The association to Legendre transformations and Hamiltonian mechanics is obvious. The
variational problem when the variational integrand, L(v), is homogeneous of degree 1 in v is
known as the Homogeneous Problem: v∂L/∂v − L(v) = H. (See Rund). But this format is
precisely that used in the theory of special relativity, the theory of minimal surfaces, and in
Chern’s version of Finsler geometries built on projective connections.

Based on the concept that different thermodynamic phases represent topological
properties, and that a phase change is to be recognized as a signature of a topological
evolution, the basic ideas of projective differential geometry mentioned above were utilized
(1989) to define certain topological properties of hydrodynamic flows. Different domains of
initial conditions for a given hydrodynamic flow could be associated with different phase
regions of a thermodynamic substance. A specific example was given for a dynamical
system in which the three dimensional flow explicitly induced the Gibbs free energy surface
typical for the Van der Waals gas. It then was possible to determine that there were domains
of initial conditions for which the system could be put into correspondence with the pure
liquid, pure gas, or mixed phase regions of a two phase system. An unstable region would be
in the domain which is interior to the spinodal line on the surface representing the equation
of state. Although intuition implied that this correspondence was a universal result, no
satisfactory argument was known at that time to substantiate the idea of universality, except
in specific examples.

It this article it will be demonstrated that the observations described above are indeed
universal concepts: Any dynamical system that can be described in terms of a non-linear C1
vector field in three variables can be associated with the thermodynamics of a Van der Waals
gas. This universal behavior not only justifies the law of corresponding states in chemistry
(Guggenheim 1945), but also yields explicit universal formulas (in terms of cross ratios of
similarity invariants) to describe the limits of phase stability that are equivalent to the
Spinodal Line and the Binodal line of two phase thermodynamic systems. In addition, the



ideas lead to a well defined procedure for treating non-equlibrium thermodynamic systems
as complex deviations from the real, or equilibrium, systems.

This claim of universality is not to be treated lightly. For example, it should be remarked
that historically many authors, including Thom, have recognized that the cusp catastrophe
generated by the cubic fold has many qualitative features of a Van der Waals gas. In 1977
Sewell noted a relationship between Legendre transformations and bifurcation theory, and
clearly defined the relationship between the Gibbs free energy surface of a van der Waals gas
and its relationship to the swallowtail catastrophe. However, the claims that catastrophe
concepts have universal significance have been criticised sharply, both on method and style
of presentation and specifically on the grounds that not all dynamical systems have a
gradient representation. However, the analysis herein gives credence to some of Thom’s
claims of universality by demonstrating how the cusp singularity can be constructed in terms
of any C1 three dimensional vector field, and the similarity invariants of its Jacobian matrix.
Annuling individual similarity invariants (invariants with respect to that special subset of
projective transformations, equi-affine transformations, that preserve parallelism and
perpendicularity) leads to local bifurcations, and constraining dimensionless cross ratios of
similarity invariants leads to global bifurcation diagrams. Then using Sewell’s result that the
bifurcation set of the swallowtail singularity is related to the Legendre dual of the Cusp
singularity completes the universal correspondence.

The example of the van der Waals gas
Consider a thermodynamic system described by an action integral where the integrand

can be decomposed in a homogeneous and a non-homogeneous part:

∫ A = ∫[L0{...,S,V,n; U}dU + ω].     4

For identification purposes, view the the variables {S,V,n) as ”velocities” and U as the
parameter of ”time” on the thermodynamic ”state” space of extensive variables,
{...,S,V,n; U}. Assume that homogeneous part has the Lagrangian format

L0{S,V,n; U} = nΘ(U/n,S/n,V/n),     5

which is homogenous of degree 1. (It will be presumed that at ”equilibrium” the
non-homogeneous contribution to the variational integrand is negligible, ω ⇒ 0). The Euler
equation for homogeneity,

