The Chiral Vacuum

The vacuum state of classical electromagnetism is usually defined by a solution to the two sets of Maxwell equations (source free) with a constitutive constraint that D is proportional to E and H is proportional to B. However, an addition of a constitutive constraint that links D to E and also to B through a chiral tensor density gamma, and which also links H to B and also to E via the hermitian or anti-hermitean conjugate of this same chiral tensor density, leads to the same set of wave solutions, propagating with the same phase velocity, but now the impedance of free space is slightly modified. This conformal factor does not effect any homogeneous equation sets, but could lead to a lack of a center of symmetry in the Vacuum! and therefor to a lack of center of symmetry for the universe.


Copyright © CSDC Inc. All rights reserved.
Last update 12/01/2000
to HomePage