During the summer of 1968 I invited John Pierce ( one of my best graduate
students) out to visit me at Los Alamos, New Mexico. I wanted to show him
around the lab, and to do some work on differential forms. I conjectured that
the theory of forms ought to be able to express transport theorems in an
intrinsic (coordinate free) manner. During the day, John worked on the problem
while I worked at LASL. When I came home in the evening we would try to come up
with some cooperative results. Then, one Friday when I returned from the lab, I
found that he had left me some notes on the kitchen table, saying that he had
given up on the idea, and was going to Albuquerque to meet a friend for the
weekend.
I stared at his notes and his conclusion in despair, but then as often happens
with me, in a flash I had solved the problem. The important idea was the birth
of the topological 3form A^H, representing the intersection of the 1form of
Action and the 2 form of excitations. I now call this 3form Topological Spin, and use the notation A^G instead of A^H. The discovery of the period integrals of A^G then led to other 3forms, in particular that 3form A^F which I call Topological Torsion.
It is now apparent that these concepts have fundamental utility in understanding
irreversible phenomena, as well as in the understanding of chirality and
helicity in enantiomers. There are many articles and ideas on this web site that
had their origin with this early article published in the Physics of Fluids Vol
12, Number 9, (1969) p19411943.
Back in those days almost no one in the applied physics world knew anything
about differential forms, much less, about topology.