S∂L0/∂S + V ∂L0/∂V + n∂L0/∂n + U∂L0/∂U − L0 = 0,     6

permits the intensive variables (T,P,µ} to be defined by the canonical (1-jet) conjugate
expressions:

T = ∂L0/∂S, − P = ∂L0/∂V, µ = −∂L0/ ∂n, β = −∂L0/∂U.     7

The Lagrange function (for a single valued energy ⊃ β = 1) becomes expressible as

L0 = TS − PV − µn − U,     8

with a differential,



dL0 = (SdT − VdP − ndµ) + {TdS − PdV − µdn − dU} = (SdT − VdP − ndµ) + ω.

    9

The constraint that dL0 be transversal to the space {S,V,n; U} identifies the vanishing
1-form,

ω = {TdS − PdV − µdn − dU} = 0,     10

as a constraint which is equivalent to the first law of thermodynamics.
From another point of view, the homogeneity condition may be viewed as a Legendre

transformation from the extensive to the intensive variables

G(T,P,µ) = (TS − PV − µn) − U(S,V,n)     11

These expressions define a Finsler space for any system of ”coordinates”.
In the earlier work mentioned above, the Gibbs space used in deriving the shape matrix

of the equilibrium “surface” was assumed to be a projective geometry of three dimensions,
(U/n,S/n,V/n}, on which the projective constraint was that given by the first law of
thermodynamics

ω = dU − Q + W = 0.     12

The presumption of classical thermodynamics is that the first law is locally equivalent to a
Darboux representation

ω = dU − TdS + PdV + µdn     13

equivalent to the constraints on the seven dimensional space {U,T,S,P,V,µ,n} given by the
differential system that consists of constraints equivalent to the zero set of a homogeneous of
degree 1 function on the extensive variables, {U,S,V,n}

nΘ(U/n,S/n,V/n) = 0     14

ω = dU − TdS + PdV + µdn

with dω = 0 and ω ⇒ 0

    15

    

The vanishing of the three form, ω^dω = 0, insures that the 1-form, ω, is integrable in the
sense of Frobenious, and is at the foundation if Caratheodory’s theory of equilibrium. The
existence of this 1-form defines a non-standard, or Cartan surface, for which the shape
matrix is not necessarily symmetric, and therefore can have complex eigenvalues. (See
appendix A.) In equilibrium thermodynamics the additional constraint that ω is integrable
implies the existence of a unique solution function, nΘ(U/n,S/n,V/n) which is homogeneous
of degree1 in the extensive variables {U,S,V,n} The partial derivatives of the solution
function with respect to the extensive variables, yield the thermodynamic intensities.
Whether the 1-form ω is integrable or not, the vanishing of the 1-form constrains the
projective shape matrix to be symmetric, and therefore the eigenvalues in the equilibrium
case are all real. A point of departure is realized when the projective constraint is chosen
such that the shape matrix admits complex eigenvalues. In all projective geometries, the
fundamental invariants are constructed from six primitive cross ratios, two of which are
bounded by negative infinity and zero, two of which are bounded by zero and one (the



probability domain) and two of which are bounded by one and infinity. It will be
demonstrated below how this signature of the three projective equivalence classes appear in
the relationships that relate envelopes to bifurcations in projective space.

Others have attempted to use differential geometric methods to analyze thermodynamic
systems, but almost always these attempts have tried to construct a suitable metric
formalism. For example, Tisza mentions that Blashke attempted to deduce a differential
geometry that would apply to the metric free Gibbs space, but with only limited success. In
Blashke’s geometry, the projective space was confined to the equi-affine group, which forces
the the shape matrix to be symmetric. Such equi-affine systems admit only real eigen values
for the shape matrix, where the richness of non-equilibrium thermodynamics, and its
possible application to the theory of dynamical systems, requires the existence of domains of
both real and complex eigenvalues. In this article, a projective geometry without metric is
presumed to be the natural basis for non-equilibrium thermodynamics.

When the Gibbs primitive phase surface of the van der Waals gas is mapped to its dual
by means of a Legendre transformation, the Spinodal line can be interpreted as an edge of
regression in the dual surface of “Gibbs free energy”. See Figure 1. It is this clue that focuses
attention on the theory of envelopes, for the edge of regression is a singularity in an
enveloping surface (Struik). It is apparent in the dual surface of Gibbs free energy that, in
addition to the edge of regression, there exists another topological feature of singularity, a
line of self intersection (which is not an intrinsic property that can be determined locally).
This non-metrical feature of self intersection was interpreted as the Binodal line in the earlier
work mentioned. Usually, the Binodal line is defined through a heuristic Maxwell
construction on the PVT surface representing the equation of state. As Tisza states in
reference to the Maxwell procedure,

...a “van der Waals gas” (refering to the equation of state) does not constitute a fully
defined thermodynamic system. A complete definition would include the specific heat as a
function of say temperature and volume. ... In the concept of a Van der Waals gas a spurious
interpolation (the Maxwell construction) through the instable range (of the equation of state)
is substituted for the missing (specific heat) information.

In differential geometry, the line of self intersection is a locus of singularities, and as
such would offer a projective geometric definition of the Binodal line, without the hueristic
Maxwell assumption. Although visually apparent in the equilibrium surface representing the
Gibbs free energy, the differential geometry of the extrinsic Binodal line illuded algebraic
formulation.

The van der Waals Gas
In the classical development of thermodynamics, the van der Waals gas is often used as a

cornerstone example. However, the phase function, Θ, given in many textbook treatments is
not explicitly homogeneous of degree 1 in the extensive variables. A homogenously correct
formulation, to within a constant, is given by the relation:

Θ{...S,V,n; U} = n[e
S

nCv ( V
n − b)− R

Cv − a
( V

n + cb)
− U

n ].     16

This equation for Θ{S,V,n; U} satisfies the Euler condition for homogeneity of degree 1,

U∂Θ/∂U + V∂Θ/∂V + S∂Θ/∂S + n∂Θ/∂n − Θ = 0.     17

The partial derivatives with respect to the extensive variables may be used to define
intensive variables,



(P = −∂Θ/∂V, T = ∂Θ/∂S, µ = −∂Θ/∂n,β = −∂Θ/∂U)     18

such that the fundamental equation expressing homogeneity of degree 1 becomes

− βU − VP + ST − nµ = Θ(S,V,n; U..P,T,µ)     19

When is assumed to be the fundamental equation of constraint, the internal energy becomes a
function of the variables {S,V,n}. Subject to the constraint of the first law,

dU − TdS + PdV + µdn = 0,     20

the Gibbs free energy can be deduced as a Legendre transformation between the intensive
and extensive variables,

G(P,T,µ) = VP − ST − nµ − U(S,V,n)     21

Note that a correction factor, cb, has been added to the collision term (a/(V/n + cb) in order
to account for the finite size (or wavelength cb) of the colliding molecules. The coefficient c
will be of the order of unity, and can be adjusted to give a better fit of the van der Waals gas
equation to the experimental data of (RT/PV) at the critical point.

. The temperature equation may be inverted to yield an expression for the entropy. The
partial of S with respect to T at constant V and n leads to the expected expression involving
the specific heat (∂U/∂S)/T = nCv/T. When the expression for the temperature in terms of
entropy and volume is inserted into the pressure equation, the usual van der Waals equation
of state is retrieved. From the phase function

T = ∂
∂S

(Θ) = (e
S

nCv ( V
n − b)− R

Cv )/Cv     22

P = − ∂
∂V

(Θ) = nRT
V − bn

− a n2

(V + cbn)2
    23

Differentiating P with with respect to V yields

∂P/∂V = − nRT
(−V + bn)2

+ 2a n2

(V + cbn)3
    24

and

∂2P/∂V2 = − 2 nRT
(−V + bn)3

− 6a n2

(V + cbn)4
    25

The classic argument to determine the cricital point sets these relations to zero. It will be
demonstrated below, that these relations are obtained by finding the point on the Gibbs
surface where the mean curvature and the Gauss curvature vanish simultaneously. The
values of the thermodynamic variables at the critical point are:

Vc = bn(2c + 3), Tc = 8a/27
bR(c + 1)

, Pc = a/27
b2(c + 1)2

    26

which leads to the universal constant independent from the geometrical parameters {a,b}:



nRTc/(PcVc) = 8 c + 1
2c + 3

.     27

For c = 0, the universal constant is 8/3, the usual value given for the van der Waals gas;
but when the “wavelength” of the molecules is included, the effective collision cross-section
is increased, such that at a value of c = 1, the universal critical point constant becomes 3.2.
This value is in much better agreement with typical experimental values.

Projective Invariants
Klein established the idea of defining geometry in terms of its invariants with respect to

equivalence classes of transformations. At an elementary level, euclidean geometry can be
defined as that class of transformations that preserves the ”rigid” body properties of size and
shape; i.e., the invariants of translations and rotations define what is meant by Euclidean
geometry . Cayley looked at the problem from the matrix point of view, and considered
transformations of the general linear group, subjected to certain constraints. For example, if
the Jacobian matrix of transformations on a 4 dimensional space are constrained by a single
(holonomic) function on the 16 elements of the Jacobian matrix, then the space defines a
projective geometry. The single constraint can be formulated in several ways and still yield
a group structure to the Jacobian representation.

The invariance of a linear constraint on the domain will lead to the Affine group of
transformations (which preserve parallelism in subspaces but can accomodate shears of
translation.). A quadratic constraint on the domain will lead to the conformal group, with
many special cases depending upon the signature of the quadratic form. The constraint of
absolute involution leads to the symplectic group, and if the involution is elliptic then
perpendicularity can be defined. The two constraints of invariant line and invariant
involution lead to the domain of similarity transformations. If the further constraint of an
invariant cubic form is imposed as a equi-volume consideration, then the three constraints
lead to euclidean geometry. Note that these ideas correspond for a 3x3 matrix to the
invariance of the three symmetry invariants of the matrix, the trace, the determinant, and the
trace of the adjoint matrix.

Many interesting formulas can be obtained by considering the ”projectivized” vector
space of homogeneous coordinates. Projectivized vectors are constructed by a map from the
original space of dimension N in to a space of dimension N+1, where the new N+1
”coordinate” is a homogeneous function of the N original coordinates. The original
”coordinates” may be the component functions of the original vector field, itself. Then,
construct the map from N+1 dimensions back down to N dimensions, constructing a new
vector field whose components have bee ”renormalized” by the homogeneous function.

For example consider the ”projectivized position” vector

R = U, V, W, S /λ ≗ (Uk/λ)     28

with the scaling or renormalization factor in the form of a Holder norm

λ = (aUp + bVp + cWp + eSp)N/p.     29

The Jacobian matrix



J = [∂(Um/λ)/∂Un ]     30

of such a position vector with respect to the ”coordinate” variables {U,V,W,S} has certain
invariant properties for various values of the polynomial exponent p and the homogeneity
exponent, N, and for arbitrary an-isotropy constants with arbitrary signatures {a,b,c,e}, of
the renormalization function, λ.

The Jacobian matrix (any p) has
1. zero trace when λ is homogeneous of degree 4 (N = 4),
2. has zero determinant when λ is homogeneous of degree 1 (N = 1),
3. is in conformal involution for N = 2, with the conformal factor equal to λ2

4. has the trace of the adjoint matrix equal to zero when N = 4/3

Dynamical Systems

Examples

The Brusselator

The Lorenz attractor

The Dynamo


